Advancing Quatum Inforkation Science skip navigation Contact NIST go to Quantum Information Research at NIST go to NIST home page Search NIST web space NIST logo go to NIST Home page

quantum key

Quantum Information Research at NIST: Goals and Vision

What Good Is Quantum Information?

What is Quantum Information?

Quantum Computing

Quantum Communications

Selected NIST publications

Contact information

Quantum Information Research at NIST: Goals and Vision

Physicists Dietrich Leibfried and David Wineland lead NIST's quantum computing research using trapped ions.
Physicists Dietrich Leibfried and David Wineland lead NIST's quantum computing research using trapped ions.

©Geoffrey Wheeler

America’s future prosperity and security may rely in part on the exotic properties of some of the smallest articles in nature. Research on quantum information (QI) seeks to control and exploit these properties for scientific and societal benefits. This remarkable field combines physics, information science, and mathematics in an effort to design nanotechnologies that may accomplish feats considered impossible with today’s technology. QI researchers are already generating “unbreakable” codes for ultra-secure encryption. They may someday build quantum computers that can solve problems in seconds that today’s best supercomputers could not solve in years. QI has the potential to expand and strengthen the U.S. economy and security in the 21st century just as transistors and lasers did in the 20th century.

Nations around the world are investing heavily in QI research in recognition of the economic and security implications. A significant part of the U.S. effort is based at the National Institute of Standards and Technology (NIST), which has the largest internal QI research program of any federal agency.

NIST laboratories routinely develop the measurement and standards infrastructure needed to promote innovation in emerging fields that may transform the future. Few fields need this support as much as QI, which involves entirely new concepts of information processing as well as complex hardware for precision control of individual atoms, very small quantities of light, and electrical currents 1 billion times weaker than those in light bulbs. As the nation’s measurement experts, NIST researchers long have had world-class capabilities in precision measurement and control of atoms, light, and other quantum systems. NIST, therefore, has the world-class skills and facilities needed to advance QI through technology demonstrations, development of new methods and tests for evaluating QI system components, and related scientific discoveries.

NIST first became involved in quantum information science in the early 1990s when physicist David Wineland and colleagues realized that engineering of exotic quantum states could lead to a significantly more precise atomic clock. A few years later, Wineland demonstrated the first quantum logic operation, a pioneering step toward a future quantum computer using ions (electrically charged atoms) to process information. In 1999, the NIST Physics Laboratory launched a broader Quantum Information Program, joined shortly thereafter by NIST’s Information Technology Laboratory and Electronics and Electrical Engineering Laboratory.

Quantum information is a radical departure in information technology, more fundamentally different from current technology than the digital computer is from the abacus.

William D. Phillips,
NIST 1997
Nobel Laureate in Physics

This interdisciplinary program, featuring strong collaborations among physicists, electrical engineers, mathematicians, and computer scientists, has established NIST as one of the premier QI programs in the world. Participants include Wineland, a NIST Fellow and Presidential Rank Award winner; physicist William D. Phillips, a 1997 Nobel Prize winner in physics; mathematician Emanuel Knill, a leading QI theorist; and physicist Sae Woo Nam, winner of a Presidential Early Career Award for Scientists and Engineers. A total of nine technical divisions within three different laboratories at NIST’s Gaithersburg and Boulder campuses are involved.

NIST’s work in ion-trap quantum computing is widely recognized as one of the most advanced QI efforts in the world. Scientists building the NIST quantum communications testbed set a record in 2004 for the fastest system for distributing quantum cryptographic “keys,” codes for encrypting messages that, due to the peculiarities of quantum physics, cannot be intercepted without detection. Other NIST research with single photon sources and detectors, and computing with neutral atoms and “artificial atoms,” are also among the leading efforts worldwide. For instance, prospects for practical quantum communications have been improved by NIST’s recent demonstration of a device that detects single photons with 88 percent efficiency, a QI record.

There is strong synergy between NIST’s core mission work on measurement and standards and the QI research program. For instance, NIST scientists gained much of their expertise in quantum systems from decades of work developing atomic clocks. NIST’s ultra-precise atomic fountain clock—the world’s most accurate device for measuring time—is based on the precise manipulation and measurement of two quantum energy levels in the cesium atom. This clock would neither gain nor lose one second in 60 million years (as of March 2005), an accuracy level that is continually being improved. NIST quantum computing research is producing new techniques that may lead to even more accurate atomic clocks in the future.

Ultimately, NIST measurements, tests, and technologies for quantum information science are helping U.S. industry develop new information technologies in an effort to ensure U.S. technological leadership and strengthen national security. The United States may have the lead in this field for now—based in part on NIST’s contributions—but competition from Europe, Japan, Australia, and developing countries such as China is strong and growing.

 

See also: What NIST Does, Work with Us, A-Z Subject Index, How to Contact NIST, NIST Home Page

Date created: 4-16-06
Last updated: 5-3-06
Contact: inquiries@nist.gov