

White Paper

 Sun's Auto-ID Architecture

On the Web

 sun.com/software

White Paper
June 2003

Sun's Auto-ID Architecture

Table of Contents

Introduction .1

Sun's Auto-ID Architecture .2

Savant Server .4

Event Management System . 5

Real-time In-memory Event Database . 6

Task Management System . 6

Sun ONE Integration Layer .7

Integration With the Sun ONE Application Server . 7

Tightly Coupled Integration . 8

Loosely Coupled Integration . 9

Administered Objects . 9

Client Runtime . 9

The Message Service .10

Integration With the Sun ONE Integration Server .10

Sun ONE Integration Architecture .11

Sun ONE Integration Server Backbone .12

Sun ONE Integration Server Process System .13

PML Service . 14

Types of PML data .14

PML Server .15

Best Practices . 16

Introduction

P

1

Chapter 1

Introduction

Auto-ID technology can greatly enhance an enterprise's ability to manage its supply chain by

providing a real-time view of how items are moving throughout the supply chain. And the result

can be unprecedented gains in operational efficiency for the enterprise. Typical applications that

customers are pursuing with Auto-ID include minimizing out-of-stock situations, minimizing shrinkage

of inventory through theft or expiration, and improving inventory management in general. In all

of these cases, significant positive impact can be made to a firm's bottom line by increasing

revenue or decreasing costs.

This document describes Sun's Auto-ID architecture, which is currently being pursued by

some early adopters in both the retail and manufacturing industries, with Sun as the integrator.

P

2 Sun's Auto-ID Architecture

Chapter 2

Sun's Auto-ID Architecture

Sun's Auto-ID architecture is illustrated inFigure 2-1.

Figure 2-1:

Sun's Auto-ID architecture

© 2003 Sun Microsystems, Inc.

Sun's Auto-ID Architecture

P

3

At the bottom layer is the reader that will be responsible for reading the tagged items that

may be on a shelf or may be moving through a portal such as a door or dock. Normally, the reader

will be reading many items continuously and sending that data to the Savant server for processing.

Typical throughput would be 100 reads per second.

The next layer in the architecture is the Savant server. The Savant server's role is to quickly

process all the tag data that is coming in from one or more readers. It buffers the reads and then,

through filtering, keeps pertinent reads. For example, in the case of a shelf reader, most of the

reads are from items that have not moved on or off the shelf. Since the item would have been

stored in a database previously, the redundant reads need to be filtered out. Other types of filters

can be used to enforce business rules as well. Once the filtering has occurred, the data that is kept

needs to be persisted for use by other layers in the architecture.

Typically, an enterprise with a large supply chain will have numerous Savant servers located

at each site within their supply chain to localize the reader traffic. A typical store or warehouse

will have numerous readers in the various shelves. Given the amount of network traffic from the

readers, it is important to localize the data by having the Savant servers filter the tag data at each

site instead of sending tag data over the Internet. In addition, it is good practice to isolate the

readers from the Internet for security reasons.

The third layer in the architecture is the Sun™ Open Net Environment (Sun ONE) Integration

layer. Sun advocates that integration technologies be used to connect the Savant layer to the

enterprise information systems (EIS), such as legacy, enterprise resource planning (ERP), warehouse

management, supply chain management (SCM), and customer relationship management (CRM)

systems, as well as other applications that might want to use tag information. These technologies

include Java™ technologies such as the Java Message Service (JMS) and Java 2 Platform, Enterprise

Edition (J2EE™) Connector Architecture to connect the Savant server to the EIS systems. Data

translation as well as business process management is still necessary to have the EIS systems

optimally leverage the real-time information on the supply chain that is contained in the Savant.

Depending on the specific requirements, either session beans or servlets can be written running on

the Sun ONE Application Server or Sun ONE Integration Server and can be used in more complex

integration scenarios.

EIS systems are at the top layer of the architecture. They can benefit from using the tag data

to better manage a firm's supply chain. In the future, there will also be product information stored

on Physical Markup Language (PML) servers. The remainder of the paper discusses each of these

layers in more detail.

P

4 Sun's Auto-ID Architecture

Chapter 3

Savant Server

This section describes the Savant server using the preliminary Savant Server specification from the

Auto-ID Center as a reference. The Savant server is responsible for processing data from Radio

Frequency Identification (RFID) tags that have unique electronic product codes (EPCs) describing

the manufacturer, product number, and serial number. The Savant server provides the following

benefits:

• Enables third-party vendors of RFID systems and other auxiliary systems providers to connect to

the Savant by providing device adapters

• Helps integrate RFID data with existing ERP or other systems by defining a set of generalized

logger and adapter interfaces that can connect to these systems to send or receive real-time data

• Provides a general-purpose, event-routing system

The Savant is a data router that performs operations such as data capturing, data monitoring,

and data transmission. For each reading, the Savant gathers, at minimum, information such as

the EPC of the tag read, the EPC of the reader that scanned the tag, and the timestamp of the

reading. The Savant consists of three major modules:

1.

Event Management System (EMS)

2.

Real-time In-memory Event Database (RIED)

3.

Task Management System (TMS)

© 2003 Sun Microsystems, Inc.

Savant Server

P

5

The Savant’s Event Management System (EMS) allows the Savant to react to various real-time

events such as EPC reads, sensor measurements, and bar code scans. As events are gathered in the

network, they can be persisted in Savant’s Real-time In-memory Event Database (RIED). The RIED

subsystem supports SQL-based access data held in a relational schema. Such a data store will be

updated on every event that enters the Event Management System. To provide a consistent view

of the data while queries are performed, without making the updates inefficient, RIED supports

queries on snapshots of its state.

Batch operations can be configured on the information gathered by the EMS using the Task

Management System (TMS). Operations such as periodic lookup of PML data or data exchange

with ERP systems can be configured as tasks in the TMS.

Figure 3-1:

Savant server architecture

Figure 3-1 depicts a sample configuration of a Savant server that uses the EMS, RIED, and TMS

modules. As shown, events captured from reader adapters are processed by event queues, event

filters, and event loggers. These events are then logged in the RIED memory model. Meanwhile,

tasks managed by the TMS monitor the EPC data.

Event Management System

The Event Management System (EMS) collects tag reads and other events. The EMS is responsible for:

• Allowing adapters to be written for various types of readers

• Collecting EPC data from readers in a standard format

• Allowing filters to be written to smooth or clean EPC data

• Allowing various loggers to be written, such as database loggers to log EPC data into the

database, and HyperText Transport Protocol (HTTP)/JMS/Simple Object Access Protocol (SOAP)

network loggers to broadcast EPC data to remote servers

• Buffering events to enable loggers, filters, and adapters to operate without blocking each other

P

6 Sun's Auto-ID Architecture © 2003 Sun Microsystems, Inc.

Real-time In-memory Event Database

Real-time In-memory Event Database (RIED) is a specification for a real-time in-memory relational

database system. Edge Savants maintain and organize events sent by readers. The Event Management

System provides a framework to filter and log events. The loggers can log events in a database.

However, databases cannot handle more than a few hundred transactions per second. RIED provides

the same interface as a database, but offers much better performance.

RIED maintains one or more snapshots of the database. The latest snapshot is the updatable

image of the database. Other snapshots are read-only images of the database. The maintenance

of old snapshots may be useful in applications such as inventory counting. These applications can

run on read-only snapshots without affecting the performance of the event updates.

The Java DataBase Connectivity (JDBC™) interface presents a JDBC view to the RIED schema.

This industry-standard interface allows a remote machine to access the database using standard SQL

queries and locate the database using standard URLs.

The reference implementation of RIED supports SQL operations such as SELECT, UPDATE,

INSERT, and DELETE. The RIED reference implementation supports a subset of data manipulation

operations defined in SQL92.

Task Management System

The Task Management System (TMS) is a generalized scheduling manager for executing custom

tasks in the Savant. Its main purpose is to provide a simple, yet powerful system for:

• Scheduling recurring tasks based on a schedule

• Scheduling permanent tasks that are ensured to run continuously and are restarted on failure

or completion

• Running tasks on demand

• Enabling dynamic registration and deregistration of tasks

The Savant software performs data management and data monitoring using customizable

tasks. Loosely, a task can be considered as the equivalent to a process in a multitasking system.

The TMS manages tasks, just as the operating system (OS) manages processes.

The Task Management System provides many features that garden-variety thread managers

and multiprocessing operating systems do not offer, such as:

1.

An external interface to schedule tasks

2.

A platform-independent (Java) virtual machine with uniform libraries loaded on-demand from

redundant class servers

3.

A robust scheduler maintaining persistent information about tasks and capable of restarting

tasks following a failure

The TMS simplifies the maintenance of distributed Savants. The enterprise can maintain Savants

by merely keeping the tasks on a set of class servers up to date, and appropriately scheduling

tasks on the Savants. The tasks written for the TMS can access all the facilities of the Savant. The

tasks can perform various operations for the enterprise, such as:

1.

Data gathering: Send or receive product information to and from another Savant

2.

PML lookup: Look up Object Name Service (ONS)/PML servers to gather static and dynamic product

instance information

3.

Remote task scheduling: Schedule and remove tasks on other Savants

4.

Remote upload: Send product information to remote supply-chain management servers

Sun ONE Integration Layer

P

7

Chapter 4

Sun ONE Integration Layer

The Sun ONE Integration layer provides several options for integrating Savant servers with existing EIS

or custom applications through either the Sun ONE Application Server, for point-to-point integration,

or the Sun ONE Integration Server EAI Edition, for tying multiple systems into a complex workflow.

Integration With the Sun ONE Application Server

The Sun ONE Application Server provides three options for point-to-point integration with EIS

systems, meaning it ties a Savant server to a EIS system individually. These options are:

• The J2EE Connector Architecture

• Asynchronous reliable messaging through Java Messaging Service

• The Sun ONE architecture’s native support for Web services

J2EE 1.3 technology, through the J2EE Connector Architecture (J2EE CA), defines a standard

way to tightly couple an EIS system with either a Web application or Web service. With the appropriate

connector installed, a Sun ONE application is able to use the functionality of the EIS without having to

deal with the complexity of integrating EIS remote access, transactions, and security. The functionality

of the EIS appears to the developer as a new service provided by the application server.

P

8 Sun's Auto-ID Architecture © 2003 Sun Microsystems, Inc.

In the case of J2EE CA, the EIS or custom system is tightly coupled to the application, which

means it can make a call to the EIS much like it would make a call to a database via the JDBC API.

To the Web application or Web service using J2EE CA, it makes the EIS look like a local resource.

The advantage is that it makes it easier for the developer because it is a familiar paradigm, and as

mentioned before, the Sun ONE Application Server can take care of issues like pooling, security,

and transactions.

The disadvantage of tightly coupled integration is that many times it is not appropriate

because the EIS may take a relatively long period of time to make updates, unlike a database. For

example, integration with a supplier’s ordering system may require human intervention before

getting a response to an order request, which could mean a connection is held open for days. In

cases where connections are held open for a long term, usually a loosely coupled approach (where

asynchronous messages are sent and queued to the EIS) is more appropriate.

For loosely coupled integration, the Sun ONE Message Queue, which is included in the Sun

ONE Application Server, provides the standard Java Message Service (JMS) asynchronous

reliable messaging mechanism for integrating Web applications or Web services with an

enterprise’s Message-Oriented Middleware (MOM) environment. This facility allows Sun ONE

applications to exchange messages with the EIS systems.

The third option is provided by Sun ONE platform's native support for Web services. By their

nature, Web services easily cross machine and software boundaries and are well-suited for solving

integration problems. The EIS and the Web service running on the Sun ONE Application Server

view each other as Web services, so they can interact using standards such as SOAP, Web Services

Definition Language (WSDL), and Universal Description, Discovery, and Integration (UDDI).

These approaches provides flexible options to integrate EIS systems to Savant servers with

point-to-point integration for a narrow or single purpose. The developer would write workflow

logic into a stateful session Enterprise JavaBeans™ (EJB™) component or servlet and tie multiple EIS

systems together using the integration options previously listed. If the business process is

straightforward and considered to be fairly static, that is an excellent approach.

Tightly Coupled Integration

As mentioned, J2EE CA defines a standard architecture for connecting the J2EE platform to

heterogeneous enterprise information systems and custom applications. It addresses the key

issues and requirements of EIS integration by defining a set of scalable, secure, and transactional

mechanisms that enable the integration of EIS systems with service containers and enterprise

applications.

The connector architecture allows a service container and the connector (and its underlying

EIS) to collaborate to keep all system-level mechanisms — remote access, transactions, security,

and connection pooling — transparent to the application. J2EE CA provides the most direct

mechanism for integrating a Sun ONE application with an EIS system. This mechanism results in a

close coupling between a Sun ONE application and an EIS system, providing both high performance

and high reliability.

© 2003 Sun Microsystems, Inc.

Sun ONE Integration Layer

P

9

The Sun ONE Connector Builder is a set of tools, components, and libraries that enables

developers to build J2EE Connector Architecture connectors for EIS, custom, and legacy applications.

The resource adapters built using the Sun ONE Connector Builder provide J2EE applications with

an easy-to-use way to access these external systems using the J2EE CA standard. The generated

resource adapters are accessible from Web applications using the Common Client Interface (CCI)

API. Optionally, resource adapters generated using the Sun ONE Connector Builder can also be

accessed using SOAP services, thus providing a Web services solution to application integration.

Loosely Coupled Integration

The Sun ONE Message Queue provides asynchronous reliable messaging through the coordination

of the following main components:

• Administered Objects

• Client Runtime

• Message Service

Administered Objects

Administered Objects encapsulate provider-specific implementation and configuration information

in objects that are used by client applications. Such objects are created and configured by an

administrator, stored in a name service, accessed by client applications through standard Java

Naming and Directory Interface™ (JNDI) API lookup code, then used in a provider-independent manner.

The Sun ONE Message Queue provides two types of administered objects: ConnectionFactory

and Destination. While both encapsulate provider-specific information, they have very different

uses within a client application. ConnectionFactory objects are used to create connections to

the Message Service, while Destination objects, which represent physical destinations, are used to

identify physical destinations. Administered Objects make it easy to control and manage a Message

Service because the behavior of connections can be controlled by requiring client applications to

access preconfigured ConnectionFactory objects through a JNDI API lookup. The proliferation of

physical destinations can be controlled by requiring client applications to access only Destination

objects that correspond to existing physical destinations.

This arrangement, therefore, provides control over Message Service configuration details. At

the same time, it allows client applications to be provider-independent. They do not need to know

about provider-specific syntax and object naming or provider-specific configuration properties.

Client Runtime

As the second main component of the Sun ONE Message Queue, the Client Runtime provides

client appli-cations with an interface to the Message Service by supplying them with all the JMS

programming objects. It supports all operations necessary to enable clients to send messages to

destinations and to receive messages from them.

P

10 Sun's Auto-ID Architecture © 2003 Sun Microsystems, Inc.

The Message Service

The Message Service provides the core functionality of the asynchronous reliable messaging

system. It is made up of the following main components:

•

One or More Brokers:

 A broker provides delivery services for the messaging system. Message

delivery relies upon a number of supporting components that handle connection services,

message routing and delivery, persistence, security, and logging. A Message Service can employ

a single- or multi-broker configuration.

•

Physical Destinations:

 Delivery of a message is a two-phase process — delivery from producing

client to a physical destination maintained by a broker, followed by delivery from the destination to

one or more consuming clients. Physical destinations represent locations in a broker’s physical

memory and/or persistent storage.

Integration With the Sun ONE Integration Server

The approaches listed for the Sun ONE Application Server can solve numerous integration challenges.

However, at some point the business process is either so complex (involving numerous EIS systems

with a complex workflow tying them together) or is so dynamic (for example, new suppliers are

expected later) that a different approach is needed. Enterprise application integration (EAI) is where

EIS systems are viewed as independent entities that are loosely coupled together into a common

communication infrastructure. This is the approach taken with the Sun ONE Integration Server EAI

Edition. Each EIS system is accessed through an adapter that communicates to the EIS system’s

API. A process engine is then used to coordinate how and when the EIS systems interact. A business

analyst can control the workflow through a graphical process specification tool, making it easier

to change the process or add new EIS systems as well.

The basic unit of a process model is the activity. An activity represents a unit of work in a

process. The process logic involves, principally, answering the following questions in the order

shown below.

1.

What is the general sequencing (or routing) of activities in the process?

2.

What conditions must be met before an activity can be performed?

3.

Which user or users can perform each activity?

4.

What activities should be performed before completion of each activity?

The personnel that are most uniquely positioned to understand how the enterprise accomplishes

its business are most often domain experts, sometimes called business analysts. They have expertise

in how the enterprise accomplishes its goals but may not be software developers. Thus, a graphical

process specification tool is essential to the effective management of information assets in conjunction

with business abstractions. Such a tool can specify how the system is to manage, coordinate, and

drive to conclusion all the information and personnel aspects of a system.

The Sun ONE Integration Server is a suite of business integration tools for integrating and

coordinating heterogeneous applications. The tools and software components provided with the

Sun ONE Integration Server enable integration of newly developed applications, legacy applications,

and off-the-shelf packages (including Web browsers) into business processes that are managed

and controlled by a process engine.

© 2003 Sun Microsystems, Inc.

Sun ONE Integration Layer

P

11

The Sun ONE Integration Server includes the following features:

•

Point-to-point integration between applications.

 Integration is accomplished using eXtensible

Markup Language (XML) messaging transported over HTTP or by using implementations of the

Java Message Service (JMS). Adapters are available to integrate many package applications that

do not have a native XML interface. The Sun ONE Integration Server adapter toolkit enables

integration of any custom application.

•

Business process management using the process engine

. Application proxies interface with the

process engine to provide end-to-end control and automation of all the processes in an

enterprise’s business. Business process integration can combine automated systems with

human interactivity.

•

Message brokering and XSL data transformation using the backbone application proxies.

 XML

messages are transformed according to eXtensible Stylesheet Language (XSL) rules registered with

the Sun ONE Integration Server backbone. Messages are then routed through the process engine

and delivered to partner applications. XSL provides a standards-based way to share data across

applications and domains.

•

Interactive tools for process development and XML/XSLT authoring.

 The process development

workshops allow customization of the workflow of activities in a business process, including

defining user profiles and user validations, and sharing data between activities in a process. The

XML/ eXtensible Stylesheet Language: Transformation (XSLT) workshops include an interactive

debugger.

•

Robust runtime environment with failover capabilities.

 Interactive process management tools

enable monitoring and management of process engine performance. The process engine can

be configured for failover and contains tools for the backup and restoration of process data.

•

Support for multiple styles of messaging.

 The Sun ONE Integration Server supports XML messaging

over HTTP and Secure Sockets Layer (SSL), as well as messaging using implementations of JMS.

Application proxies can also access application services made available with SOAP. Different

styles of messaging can be combined in the deployment of a Sun ONE Integration Server system.

Sun ONE Integration Architecture

Figure 4-1:

Sun ONE Integration Server architecture

The Sun ONE Integration Server contains two systems — a backbone system and a process system,

shown in Figure 4-1.

P

12 Sun's Auto-ID Architecture © 2003 Sun Microsystems, Inc.

The backbone system contains application proxies that use XML-based messaging to

communicate with one or more partner applications. Application proxies can also access applications

that export services using SOAP. The process system contains a process engine that manages and

controls a business process, coordinating activities in the process with application proxies.

Sun ONE Integration Server Backbone

The Sun ONE Integration Server backbone system enables XML messaging between enterprise

applications and a Sun ONE Integration Server process engine. Customers primarily use a backbone

system to:

• Provide an XML interface that allows applications to exchange and translate XML messages

(this allows different types of applications to communicate with each other or with the process

engine)

• Enable applications to participate in a managed business process

Application Proxies.

 The heart of a Sun ONE Integration Server backbone is a set of

application

proxies

that perform message brokering and data transformation on behalf of applications. For

business process support, proxies interact with a process engine on behalf of applications that

participate in a common business process. The main purpose of these interactions is to communicate

the initiation and completion of work activities according to a process defined for the process

engine.

Application proxies are configurable, and can act as a client, server, or both with respect to an

application. A proxy can also represent more than one application, if appropriate. Because proxies

are configured (not coded), their function and behavior can be quickly specified and modified.

Configuration information includes management of incoming and outgoing XML messages and data

as well as maintaining sessions with its partner applications.

Adapters.

 Adapters provide an interface to packages or custom applications that lack a native

XML interface into a backbone. The Sun ONE Integration Server provides an adapter toolkit that

allows creation of adapters according to specific needs. An adapter serves the following functions:

• Transforms XML documents from the proxy into requests using the application’s native API

• Interprets the responses to these requests and generates appropriate application documents to

be sent to the proxy

• Responds to messages or application callback requests, generates appropriate documents, and

forwards these to the proxy

XML Messages.

 XML messages between a proxy and its partner applications can be transported

over HTTP or by using implementations of the Java Message Service. Secure transmission over

HTTP is available using SSL. Additionally, application services that are made available through

SOAP can be accessed by application proxies.

XML/XSLT Workshops.

 The Sun ONE Integration Server provides XML/XSLT workshops that

facilitate the development, testing, debugging, storage, and management of XML documents and

XSL stylesheets that are used for message transformation between applications.

XSL Stylesheets.

XSL stylesheets contain XSL rules that are assigned to a proxy for decoding

and encoding XML documents exchanged in messages with partner applications. By writing XSLT

rules and adding them to the stylesheet base, the function and behavior of a proxy can be defined.

© 2003 Sun Microsystems, Inc.

Sun ONE Integration Layer

P

13

XSL Processor.

 The XSL processor transforms XML messages, according to rules in the XSL

stylesheet base, into documents that can be used by a proxy to coordinate a business process with

the process engine or to communicate with applications.

Backbone Management Utility.

 The Sun ONE Integration Server contains the Fusion Script

utility for configuring, starting, and managing a backbone system and its proxies.

Sun ONE Integration Server Process System

A process system supports the execution and management of business processes, coordinating the

activities in the process with external applications. The heart of this system is the process engine,

which coordinates the work of different resources and applications that participate in the processes.

Customers use the process system to:

• Develop process logic using the process development workshops

• Manage processes using the process engine console and other tools

• Build process client applications that make direct API calls to the process engine using the

process client APIs

Process Engine.

 The process engine executes and manages process definitions created with

the process development workshops. The process engine interacts with application proxies in a

backbone system to coordinate the activities of a process with external applications. The process

engine also interacts directly with process client applications (applications created using a process

client API). A process engine maintains an engine database containing state information on processes

that it executes. The engine can be configured for failover and recovery, using information from the

engine database as well as logging and history information to restore the state of the engine.

Process Development Workshops.

 The process development workshops enable the interactive

definition and editing of business processes, which then can be registered with a process engine.

Tasks that can be performed include:

• Defining work activities for the process

• Specifying process flow by routing work between activities

• Creating and setting timers to automatically trigger activities and events

• Specifying user profiles and validation rules

• Incorporating assignment rules for activities defined in the process logic

• Defining process attributes that control the state of the process across the system

Process Management Tools.

 The Sun ONE Integration Server provides a suite of tools for

distributed system management of a process system, including configuring, starting, and shutting

down process engines. Highlights of system management include:

• Registering and executing processes

• Monitoring and managing process execution

• Maintaining application sessions with the process engine

• Handling failover and recovery

• Maintaining history logs of process execution

P

14 Sun's Auto-ID Architecture

Chapter 5

PML Service

This chapter describes the PML service, which is a standard still under definition by the Auto-ID

Center, using the preliminary PML specification from the Auto-ID Center as a reference. The

Electronic Product Code identifies individual products, but all the useful information about the

product will eventually be written in a new language called the Physical Markup Language (PML),

which is based on XML.

PML will provide a common method for describing physical objects. It will be broadly

hierarchical. So, for instance, a particular vendor's cola might be described as a carbonated

beverage, which would fall under the subcategory soft drink, which would fall under the broader

category food. Not all classifications are so simple, so to ensure that PML has broad acceptance,

the Auto-ID Center will rely on work already done by other standards bodies.

Types of PML data

In addition to product information that doesn't change (such as material composition), PML will

include data that changes constantly (dynamic data) and data that changes over time (temporal

data). Dynamic data in a PML file might include the temperature of a shipment of fruit. Temporal

data changes throughout an object's life, such as an object's location. By making all of this information

available in a PML file, companies will be able to use information in new and innovative ways. A

company could, for instance, set triggers so the price of a product falls as its expiration date

approaches. Third-party logistics providers could offer service-level contracts indicating that goods

will be stored at a certain temperature.

© 2003 Sun Microsystems, Inc.

PML Service

P

15

PML Server

PML files will be stored on a PML server, a dedicated computer that is configured to provide files to

other computers requesting them. PML servers will be maintained by manufacturers, and will

store files for all of the items a manufacturer makes.

P

16 Sun's Auto-ID Architecture

Chapter 6

Best Practices

Sun's Auto-ID architecture allows enterprises to pursue demanding Auto-ID projects. The architecture

can scale from one small site with a few readers to many sites with multiple readers through the

Savant and reader layers. Through the integration layer, many options exist to tie in EIS systems

located anywhere in the world.

In addition, Sun encourages following best practices when pursuing an Auto-ID deployment.

First, it is important to define the business goals that the enterprise wants to achieve with Auto-ID.

Given how new Auto-ID is, it is best to find very compelling applications for Auto-ID that offer

tremendous value to the organization. Current deployments show that out-of-stock and theft control

application are popular, but certainly many other applications exist. Most customers are doing

limited deployments with certain stores and/or certain product lines, and will move ahead with

other deployments later.

Second, look at the integration requirements needed to achieve the business goals for the

project. What applications and data are needed, who are the players involved in the business

process, and how does EPC play a role in the process are all factors that need to be taken into

account. From there, integration requirements and what technologies to use within the Sun ONE

Integration layer can be determined.

Finally, look at the readers and tags. Though most people tend to play with the readers and

tags first, Sun believes the integration issues need to be sorted out. At some point though, readers

and tags need to be evaluated, and any Radio Frequency (RF) issues must be resolved between them.

Please
Recycle

Copyright 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this product or docu-

ment may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party software, including font technology, is copy-

righted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other countries, exclu-

sively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, EJB, Enterprise JavaBeans, Java, Java Naming and Directory Interface, JDBC, and J2EE are trademarks, registered trademarks, or service

marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International,

Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts of Xerox in

researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User

Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and FAR 52.227-19(6/87),

or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABIL-

ITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, Californie 95054 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la décompilation. Aucune partie de

ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il

y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux Etats-Unis et dans d’autres

pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun,EJB, Enterprise JavaBeans, Java, Java Naming and Directory Interface, JDBC, et J2EE sont des marques de fabrique ou des marques déposées, ou

marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des

marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun

Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de pionniers de

Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive

de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et

qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE,

L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE

S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

SUN™

SUN™

White Paper

 Sun's Auto-ID Architecture

On the Web

 sun.com/software

Sun Microsystems, Inc.

 4150 Network Circle, Santa Clara, CA 95054 USA

Phone

 800 786-7638 or +1 512 434-1577

Web

 sun.com

Learn More

Get the inside story on the trends and technologies
shaping the future of computing by signing up for the
Sun Inner Circle program. You’ll receive a monthly
newsletter packed with information on the latest
innovations, plus access to a wealth of resources.
Register today to join the Sun Inner Circle Program
at sun.com/joinic.

To receive additional information on Sun software,
products, programs, and solutions, visit sun.com/
software.

Sun Worldwide Sales Offices:

 Africa (North, West and Central) +33-13-067-4680, Argentina +5411-4317-5600, Australia +61-2-9844-5000, Austria +43-1-60563-0, Belgium +32-2-704-8000, Brazil +55-11-5187-2100, Canada +905-477-
6745, Chile +56-2-3724500, Colombia +571-629-2323, Commonwealth of Independent States +7-502-935-8411, Czech Republic +420-2-3300-9311, Denmark +45 4556 5000, Egypt +202-570-9442, Estonia +372-6-308-900, Finland
+358-9-525-561, France +33-134-03-00-00, Germany +49-89-46008-0, Greece +30-1-618-8111, Hungary +36-1-489-8900, Iceland +354-563-3010, India–Bangalore +91-80-2298989/2295454; New Delhi +91-11-6106000; Mumbai +91-
22-697-8111, Ireland +353-1-8055-666, Israel +972-9-9710500, Italy +39-02-641511, Japan +81-3-5717-5000, Kazakhstan +7-3272-466774, Korea +822-2193-5114, Latvia +371-750-3700, Lithuania +370-729-8468, Luxembourg +352-
49 11 33 1, Malaysia +603-21161888, Mexico +52-5-258-6100, The Netherlands +00-31-33-45-15-000, New Zealand–Auckland +64-9-976-6800; Wellington +64-4-462-0780, Norway +47 23 36 96 00, People’s Republic of China–
Beijing +86-10-6803-5588; Chengdu +86-28-619-9333; Guangzhou +86-20-8755-5900; Shanghai +86-21-6466-1228; Hong Kong +852-2202-6688, Poland +48-22-8747800, Portugal +351-21-4134000, Russia +7-502-935-8411, Sin-
gapore +65-6438-1888, Slovak Republic +421-2-4342-94-85, South Africa +27 11 256-6300, Spain +34-91-596-9900, Sweden +46-8-631-10-00, Switzerland–German 41-1-908-90-00; French 41-22-999-0444, Taiwan +886-2-8732-9933,
Thailand +662-344-6888, Turkey +90-212-335-22-00, United Arab Emirates +9714-3366333, United Kingdom +44-1-276-20444, United States +1-800-555-9SUN or +1-650-960-1300, Venezuela +58-2-905-3800 06/03 R1.o

