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Summary As hydrologic and water quality (H/WQ) models are increasingly used to guide
water resource policy, management, and regulation, it is no longer appropriate to disre-
gard uncertainty in model calibration, validation, and evaluation. In the present research,
the method of calculating the error term in pairwise comparisons of measured and pre-
dicted values was modified to consider measurement uncertainty with the goal of facili-
tating enhanced evaluation of H/WQ models. The basis of this method was the theory
that H/WQ models should not be evaluated against the values of measured data, which
are uncertain, but against the inherent measurement uncertainty. Specifically, the devi-
ation calculations of several goodness-of-fit indicators were modified based on the uncer-
tainty boundaries (Modification 1) or the probability distribution of measured data
(Modification 2). The choice between these two modifications is based on absence or pres-
ence of distributional information on measurement uncertainty. Modification 1, which is
appropriate in the absence of distributional information, minimizes the calculated devia-
tions and thus produced substantial improvements in goodness-of-fit indicators for each
example data set. Modification 2, which provides a more realistic uncertainty estimate
but requires distributional information on uncertainty, resulted in smaller improvements.
Modification 2 produced small goodness-of-fit improvement for measured data with little
uncertainty but produced modest improvement when data with substantial uncertainty
were compared with both poor and good model predictions. This limited improvement
is important because poor model goodness-of-fit, especially due to model structure defi-
ciencies, should not appear satisfactory simply by including measurement uncertainty.
ª 2007 Elsevier B.V. All rights reserved.
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Introduction

Because of the uncertainty associated with hydrologic and
water quality (H/WQ) modeling, uncertainty should be ac-
counted for in model application and evaluation (Kavetski
et al., 2002; Pappenberger and Beven, 2006; Beven,
2006b). The analysis and consideration of uncertainty is par-
ticularly important because decisions regarding water re-
source policy, management, regulation, and program
evaluation are increasingly based on H/WQ modeling (Beck,
1987; Haan et al., 1995; Sharpley et al., 2002; Shirmoham-
madi et al., 2006). In the US, the issue of uncertainty is espe-
cially relevant in several current Federal water quality
programs; two examples are Total Maximum Daily Load pro-
jects (TMDLs) and the recently initiated USDA conservation
program evaluation titled the Conservation Effects Assess-
ment Project (CEAP). In typical TMDL projects, measured
H/WQ data are used to calibrate watershed models and eval-
uate their ability to reproduce the system being modeled.
Source load allocation, which is often based on model re-
sults, is required by Federal regulation (40 CFR 130.7) to in-
clude a margin of safety to account for uncertainty. In CEAP,
H/WQ models are being applied to estimate conservation
benefits in selected watersheds and at the national scale.
The CEAP objectives acknowledge the importance of uncer-
tainty in H/WQmodeling and include an assessment of model
prediction uncertainties atmultiple scales (USDA-ARS, 2004).
In Europe, the realization of substantial uncertainty related
towater characterization andmodeling has been cited to sup-
port adaptivemanagement in theWater Framework Directive
(e.g. Galaz, 2005; UK Administrators, 2005; Harris andHeath-
waite, 2005) and to promote the use of uncertainty estima-
tion as routine in H/WQ science (Pappenberger and Beven,
2006; Beven, 2006b).

Uncertainty in H/WQ modeling has been classified by
Vicens et al. (1975) into three categories: model uncer-
tainty, parameter uncertainty, and uncertainty inherent in
natural processes. The uncertainty introduced by model
structure and parameterization has received much atten-
tion in recent years (e.g. Haan, 1989; Kuczera and Parent,
1998; Beven and Freer, 2001; Bashford et al., 2002; Haan
and Skaggs, 2003a,b; Beven, 2006a). Simply speaking,
model uncertainty arises from incomplete understanding
of the system being modeled and/or the inability to accu-
rately reproduce H/WQ processes with mathematical and
statistical techniques. In contrast, parameter uncertainty
results from incomplete knowledge of parameter values,
ranges, physical meaning, and temporal and spatial variabil-
ity. But parameter uncertainty also reflects the incomplete
model representation of H/WQ processes (model uncer-
tainty) and inadequacies of parameter estimation tech-
niques in light of uncertain, and often limited, measured
data. For additional information on model and parameter
uncertainty, which is beyond the scope of this paper, the
reader is referred to Beck (1987), Haan (1989), Reckhow
(1994), Haan et al. (1995), Hession and Storm (2000), Kavet-
ski et al. (2002), and Beven (2006a).

Although the uncertainty inherent in measured data used
to calibrate and validate model predictions is commonly
acknowledged, measurement uncertainty is rarely included
in the evaluation of model performance. One reason for this
omission is the lack of data on the uncertainty inherent in
measured H/WQ data. Although sources such as Pelletier
(1988) and Sauer and Meyer (1992) provide excellent re-
views of errors associated with streamflow measurement,
information on errors associated with water quality data
has only recently been published (e.g. Robertson and Roer-
ish, 1999; Haggard et al., 2003; Harmel and King, 2005). An-
other reason for this omission is the previous lack of
scientific data and guidance on analysis of uncertainty in
measured data. Recently, however, Harmel et al. (2006)
provided fundamental data and recommendations for the
consideration of uncertainty in measured H/WQ data. The
authors documented common sources of error in measured
streamflow and water quality data on small watersheds
and presented a method for determining cumulative proba-
ble error resulting from the various procedural steps re-
quired in data collection. In spite of this advancement,
more research and attention on estimating measurement
uncertainty for current data and retrospectively for past
data are needed. In addition, uncertainty estimation to
accompany all measured H/WQ data would be a beneficial
outcome leading to improved scientific and stakeholder
understanding and decision-making (Beven, 2006b; Pappen-
berger and Beven, 2006).

Goodness-of-fit indicators

Pairwise comparison of measured data and model predic-
tions is typically used to judge the ability of H/WQ models
to achieve their primary goal of adequately representing
processes of interest (Legates and McCabe, 1999). Many of
the common quantitative goodness-of-fit indicators, simply
use the absolute value of the difference or the squared va-
lue of the difference to represent the deviation between
paired measured and predicted data. Four common good-
ness-of-fit indicators for H/WQ model evaluation, Nash–
Sutcliffe coefficient of efficiency, index of agreement, root
mean square error, and mean absolute error, are no excep-
tion. These selected indicators are briefly described in the
following section but are thoroughly discussed in Willmott
(1981), Legates and McCabe (1999), and Moriasi et al. (in
review).

Nash–Sutcliffe coefficient of efficiency
The Nash–Sutcliffe coefficient of efficiency, E, is a dimen-
sionless indicator widely used to evaluate H/WQ models
(Nash and Sutcliffe, 1970). E is better suited to evaluate
model goodness-of-fit than the coefficient of determination,
R2, because R2 is insensitive to additive and proportional dif-
ferences between model simulations and observations. How-
ever, like R2, E is overly sensitive to extreme values because
it squares the values of paired differences, as shown in Eq.
(1) (Legates and McCabe, 1999). These deficiencies are
diminished in a modified version that uses the absolute value
of the deviations to the 1st power (Legates and McCabe,
1999).

E ¼ 1:0�
PN

i¼1ðOi � PiÞ2PN
i¼1ðOi � �OÞ2

ð1Þ

where: Oi = measured (observed) data, Pi = modeled (pre-
dicted) data, �O = mean of measured data.
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Index of agreement
The index of agreement, d, which was developed by Will-
mott (1981), is another widely used dimensionless indicator
of H/WQ model goodness-of-fit Eq. (2). The index of agree-
ment was not designed to be a measure of correlation but of
the degree to which a model’s predictions are error free.
According to Legates and McCabe (1999), d is also better
suited for model evaluation than R2, but it too is overly sen-
sitive to extreme values. In a manner similar to that of E,
this sensitivity is alleviated in a modified version that uses
the absolute value of the deviations instead of the squared
deviations.

d ¼ 1�
PN

i¼1ðOi � PiÞ2PN
i¼1ð Pi � �O
�� ��þ Oi � �O

�� ��Þ2 ð2Þ
Root mean square error and mean absolute error
The root mean square error, RMSE, and mean absolute er-
ror, MAE, are well-accepted absolute error goodness-of-fit
indicators that describe differences in observed and pre-
dicted values in the appropriate units (Legates and McCabe,
1999). They are calculated as shown (Eqs. (3) and (4)).

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N�1

XN
i¼1
ðOi � PiÞ2

vuut ð3Þ

MAE ¼ N�1
XN
i¼1
jOi � Pij ð4Þ
Objective

With the increased relevance of uncertainty to H/WQmodel-
ing and water resource decision-making, goodness-of-fit
indicators require modification to appropriately compare
model predictions to measured H/WQ data. Therefore, the
objective of this paper is to facilitate improved evaluation
of H/WQ models by developing modifications to the devia-
tion term in goodness-of-fit indicators based on the uncer-
tainty of measured data. The modifications were designed
to apply directly to the Nash–Sutcliffe coefficient of effi-
ciency, the index of agreement, root mean square error,
and mean absolute error, but they may be appropriate for
other pairwise comparisons of measured and predicted data.
The selected indicators are widely applied and accepted but,
as traditionally applied, fail to explicitly represent uncer-
tainty in measured data. Although, these modifications were
developed for H/WQ modeling, they are valid for any com-
parison of measured versus predicted data where measure-
ment uncertainty can be estimated or assumed.
Methods

All of the selected indicators (E, d, RMSE, and MAE) contain
the same error term, ei, which is the difference between
each pair of measured and predicted values Eq. (5). It is this
deviation that the present modifications address. Tradition-
ally, deviations are determined simply as the difference be-
tween observed and predicted data, but this does not
account for measurement uncertainty in model calibration,
evaluation, and validation data sets.
ei ¼ Oi � Pi ð5Þ

where: ei = deviation between paired observed and pre-
dicted values.

In the presence of measurement uncertainty, it is more
appropriate to evaluate paired measured and predicted data
against the uncertainty boundaries or the probability distri-
bution of measured data than against individual data values.
Thus, two modifications were developed to more appropri-
ately calculate the deviation between each pair of measured
and predicted values based on the measurement uncer-
tainty. Modification 1, which applies when the uncertainty
boundary but not the distribution of uncertainty around each
measured data point is known, minimizes each calculated
deviation. Modification 2, which applies when the probabil-
ity distribution is known or assumed for each measured va-
lue, produces a more practical estimate of the deviation.
It is important to note that the probability distributions in
Modification 2 are the distribution of possible measured data
values for each individual data point, Oi, not for the entire
population of measured data. Summary descriptions and de-
sign requirements for these modifications are presented sub-
sequently followed by detailed descriptions.
Summary description and design requirements

The deviation calculations for Modifications 1 and 2 are sum-
marized in Table 1. The modified deviations are substituted
for the traditional deviation term, ei = Oi � P, in the E, d,
RMSE, and MAE goodness-of-fit indicators to consider mea-
surement uncertainty. The modifications were designed to
meet the following requirements.

• ei = eu1i = eu2i if the uncertainty in measured data are
either ignored or assumed to be 0,

• eu1i 6 eu2i 6 ei,
• the modified deviations, eu1i and eu2i, decrease as the
measured data uncertainty increases for a given pair of
measured and predicted values,

• the modified deviations, eu1i and eu2i, decrease as the
absolute value of the difference between measured and
predicted data decreases for a given uncertainty range
or probability distribution for each measured value.

Modification 1 – probable error range, no
distributional assumption

Modification 1 is applicable when the probable error range is
known or assumed for each measured data point and no dis-
tributional assumptions are made. To use Modification 1,
probable error range, PER, for each measured data point
is first determined. The probable error range can be esti-
mated by the root mean square method in Eq. (6) (Topping,
1972) or can be estimated by professional judgment or from
literature values. The root mean square method is widely
accepted and has been used for uncertainty estimates re-
lated to discharge measurements (Sauer and Meyer, 1992)
and water quality constituents (Cuadros-Rodriquez et al.,
2002). This method, which was designed to combine all po-
tential errors and produce realistic estimates of cumulative
uncertainty, assumes error sources are independent and bi-



Table 1 Modified deviation calculations based on uncertainty in measured data

Deviation method Affect of measurement uncertainty on deviation Calculation Eq.

Traditional None ei ¼ Oi � Pi (5)

Modification 1 Deviation modified based on the probable
error range of measured data

eu1i ¼ 0 if UOiðlÞ 6 Pi 6 UOiðuÞ
eu1i ¼ UOiðlÞ � Pi if Pi < UOiðlÞ
eu1i ¼ UOiðuÞ � Pi if Pi > UOiðuÞ

(8)

Modification 2 Deviation modified based on the probability
distribution of measured data

eu2i ¼ CFi
0:5 � ðOi � PiÞ (9)
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directional (therefore non-additive). The procedure for
applying this method to H/WQ measurements appears in
Harmel et al. (2006), along with uncertainty estimates for
measured flow, nutrient, and sediment data.

PER ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

E2
1 þ E2

2 þ E2
3 þ . . .þ E2

n

� �s
ð6Þ

where: PER = probable error range (±%), n = number of po-
tential error sources, E1, E2, E3 . . . En = uncertainty associ-
ated with each potential error source (±%).

The procedural steps necessary in H/WQ data collected
are categorized by Harmel et al. (2006) as streamflow (dis-
charge) measurement, sample collection, sample preserva-
tion/storage, and laboratory analysis. It is these procedural
categories and their corresponding sources of error that the
present modifications consider in goodness-of-fit evalua-
tion. Other issues related to model uncertainty, such as
commensurability of errors and model structure, parame-
terization, and input data errors, are not included. It is
the combined effect of these factors, which are reflected
in model output data, that the present modifications were
designed to evaluate but with the enhancement that allows
consideration of measurement uncertainty.

A single PER can be applied to all measured data, or a un-
ique value can be calculated for each measured point,
depending on the variation of uncertainty throughout the
range ofmeasured data. The uncertainty boundaries for each
measured value are determined based on estimated PER.

UOiðuÞ ¼ Oi þ
PERi � Oi

100
UOiðlÞ ¼ Oi �

PERi � Oi

100
ð7Þ

where: UOi(u) = upper uncertainty boundary for each mea-
sured data point, UOi(l) = lower uncertainty boundary for
each measured data point, PERi = probable error range for
each measured data point, Oi.

To use Modification 1 to calculate the modified deviation,
eu1i, it is necessary to determine whether each model pre-
dicted value is within the uncertainty boundaries of the cor-
responding measured value. For predicted values that lie
within the uncertainty boundaries, the deviation is set equal
Figure 1 Graphical representation of Modification 1 to calculate
data based on the probable error range of measured data but no d
to 0. For predicted values that lie outside the boundaries, the
deviation is determined as the difference between the pre-
dicted data point and the nearest uncertainty boundary.
Thus, Modification 1 minimizes the error estimate for each
measured and predicted data pair. The calculation of eu1i is
shown numerically in Eq. (8) and graphically in Fig. 1.

eu1i ¼ 0 if UOiðlÞ 6 Pi 6 UOiðuÞ
eu1i ¼ UOiðlÞ � Pi if Pi < UOiðlÞ
eu1i ¼ UOiðuÞ � Pi if Pi > UOiðuÞ

ð8Þ

where: eu1i = modified deviation (Modification 1) between
paired measured and predicted data.
Modification 2 – probability distribution

In contrast to Modification 1, which is necessary in the ab-
sence of distributional information, Modification 2 can pro-
duce more practical error estimates when the probability
distribution about each measured value is known or as-
sumed. With Modification 2, deviations between paired
measured and predicted data are modified based on the
properties of the probability distribution of each measured
data value. Either the probability density function (pdf),
in the case of the normal distribution, or the continuous dis-
tribution function (cdf), in the case of the triangular distri-
bution, which account for uncertainty about each measured
value, are used to calculate a correction factor (CF) for
each paired deviation Eq. (9). A single distribution can be
applied to all measured data or a unique distribution can
be applied for each measured value, depending on the var-
iation of distributional properties throughout the range of
measured data.

eu2i ¼
CFi
0:5
� ðOi � PiÞ ð9Þ

where: CFi = correction factor based on the probability dis-
tribution of each measured value, eu2i = modified deviation
(Modification 2) between paired measured and predicted
data.
the deviation between paired measured and predicted H/WQ
istributional assumptions.
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The assumptions made in designing Modification 2 were
that the probability distribution for each measured value
is symmetric and that each measured value represents the
mean and median value of that distribution. Under these
assumptions, the CF is used to adjust each deviation based
on measurement uncertainty. As shown in Eq. (9), CF is
divided by 0.5, which is the maximum probability for one-
sided pdfs, to represent the proportion (0–1.0) of deviation
that is accounted for by the probability distribution of each
Oi. The calculations to determine CF for two common
symmetric probability distributions (normal and triangular)
are presented subsequently.

Modification 2 for measured data with a normal
probability distribution
When the probability distribution about a data point is known
or assumed to be represented by the normal distribution,
probabilities calculated from the standard normal distribu-
tion, z�N(0,1), are used to determine the CF. To calculate
the CF for normally distributed data, the mean and the vari-
ance are required. With Modification 2, the measured value,
Oi, represents the mean, l, and median of the distribution.
The variance, r2, can either be input directly from project
specific data or estimated by the following procedure.

To estimate the variance, the PER must be determined
for each measured data point. As stated in the description
of Modification 1, the PER can be estimated with the litera-
ture values, professional judgment, or Eq. (6). Then, the
uncertainty boundaries, UOi(l) and UOi(u), are calculated
with Eq. (7). This calculation is not strictly valid because
the normal distribution is infinite in both directions; how-
ever, it is appropriate because the mean ±3.9 standard
deviations contains >99.99% of the normal probability distri-
bution (Haan, 2002). Thus for Modification 2, the uncer-
tainty boundaries are assumed to represent the measured
value (mean) ± 3.9 standard deviations (Eq. (10), Fig. 2).
The variance is then calculated with Eq. (11).

UOiðlÞ ¼ Oi � 3:9r and UOiðuÞ ¼ Oi þ 3:9r ð10Þ

where: r = standard deviation about measured data value
Oi.

r2 ¼ Oi � UOiðlÞ
3:9

� �2

or r2 ¼ UOiðuÞ � Oi

3:9

� �2

ð11Þ

where: r2 = variance about measured data value Oi.
Figure 2 Graphical representation of Modification 2 to
calculate the deviation between measured and predicted H/
WQ data for measured values with a normal probability
distribution.
With the two distributional parameters, the normal
distribution can be transformed to the standard normal dis-
tribution. The Z value in the standard normal distribution
is calculated with Eq. (12). Then, CF is calculated as the
area under the standard normal distribution, which repre-
sents the probability that the transformed Pi value is be-
tween 0 and zi [CF = prob (Zi < z)]. The CF value for the
normal distribution can range from 0 (for Oi = Pi) to 0.5
(for r = 0 or for jZijP 3.9, which occurs if Pi is farther
then 3.9r from Oi).

Zi ¼
Xi � li

ri

Zi ¼
Pi � Oi

Oi�UOiðlÞ
3:9

� 	 or Zi ¼
Pi � Oi

UOiðuÞ�Oi

3:9

� 	 ð12Þ

where: Zi = linearly transformed value of Pi in the standard
normal distribution.

Modification 2 for measured data with a symmetric
triangular probability distribution
When the probability distribution about a data point is
known or assumed to be represented by a symmetric tri-
angular distribution, resulting probabilities are used to
determine the CF. To calculate the CF in this case, the
mean and upper and lower limits must be known or as-
sumed. To apply Modification 2 to symmetrical triangular
distributions, the mean and median are represented by
Oi. The upper and lower limits represented by the uncer-
tainty boundaries, UOi(l) and UOi(u), are calculated from
the PER with Eq. (7) (Fig. 3).

With the relevant distributional parameters, CF is calcu-
lated with Eq. (13). For the triangular distribution, CF can
range from 0 (for Oi = Pi) to 0.5 (for r = 0 or for Pi outside
the uncertainty boundaries).

CF ¼ 0:5� ½Pi � UOiðlÞ�2

½UOiðuÞ � UOiðlÞ� � ½Oi � UOiðlÞ�

if UOiðlÞ 6 Pi 6 Oi

CF ¼ 0:5� ½UOiðuÞ � Pi�2

½UOiðuÞ � UOiðlÞ� � ½UOiðuÞ � Oi�

if Oi 6 Pi 6 UOiðuÞ

CF ¼ 0:5 if Pi > UOiðuÞ; Pi < UOiðlÞ

ð13Þ
Figure 3 Graphical representation of Modification 2 to
calculate the deviation between measured and predicted
H/WQ data with a triangular probability distribution.
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Results

Application examples

Several measured hydrologic and water quality data sets
and associated model application output sets were selected
to illustrate the application of these modifications. These
data sets were selected to include various temporal and
spatial scales, data types, and observed-predicted fits.
The examples are not meant to compare the performance
of specific models but to illustrate the inclusion of measure-
ment uncertainty in the evaluation of goodness-of-fit. The
uncertainty estimates for measured data are based on infor-
mation in Harmel et al. (2006). The examples include se-
lected graphical and quantitative (both dimensionless and
absolute error) goodness-of-fit indicators as recommended
for proper model evaluation (Willmott, 1981; Legates and
McCabe, 1999; Moriasi et al., in review).

Monthly runoff (Riesel watershed Y6)
In this example, measured monthly runoff data for a small
watershed (Y6) located near Riesel, Texas, were compared
to corresponding data simulated by the EPIC model (Wil-
liams and Sharpley, 1989). This data set was selected to rep-
resent a good fit between measured and modeled values. As
shown in Fig. 4, the model performed fairly well throughout
the range of measured data, except for very low values of
measured runoff. Thus, the influence of uncertainty is not
readily apparent.

All of the mathematical indicators, as traditionally ap-
plied, also suggested that EPIC was able to reproduce ob-
served runoff quite well (Table 2). The E and d indicators
in their squared and absolute deviation forms were close
to 1.0 indicating good agreement between measured and
modeled values. The RMSE and MAE values were also quite
low in comparison to the magnitude of measured values
ð�O ¼ 23:33 mm; �P ¼ 22:63 mm; n ¼ 48Þ. When the indicators
Figure 4 Scatterplot of measured and predicted monthly
runoff (mm) for Riesel watershed Y6, modified with Modifica-
tion 1 to include the uncertainty range for each measured value
plotted as an error bar (PER = ±42%).
were modified to account for measurement uncertainty,
their goodness-of-fit improvement was not drastic and sug-
gested modest improvement in already strong agreements.
For Modification 1 (PER = ±10%, 42%), which produces the
best possible agreement between measured and predicted
values, E and d improved 1–15%, and RMSE and MAE im-
proved 34–68%. For Modification 2 with normal distributed
measured data, E and d improved 0–2%, and RMSE and
MAE improved 0–8%.
Monthly dissolved P loss (Riesel watershed Y6)
In this example, measured monthly dissolved P losses for
Riesel watershed Y6 were compared to corresponding data
simulated by the EPIC model (Williams and Sharpley,
1989). As shown in Fig. 5, EPIC did a reasonable job of
reproducing measured P loss for most months but drasti-
cally overestimated P loss in other months. This overesti-
mation occurred even when the uncertainty boundaries
were expanded to represent a PER = ±104%, which is a rea-
sonable range for dissolved P measured under less than
ideal monitoring and laboratory conditions (Harmel et al.,
2006).

As expected from the visual observation, the mathemat-
ical indicators confirmed a relatively poor reproduction of
measured dissolved P losses (Table 3). The unmodified E val-
ues were either negative or only slightly positive indicating
poor agreement between measured and modeled values.
The d values were substantially lower than in the previous
example. The RMSE and MAE values were quite similar to
the measured and predicted mean value ð�O ¼ 0:03 kg=ha;
�P ¼ 0:06 kg=ha; n ¼ 48Þ, which is another indication of poor
performance. When the indicators were modified to account
for measurement uncertainty, their improvement was quite
variable. Modification 1 improved indicators 7–236% for
PER = ±23% and 22–690% for PER = ±104%. In contrast, indi-
cators modified with Modification 2 (triangularly distributed
measured data), produced no improvement for PER = ±23%
and 1–82% for PER = ±104%. The modest improvement in
goodness-of-fit indicators for Modification 2 occurred be-
cause many of the deviations between paired measured
and predicted data were quite large even when modified.
The modified indicators did however, as per their design,
suggest improved model performance when the uncertainty
increased from ±23% to ±104%.
Daily streamflow (Reynolds Creek watershed)
In this example, measured daily streamflow data for the
239 km2 Reynolds Creek watershed in Idaho were compared
to corresponding data simulated by the SWAT model (Arnold
et al., 1998). These data represent a typical hydrologic data
set with reasonable agreement between measured and mod-
eled values ð�O ¼ 0:68 cms; �P ¼ 0:71 cms; n ¼ 1827Þ. Without
consideration of uncertainty, the flow exceedance curves in
Fig. 6 appear somewhat different. However, predicted val-
ues are well within the uncertainty boundaries of the mea-
sured flow (PER = ±42%).

As traditionally applied, the E, d, RMSE, and MAE indica-
tors suggested that SWAT was able to reproduce observed
runoff reasonably well (Table 4). For a PER of ±42%, Modifi-
cation 1 indicated that the model did quite well in predict-
ing flow within the uncertainty boundaries of measured



Table 2 Results of traditional and modified deviations in selected goodness-of-fit indicators for comparison of measured and
EPIC predicted monthly runoff (mm) for Riesel watershed Y6, assuming PER = ±10% and ±42% and a normal distribution for
Modification 2

Oi PER= 0% 10% 10% 42% 42%
Oi dist.= n.a. n.a. Normal n.a. Normal
Indicator Trad. Mod 1 value (% inc) Mod 2 value (% inc) Mod 1 value (% inc) Mod 2 value (% inc)

E 0.96 0.98 (2%) 0.96 (0%) 0.99 (3%) 0.97 (1%)
E1 0.82 0.89 (8%) 0.82 (0%) 0.94 (15%) 0.84 (2%)
d 0.99 1.00 (1%) 0.99 (0%) 1.00 (1%) 0.99 (0%)
d1 0.91 0.94 (4%) 0.91 (0%) 0.97 (7%) 0.92 (1%)
RMSE 8.77 5.76 (34%) 8.77 (0%) 4.02 (54%) 8.06 (8%)
MAE 5.24 3.37 (36%) 5.21 (1%) 1.68 (68%) 4.81 (8%)

The magnitude of improved fit is represented by the % increase in the indicator values.

Figure 5 Monthly dissolved P loss (kg/ha) predicted by EPIC compared to measured losses from Riesel watershed Y6.

Table 3 Results of traditional and modified deviations in selected goodness-of-fit indicators for comparison of measured and
EPIC predicted monthly dissolved P loss (kg/ha) for Riesel watershed Y6, assuming PER = ±23% and ±104% and a triangular
distribution for Modification 2

Oi PER= 0% 23% 23% 104% 104%
Oi dist.= n.a. n.a. Triangular n.a. Triangular
Indicator Trad. Mod 1 value (% inc) Mod 2 value (% inc) Mod 1 value (% inc) Mod 2 value (% inc)

E �1.40 �0.90 (38%) �1.40 (0%) 0.28 (>100%) �1.34 (4%)
E1 0.07 0.23 (>100%) 0.07 (0%) 0.54 (>100%) 0.12 (82%)
d 0.76 0.81 (7%) 0.76 (0%) 0.93 (22%) 0.77 (1%)
d1 0.64 0.70 (10%) 0.64 (0%) 0.82 (28%) 0.66 (3%)
RMSE 0.08 0.07 (12%) 0.08 (0%) 0.05 (45%) 0.08 (1%)
MAE 0.04 0.03 (17%) 0.04 (0%) 0.02 (50%) 0.03 (6%)

The magnitude of improved fit is represented by the % increase in the indicator values.
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flow; however, Modification 2 produced only slight improve-
ment (<2%) when measurement uncertainty was included. In
the second example for this data set, the uncertainty in
measured data were not uniform but were adjusted based
on measurement uncertainty differences throughout the
range of measured values. This example was presented to
illustrate the flexibility of the modifications based on the
available information on measurement uncertainty (as rec-
ommended by Beven, 2006a). In this example, PER was set
at ± 100–200% for very low stages to represent the difficulty



Figure 6 Comparison of measured and predicted percent exceedence curves for daily streamflow (m3/s) for Reynolds Creek,
assuming measured data with a PER = ±42%.

Table 4 Results of traditional and modified deviations in selected goodness-of-fit indicators for comparison of measured and
SWAT predicted daily streamflow (m3/s) for the Reynolds Creek watershed, assuming PER = ±42% and a variable PER and a normal
distribution for Modification 2

Oi PER= 0% 42% 42% Vary %a Vary %
Oi dist.= n.a. n.a. Normal n.a. Normal
Indicator Trad. Mod 1 value (% inc) Mod 2 value (% inc) Mod 1 value (% inc) Mod 2 value (% inc)

E 0.73 0.91 (26%) 0.73 (0%) 0.92 (27%) 0.75 (3%)
E1 0.53 0.81 (51%) 0.54 (1%) 0.83 (56%) 0.55 (3%)
d 0.93 0.98 (6%) 0.93 (0%) 0.98 (6%) 0.93 (1%)
d1 0.76 0.90 (18%) 0.77 (0%) 0.92 (20%) 0.77 (1%)
RMSE 0.66 0.37 (44%) 0.65 (0%) 0.35 (46%) 0.63 (4%)
MAE 0.35 0.15 (58%) 0.35 (1%) 0.13 (64%) 0.34 (4%)

The magnitude of improved fit is represented by the % increase in the indicator values.
a The PER values for measured data in this example were assumed to vary from ±42% to 200% based on flow rate.
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in accurate stage measurement. Similarly, PER was assumed
to be ± 100% for high flows when floodplain flow, rapid mor-
phological changes, and stage estimation procedures in-
crease measurement error. A similar variable adjustment
in measurement error would be appropriate for laboratory
analysis, as determination of very low constituent concen-
trations can produce inflated relative error (Kotlash and
Chessman, 1998). As expected, increasing the uncertainty
for selected data further improved perceived model perfor-
mance (Table 4). The indicators improved 6–64% for Modifi-
cation 1 and 1–4% for Modification 2.

Daily streamflow (South Fork watershed)
In this example, measured daily streamflow data for the
780 km2 South Fork watershed in Iowa were compared to
corresponding data simulated by the SWAT model (Arnold
et al., 1998). These data represent a situation where pre-
dicted values do not match well with measured data due
to model structure error ð�O ¼ 0:56 cfs; �P ¼ 0:66 cfs;
n ¼ 552Þ. The poor performance of SWAT resulted from
inadequate representation of tile drainage flow and prairie
pothole hydrology (SWAT was subsequently revised to better
represent these processes, see Green et al., 2006). As
shown in Fig. 7, the model performed poorly for much of
the measurement period.

All of the mathematical indicators, as traditionally ap-
plied, also illustrated the poor performance of the model
(Table 5). The unmodified E values were either negative
or only slightly positive, the d values were lower than in
the other examples, and RMSE and MAE were similar to
the mean measured value. When the indicators were modi-
fied to account for measurement uncertainty, their
improvement was quite variable. For Modification 1 the indi-
cators improved substantially because of the large uncer-
tainty in measured data (PER = ±42%, 84%), but the
goodness-of-fit generally remained poor inspite of this
improvement. In contrast, the indicators improved only
slightly for Modification 2 assuming normally distributed



Figure 7 Comparison of measured and predicted daily streamflow (ft3/s) for the South Fork watershed; the uncertainty boundary
for predicted values (PER = ±84%) are presented.

Table 5 Results of traditional and modified deviations in selected goodness-of-fit indicators for comparison of measured and
SWAT predicted daily streamflow (ft3/s) for the South Fork watershed, assuming PER = ±42% and 84% and a normal distribution for
Modification 2

Oi PER= 0% 42% 42% 84% 84%
Oi dist.= n.a. n.a. Normal n.a. Normal
Indicator Trad. Mod 1 value (% inc) Mod 2 value (% inc) Mod 1 value (% inc) Mod 2 value (% inc)

E �0.01 0.56 (>100%) �0.00 (31%) 0.79 (>100%) 0.00 (>100%)
E1 0.10 0.51 (>100%) 0.10 (6%) 0.75 (>100%) 0.12 (24%)
d 0.72 0.88 (22%) 0.72 (0%) 0.94 (30%) 0.73 (1%)
d1 0.58 0.77 (33%) 0.58 (0%) 0.88 (52%) 0.59 (2%)
RMSE 0.77 0.51 (34%) 0.77 (0%) 0.36 (54%) 0.77 (1%)
MAE 0.43 0.24 (45%) 0.43 (1%) 0.12 (72%) 0.42 (3%)

The magnitude of improved fit is represented by the % increase in the indicator values.
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measured data. With Modification 2, the values of d, RMSE,
and MAE improved <1% for PER = ±42% and only 1–3% for
PER = ±84%. For both Modification 1 and 2, the relative
improvement of E was exaggerated because E was <0.01
as traditionally calculated. Increasing the measurement
uncertainty resulted in only modest improvements in good-
ness-of-fit indicators because the model predictions were so
poor (Table 5, Fig. 7). This result is important because con-
sideration of measurement uncertainty should not prevent
poor goodness-of-fit conclusions in the presence of model
inadequacies.

Conclusions

The present modifications were designed to consider mea-
surement uncertainty in the evaluation of H/WQ models.
Specifically, the error term calculations of several accepted
and commonly used goodness-of-fit indicators (E, d, RMSE,
and MAE) were modified based on the uncertainty bound-
aries (Modification 1) or the probability distribution (Modifi-
cation 2) of measured data. As traditionally applied,
goodness-of-fit indicators simply use the difference be-
tween paired measured and predicted data. It is, however,
more appropriate to calculate deviations based on the
uncertainty boundaries or the probability distribution of
measured data. Thus, the modifications were based on the
theory that H/WQ models should be evaluated against the
measurement uncertainty instead of the values of measured
data, which are inherently uncertain.

Modification 1 was developed to provide enhanced good-
ness-of-fit information when distributional information on
measured data uncertainty is not available and not reason-
ably assumed. Because of its design, Modification 1 mini-
mizes the calculated deviations and thus produces the
minimum estimate of error. Thus, when applied to the
example data sets, the selected goodness-of-fit indicators
improved considerably.

Modification 2 was designed to provide a more realistic
calculation of paired deviations when distributional infor-
mation regarding measurement uncertainty is known or rea-



Consideration of measurement uncertainty in the evaluation of goodness-of-fit in hydrologic and water quality modeling 335
sonably assumed. Thus, Modification 2 is more appropriate if
information is available regarding uncertainty distribution.
When applied to four example data sets, the improvements
were much smaller than observed for Modification 1 for the
selected goodness-of-fit indicators. In general, goodness-of-
fit increased only slightly for measured data with little
uncertainty, but Modification 2 resulted in modest improve-
ment when data with substantial uncertainty were com-
pared with both poor and good model predictions. The
modest improvement for poor model performance is an
important result, as poor predictions – especially in the
presence of large model structure errors – should
not appear satisfactory simply because of measurement
uncertainty.

Although these example data sets were analyzed assum-
ing normal or triangular distributions for each individual
measured data point, others such as the uniform distribu-
tion are probably equally valid. Research regarding typical
distributions for individual measurements of streamflow
and water quality indicators would be a valuable
contribution and enhance the application of the present
modifications.

As a result of increased knowledge on measured data
uncertainty (e.g. Pelletier, 1988; Sauer and Meyer, 1992;
Kotlash and Chessman, 1998; Jarvie et al., 2002; Slade,
2004; Harmel et al., 2006), modelers now have the capabil-
ity to consider the ‘‘quality’’ of their calibration, valida-
tion, and evaluation data sets to more realistically judge
model performance. As H/WQ models are becoming guiding
factors in water resource policy, management, and regula-
tory decision-making, it is no longer appropriate to discuss
but not consider uncertainty in model evaluation (Pappen-
berger and Beven, 2006; Beven, 2006b). The modified
deviation calculations for the selected indicators should
facilitate this advancement.
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