The Programs dew.exe and dew02.exe

User's Manual

Stefan Liersch, Berlin, August 2003
stliersch@freenet.de

Introduction

The Programs dew.exe and dew02.exe are designed to calculate the average daily dewpoint temperature per month using daily air temperature and humidity data.

One has to use the program dew.exe in order to calculate the dewpoint temperature if just average daily temperature data are available. The program dew02.exe calculates the dewpoint temperature using minimum and maximum daily temperature data. If you have the choice between using average temperature or minimum and maximum temperature, you should to decide to use minimum and maximum values, because this will generate more precise results. When the average temperature data is used, the dewpoint temperature will be a bit underestimated.

In both cases you have to use average daily humidity data.

The Input File

Program dew.exe (Average Temperature)

The input file which stores the average daily temperature $\left[{ }^{\circ} \mathrm{C}\right]$ and humidity [\%] data must be an ASCII text file with two columns (see figure 1 below) - the first column storing the temperature data and the second column storing the humidity data.

Program dew02.exe (Maximum and Minimum Temperature)

The input file storing the maximum and minimum daily temperature $\left[{ }^{\circ} \mathrm{C}\right]$ and the average daily humidity $[\%]$ data must be an ASCll text file with three columns (see figure 2 below). The first column stores the maximum temperature data the second column the minimum temperature data and the third column the average daily humidity data.

Valid for both Programs

The period of temperature and humidity measurement must start on January $1^{\text {st }}$ and must end on December $31^{\text {st }}$. In other words, the first value in the input file must have the value of January $1^{\text {st }}$ and the last value the one of December $31^{\text {st }}$. Even though there is no limit to the number of years employed, one's calculations must be based on the entire year.

If there are any missing data in your measurements, you need to fill these days with NoData values (this must be a number). The temperature NoData value must be greater than 100.0 or less than -100.0. A valid humidity value is between 0.0 and 100.0. Values which are greater or less will be handled as NoData values by the program. Humidity data are often expressed by values between 0 and 1 . In that case, each humidity value must be multiplied with factor 100.

NoData entries will be automatically replaced with the mean value of the entire period.

Fig. 1: Input File (dew.exe) First Column: Average Daily Temperature Second Column: Average Daily Humidity

-7th.txt - Editor			- \mid 미 \times
Datei	Bearbeiten	Format	?
25.6	14.1	69	\pm
27.8	14.3	71	
22.1	8	67	
22.9	10.5	65	
26.4	11.7	56	
28.2	12.8	60	
29.7	13.1	53	
30.6	13.3	51	
31.2	13.2	50	
31.3	15.8	47	
32	15.1	50	
30.9	15	65	
25.8	14.4	81	
27.2	15.3	63	
19.8	14.3	87	
24.5	14.4	80	
23.2	13.8	74	
20.9	13.2	85	
4			

Fig. 2: Input File (dew02.exe) First Column: Daily Maximum Temperature Second Column: Daily Minimum Temperature Third Column: Average Daily Humidity

Creating the Input File

Probably you have two text files. One stores the temperature values and another one the humidity data. Open these files with an spreadsheet application like Microsort ExCel. If necessary, reduce both periods on top and bottom so that they start on January $1^{\text {st }}$ and end on December $31^{\text {st }}$. Make sure that the date of the first value of temperature and humidity data match. Afterwards, just copy the temperature and humidity data into a new file according to figure 1 or 2 . Save the file without headlines as a text file (filename.txt).

If you create the input file with any other application or manipulate the file later with a text editor, make sure that the last line (the line following the last December $31^{\text {st }}$ value) is a blank line! If there is no blank line or if there is more than one blank line at the end of the file, the program will interrupt with the message "End of file during read" or it will generate wrong output data, respectively.

Running the Program

Copy the program and the input file into the same directory. Double click the dew/dew02.exe or start the program from a DOS prompt (see figure 3 below). First, you will be asked about the name of the input and output file. The name of the input file is the name of the file storing the temperature and humidity data. Do not forget to add the file extension! As regards, the output file you can choose any name. In the next step, you will be asked to enter the
first year of the period. This information is used to calculate if a year is a leap year or not. Simply type in the first year of the period (four numbers) and press <RETURN>.

Fig. 3: Program dew.exe
After the calculations are finished, the output file (see figure 4) below will automatically be saved in the same directory as the program itself.

Fig. 4: Example of an Output File

Calculating the Dewpoint Temperature

The program calculates the dewpoint temperature of each day. The values listet in the output file are the average daily dewpoint temperatures of each month over the entire period.

First, the saturation vapour pressure e_{s} will be derived from the daily air temperature values T (see equation 1). After that, the average daily actual vapour pressure e_{a} will be calculated by using saturation vapour pressure e_{s} and average humidity data $R F$ (see equation 2).

According to Allen, R. G. (1998):

$e_{s}=0.6108$ * $\exp ((17.27 * T) /(T+237.3))$
Eq. 1

The unit of saturation vapour pressure generated by equation 1 is [kPa]. That must be converted into [mbar]. Therefore, the result will be multiplied with the factor 10.

According to HÄCKEL, H. (1999):

$e_{a}=R F^{*} e_{s} / 100$
Eq. 2

The daily dewpoint temperature dew will be aproximately calculated by the following equation:

$$
d e w=\left(234.18 * \log _{10}\left(e_{d}\right)-184.2\right) /\left(8.204-\log _{10}\left(e_{d}\right)\right)
$$

Eq. 3

```
e}\mp@subsup{e}{5}{}== saturation vapour pressure [mbar
e}\mp@subsup{e}{a}{}== actual vapour pressure [mbar]
exp = 2.7183 (base of natural logarithm)
T = air temperature [ }\mp@subsup{}{}{\circ}\textrm{C}
RF = relative humidity [%]
dew = dewpoint temperature [ }\mp@subsup{}{}{\circ}\textrm{C}
```

Using daily minimum and maximum temperature data, the saturation vapour pressure will be derived twice ($e_{\text {min }}$ and $e_{s_{\text {max }}}$) according to equation 1 . In this case the saturation vapour pressure used by equation 2 is the mean value of $e_{s \text { min }}$ and $e_{s \text { max }}$.

Note

Be aware of the fact that, if you provide the program with wrong information, you will end up with wrong output data. If the input file does not exist or if you type in a letter instead of a number, the program will produce an error message. In most cases, however, you will not be able to read this message because the program-window closes rather quickly.

References

Allen, R. G. / Pereira, L. S. / Raes, D. / Smith, M. (1998): Crop evaporation - Guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56, http://www.fao.org/docrep/X0490E/x0490e00.htm\#Contents, Stand: 17. 10. 2002.

Häckel, H. (1999): Meteorologie, Stuttgart: Ulmer, $4^{\text {th }}$ edition.

In case you are interested in the source code or should you encounter any kind of difficulties while using the program, do not hesitate to send an email to: stliersch@freenet.de.

