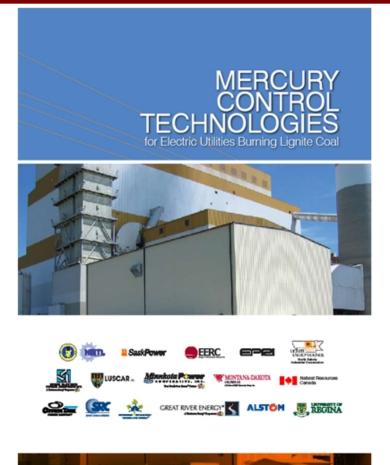
EERC Technology... Putting Research into Practice

Phase III – Mercury Control Technologies for Utilities Burning Lignite Coal


DOE NETL Mercury Control Technology Conference

Pittsburgh, Pennsylvania December 11–13, 2007

John H. Pavlish Energy & Environmental Research Center Grand Forks, North Dakota

© 2007 University of North Dakota Energy & Environmental Research Center. All rights reserved.

Final Report for Phase II Work

Pavlish, J.H.; Thompson, J.S.; Almlie, J.C.; Hamre, L.L.; Musich, M.A.; Heebink, L.V.; Crocker, C.R.; Olson, E.S.; Buckley, T.D. *Mercury Control Technologies for Electric Utilities Burning Lignite Coal – Phase II;* Final Report for U.S. Department of Energy National Energy Technology Laboratory Cooperative Agreement No. DE-FC26-98FT40321; EERC Publication 2007-EERC-03-02; Energy & Environmental Research Center: Grand Forks, ND, May 2007.

Phase III Project Participants

Sask**Power**

North Dakota Industrial Commission

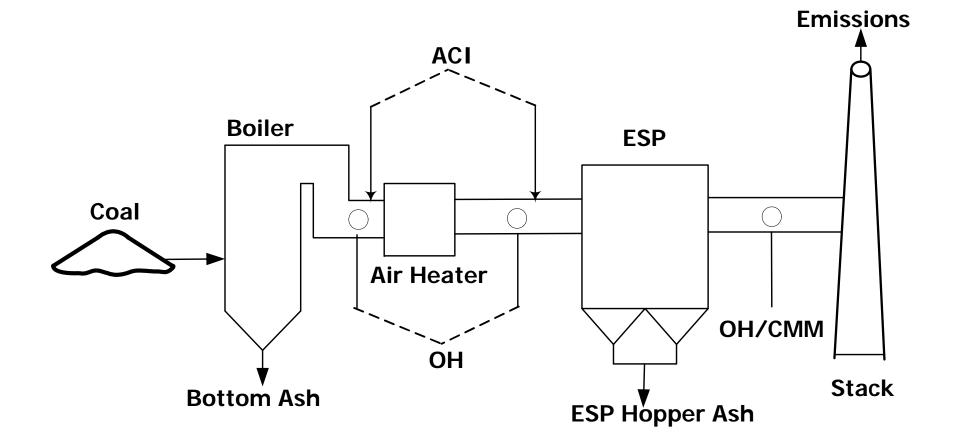
Testing Objectives

Phase III of this project is focused on evaluating long-term balance-ofplant (BOP) effects when using activated carbon injection (ACI) upstream of an electrostatic precipitator (ESP) for mercury control on a full-scale unit. Specific project objectives are as follows:

- Evaluate impact of ACI on ESP operation (increased sparking, buildup on plates, rapping frequency and effectiveness, outlet emission opacity, etc.).
- Evaluate the impact of ACI on downstream ductwork, fans, and stack.
- Evaluate the impact of ACI on ESP hoppers.
- Evaluate the impact of ACI on ash-handling equipment and disposal practices.
- Evaluate the long-term operability of the ACI system and equipment.

Testing Objectives (cont.)

- Evaluate long-term mercury removal using ACI upstream of an ESPonly configuration.
- Determine mercury capture and the fate of mercury across the unit using a mercury continuous emission monitor (CEM), the Ontario Hydro (OH) wet-chemistry method, and analyses of coal and ash.
- Obtain mercury removal and economic data for ACI upstream of a full-scale ESP, which can be compared to previously generated data on the Emission Control Research Facility (ECRF) for ACI upstream of a fabric filter (FF).
- Perform a preliminary economic evaluation of using ACI upstream of an ESP for mercury control including observed BOP impacts.
- Perform sampling to evaluate the impact of ACI on trace metal emissions.
- Obtain particulate matter emission data sufficient to evaluate the effect of ACI.



Poplar River Unit 2 Specifications

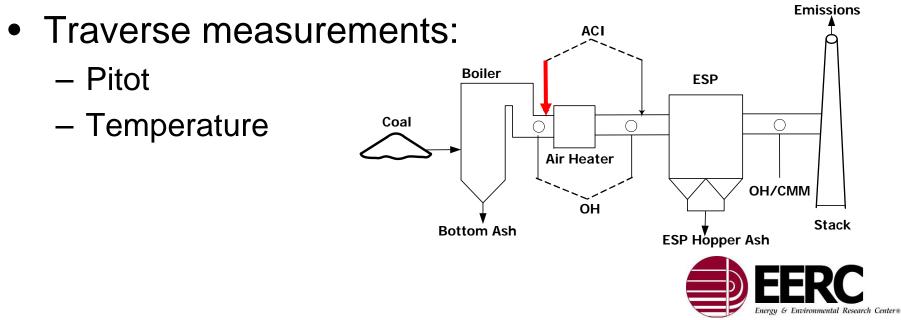
Component	Specifications/Notes			
Plant Location	Near Coronach, Saskatchewan, Canada			
Coal Combusted	Fort Union lignite (Saskatchewan lignite), Poplar River Mine; same as previous pilot-scale ECRF testing under Phase II			
Boiler	Babcock & Wilcox opposed-fired wall-fired boiler			
Load	310 MW			
Mills	6 mills			
ESP Specifications				
Manufacturer	American Air Filter			
Specific Collection Area (SCA)	 Approximately 400 ft²/1000 acfm 			
Controller	EPIC III controllers			
Casings	 Double casings, two parallel bus sections across the width; 10 bus sections in each casing (total of 20 bus sections) 			
Fields	• Five fields in the direction of gas flow			
Rappers	Tumbling hammer collecting rappers			
Ash Handling	 Slurried (mixed with water) and disposed of in lagoon 			
Ash Sales	 None; excessive transportation to reach suitable market 			

Poplar River Unit 2 Schematic

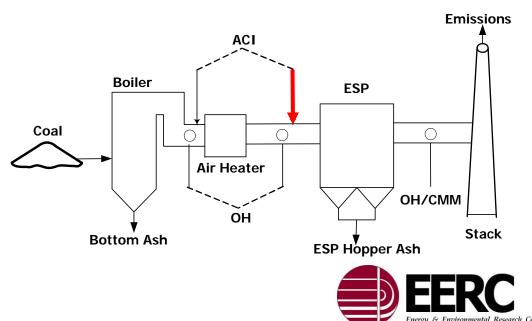
Activated Carbon Injection System

Delivery of Activated Carbon

Equipment at Poplar River



Silo and Injection Skid


Injection Grid at AH Inlet

- Duct at air heater (AH) inlet is approximately 26 x 15 ft in an expanding duct.
- 400 feet from AC silo.
- Six injection ports across the 26-ft width.

Injection Grid at ESP Inlet

- Duct at ESP inlet is approximately 26 x 8 ft.
- 350 feet from AC silo.
- 12 injection ports.
- Traverse measurements:
 - Pitot
 - Temperature
- Flow is condensed near the bottom of the duct.

Distribution Hoses

Injection Ports at ESP Inlet

Mercury Sampling

- Baseline sampling for mercury in the flue gas prior to ACI
- Mass balance (Monitoring Protocol in Support of the CWS...)
 - Coal
 - ESP hopper ash
 - OH method
- Hg CEM at the west ESP outlet

Coal and Ash Sampling

- Coal
 - Daily sampling
 - Analysis of 3 samples bi-weekly
- ESP hopper ash
 - Initially, biweekly sampling and analysis of all hoppers to determine mercury-ash distribution
 - Long term sample from one hopper from row
 1 and row 2 daily

Flue Gas Sampling

- Hg CEM (gas-phase mercury)
 ESP outlet
- OH (speciated mercury)
 - ESP outlet
 - Upstream of injection location
- Method 29 (trace metals)
 - As, Cd, Cr, Pb, Se, Sb
- Particulate matter
 - ESP outlet

- Pretest and posttest inspection reports
 - Documentation of AH, ESP components, ductwork
- Corrosion probes
- Documentation of ESP operations
 - TR sets
 - Rapping frequency
- Documentation of plant operations (load, temperature, SOx, NOx, etc.)

Baseline Inspection Report

- Inspections completed May 20 June 6, 2007
- PAH and SAH
 - Partially plugged with fly ash
 - Both sides were washed and blown clean
- Ductwork
 - Very little corrosion noted
 - Minor leakage at expansion joints
- ESPs
 - No corrosion
 - Some errosion
 - Some buildup of ash, samples collected
 - Plates and electrodes cleaned

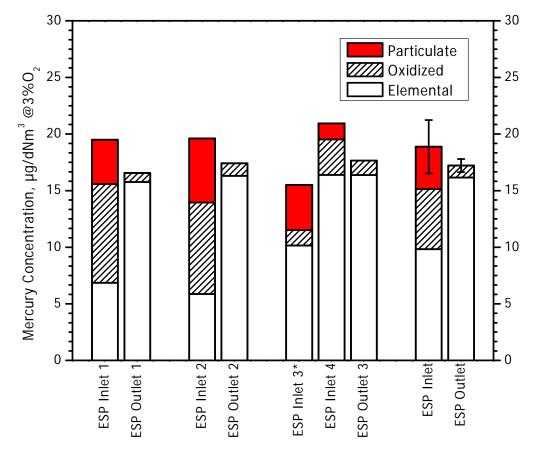
Corrosion/Deposition Coupons

- Preweighed
- Duct metal
- Cut and welded
- Locations
 - Upstream of ACI
 - Upstream of ESP (downstream of ACI)
 - Downstream of ESP
- Duration
 - 12 probes, 24 coupons for timed sampling

Corrosion Probes

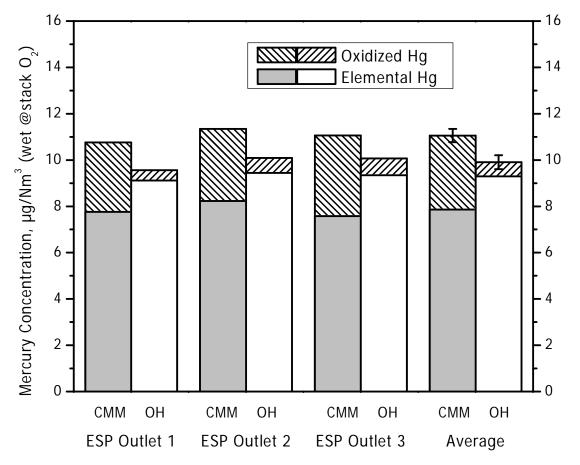
Parametric Test Matrix

- Commercially available ACs (three)
- Injection location
 - AH Inlet
 - ESP Inlet (AH outlet)
 - ESP inlet plenum
- Injection grid/lance design
 - Measurement of flow/temperature/O₂ profiles
- Injection rates/mercury removal



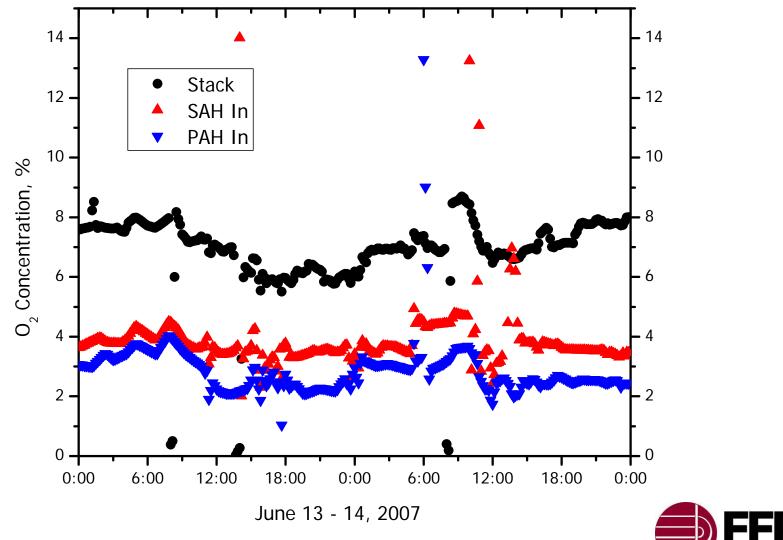
Preliminary Data

 Parametric testing has indicated mercury capture of approximately 60%–80% while injecting a treated AC at 2–2.5 lb/Macf (at 300°F).



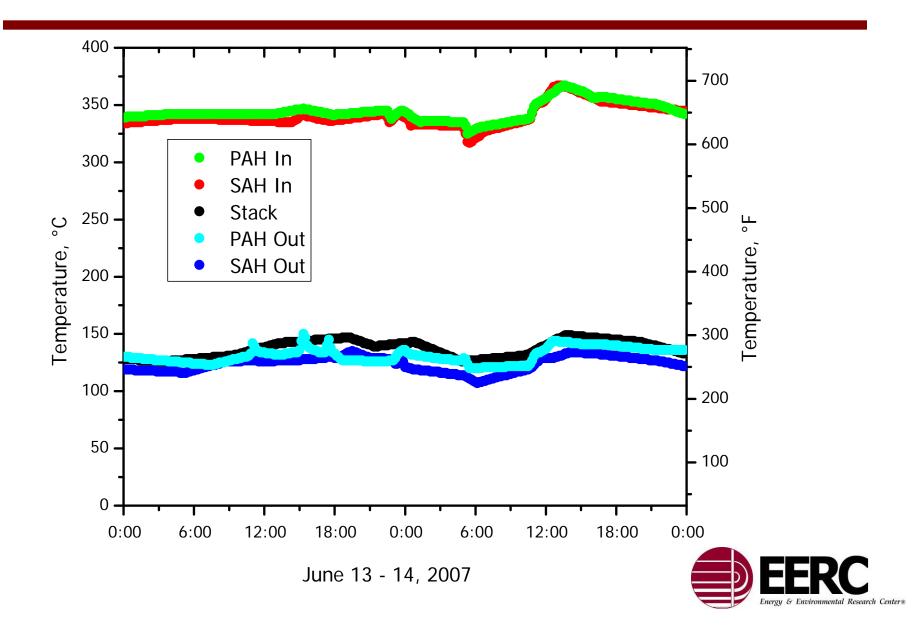
OH Baseline Sampling

Hg CEM vs. OH

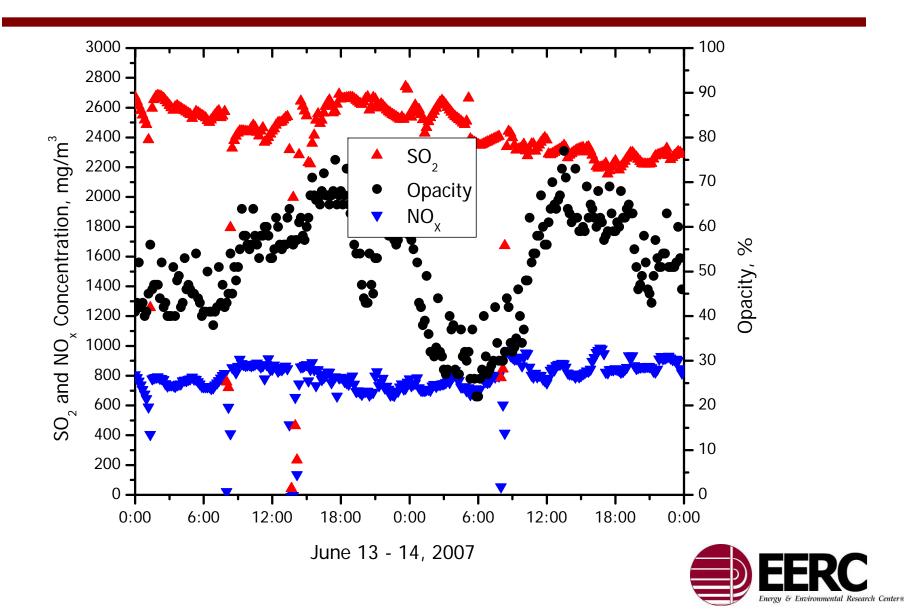

Baseline Solids

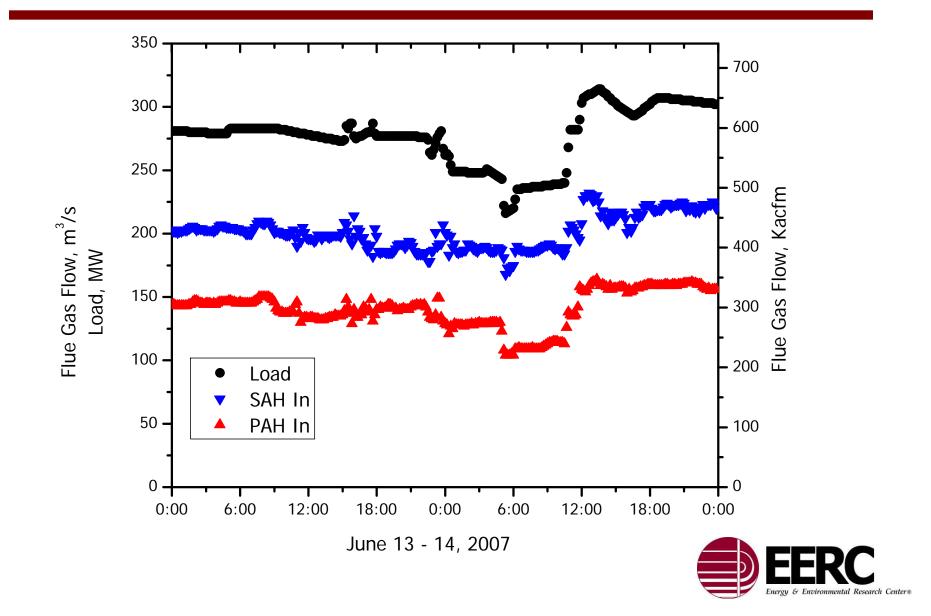
- Coal Hg (dry basis)
 - 0.125 µg/g-coal
 - Approximately 600 µg/kg-ash (estimated)
- ESP hopper ash Hg, µg/kg

Field	A	В	С	D	Field Average
1	51	55	78	36	55
2	152	93	92	60	99
3	54	97	120	67	84
4	48	91	87	59	71
5			40	39	39



Baseline Oxygen




Baseline Temperatures

Baseline Stack CEM Data

Baseline Flows and Load

Long-term Test Status

- Started December 4
- Monitoring of mercury emissions via CMM and periodic OH sampling
- Plant data is being logged and monitored
- Weekly and monthly inspection
 - Injection equipment
 - Air heaters
 - Ductwork
 - ESPs
 - ID fans
- Results will be reported at project meetings, conferences, etc. as testing progresses

Contact Information

Energy & Environmental Research Center University of North Dakota 15 North 23rd Street, Stop 9018 Grand Forks, North Dakota 58202-9018

> World Wide Web: www.undeerc.org Telephone No. (701) 777-5000 Fax No. (701) 777-5181

John H. Pavlish Senior Research Advisor (701) 777-5268 jpavlish@undeerc.org Jeffrey S. Thompson Research Scientist (701) 777-5245 jthompson@undeerc.org

