DOE/NETL's Phase II Field Testing Program

Updated Economic Analysis of Mercury Control via Activated Carbon Injection

DOE/NETL's Mercury Control Technology R&D Program Review

December 12, 2007 Pittsburgh, PA

Andrew P. Jones
Andrew.jones@netl.doe.gov
Science Applications International Corporation

Disclaimer

This presentation was prepared by RDS/SAIC with the support of the U.S. Department of Energy. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

It should also be noted that the economic analyses represent "snapshots" in time based on the methodology used, assumptions made, and conditions that were specific to the time when DOE/NETL field testing occurred. Consequently, the economics presented are plant- and condition-specific and attempts to use this presentation as a tool to predict the performance of these mercury control technologies at other power plants should be conducted cautiously regardless of similarities in coal-rank and APCD configuration. In addition, the economics originate from relatively small datasets in many cases. As a result, the cost of mercury control could vary significantly with the inclusion of additional ACI performance data from current and future DOE/NETL field testing.

Updated Economic Analysis of ACI *Purpose & Objectives*

Purpose

- **❖** Develop *plant-specific* cost estimates for Hg control via:
 - Untreated ACI
 - Chemically-treated (or brominated) ACI
 - Conventional ACI with Sorbent Enhancement Additives (SEA)
- ❖ Gauge NETL's success in achieving cost target (25-50% below \$60,000/lb)

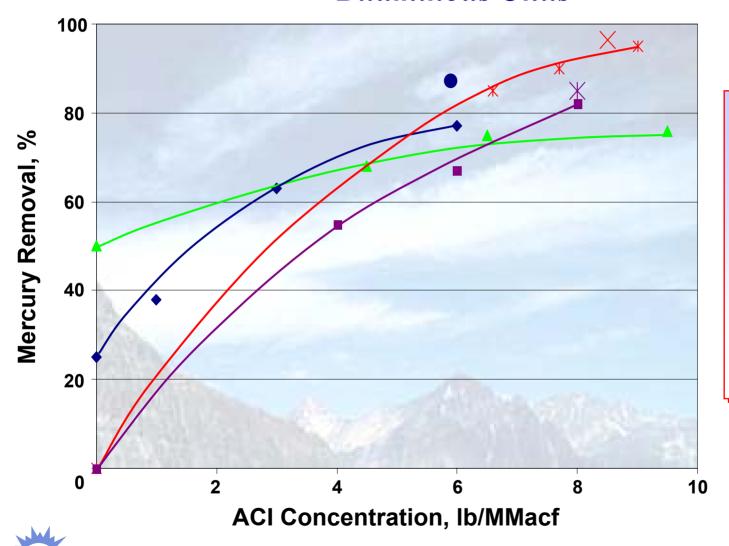
Objectives

- Discern the level of Hg capture that is attributable to ACI
- ❖ Incorporate the long-term (~30 days) field testing results
- Quantify the potential impacts of ACI on CUB reuse & disposal

Economics represent "snapshots" in time based on the methodology used, assumptions made, and conditions present when DOE/NETL field testing occurred

Phase II Site Descriptions

Site	Holcomb Unit 1	Meramec Unit 2	Stanton Unit 10	St. Clair Unit 1	Leland Olds Unit 1	Yates Unit 1
Capacity, MW	360	140	60	145	220	100
Coal Rank	PRB	PRB	ND Lignite	85:15 PRB/ Bituminous blend	ND Lignite	Bituminous
APCD Configuration	SDA/FF	CS-ESP	SDA/FF	CS-ESP	CS-ESP	CS-ESP & Wet FGD
T _{ACI,} °F	290	310	300	290	340	310
Flue Gas Flow Rate, ACFM	1,194,444	555,556	251,789	751,000	878,049	480,000
Hg in Flue Gas, lb/hr	0.0383	0.0128	0.0050	0.0087	0.0216	0.0071
Co-benefit Hg Capture, lb/hr	0.0142 (37%)	0.0041 (32%)	0.0000 (0%)	0.0022 (25%)	0.0039 (18%)	0.0035 (50%)
Hg Control Technology	DARCO® Hg-LH	DARCO® Hg-LH	DARCO® Hg-LH	B-PAC™	DARCO® Hg w/ CaCl ₂	Super HOK



Phase II Site Descriptions

Site	Monroe Unit 4	Lee Unit 1	Stanton Unit 1	Dave Johnston Unit 3	Leland Olds Unit 1	Portland Unit 1
Capacity, MW	785	79	150	240	220	170
Coal Rank	60:40 PRB/ Bituminous blend	Bituminous	PRB	PRB	ND Lignite	Bituminous
APCD Configuration	SCR & CS-ESP	CS-ESP	CS-ESP	CS-ESP	CS-ESP	CS-ESP
T _{ACI,} °F	270	300	325	770	800	640
Flue Gas Flow Rate, ACFM	3,600,000	320,000	574,390	925,195	878,049	520,621
Hg in Flue Gas, lb/hr	0.0465	0.0032	0.0083	0.0193	0.0216	0.0159
Co-benefit Hg Capture, lb/hr	0.0116 (25%)	0.0007 (21%)	0.0012 (15%)	0.0023 (12%)	0.0039 (18%)	0.0046 (29%)
Hg Control Technology	DARCO® Hg	B-PAC™	B-PAC™	Mer-Clean™ 8	Mer-Clean™ 8	Mer-Clean™ 8-21

Phase II Parametric Data Curves Bituminous Unitsa

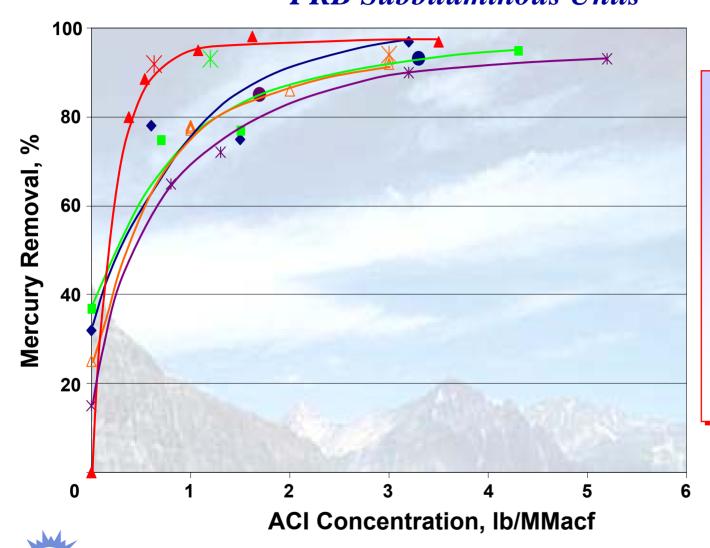
Portland Unit 1

Mer-Clean™ 8-21 CS-ESP

Monroe Unit 4

DARCO® Hg SCR & CS-ESP

Lee Unit 1


B-PAC™ CS-ESP

Plant Yates Unit 1

Super HOK CS-ESP & wet FGD

Phase II Parametric Data Curves PRB Subbituminous Units^a

Dave Johnston Unit 3

Mer-Clean™ 8 CS-ESP

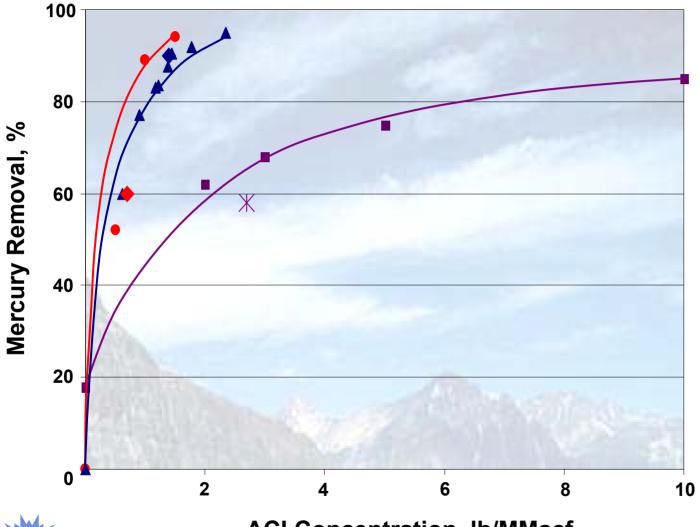
Meramec Unit 2

DARCO® Hg-LH CS-ESP

St. Clair Unit 1

B-PAC™ CS-ESP

Holcomb Unit 1


DARCO® Hg-LH SDA/FF

Stanton Unit 1

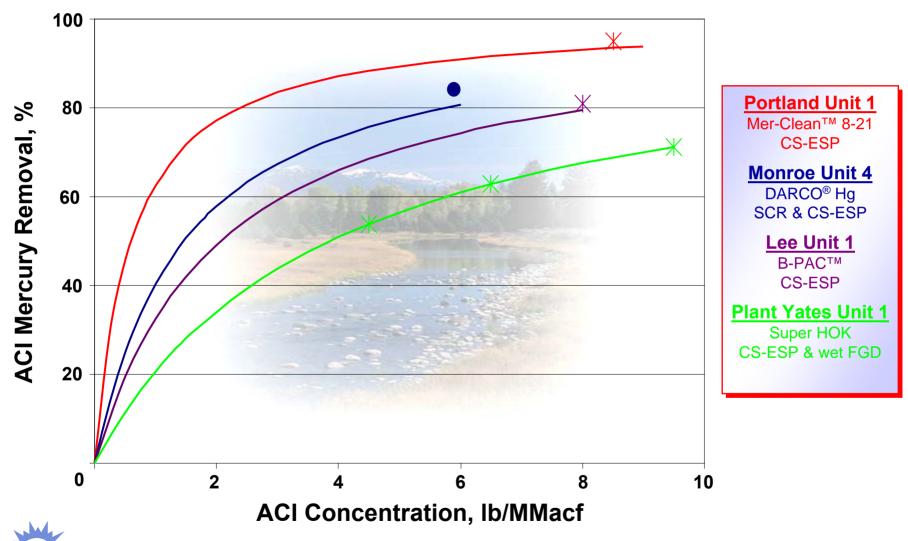
B-PAC™ CS-ESP

Phase II Parametric Data Curves ND Lignite Units

Stanton Unit 10

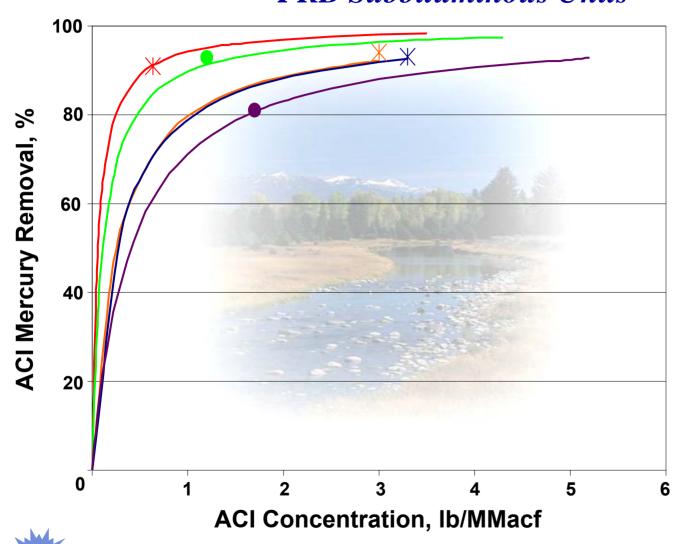
DARCO® Hg-LH SDA/FF

Leland Olds Unit 1


Mer-Clean™ 8 CS-ESP

Leland Olds Unit 1

DARCO® Hg w/ CaCl₂ CS-ESP



Phase II Adjusted Regression Curves Bituminous Units^a

^a Monroe typically burns a 60:40 PRB and bituminous coal blend

Phase II Adjusted Regression Curves PRB Subbituminous Units^a

Dave Johnston Unit 3

Mer-Clean™ 8 CS-ESP

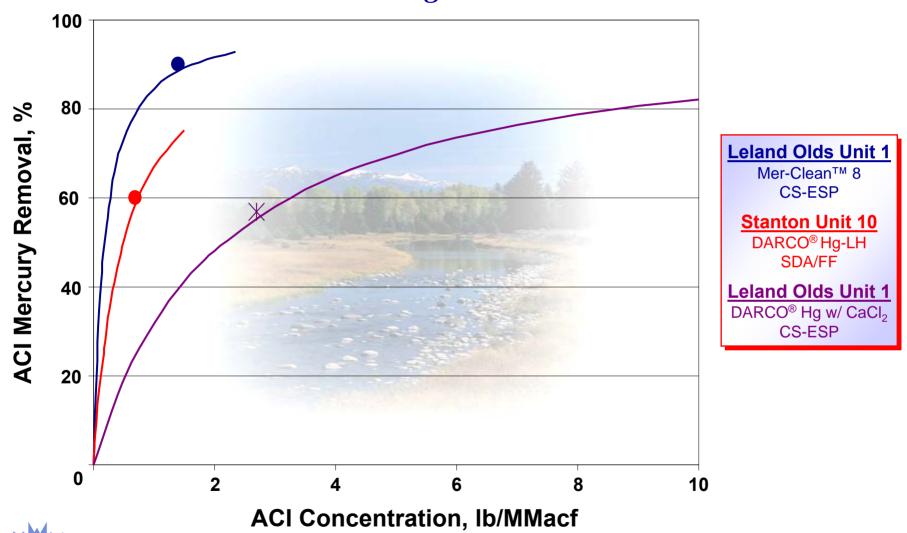
Holcomb Unit 1

DARCO® Hg-LH SDA/FF

St. Clair Unit 1

B-PAC™ CS-ESP

Meramec Unit 2


DARCO® Hg-LH CS-ESP

Stanton Unit 1

B-PAC™ CS-ESP

Phase II Adjusted Regression Curves ND Lignite Units

Capital Costs Sorbent Storage and Injection System

Total Direct Cost (TDC)

- > Equipment cost based on estimates provided by ADA-ES (min. \$690,000)
- Site Integration
- Cost of retrofit installation is site-specific (~15% of equipment cost)
- No adjustment for interest during construction

Indirect Costs

- General facilities & engineering fees (10% of TDC)
- Project contingency (15% of TDC)
- Process contingency (5% of TDC)

Key Points

Not a very capital-intensive process "One size fits all"

Annual Operating & Maintenance (O&M) Costs

- Sorbent Consumption
 - ACI Concentration, Delivered Sorbent Price & Flue Gas Flow Rate
- Sorbent Disposal (\$17/ton)
- SEA (CaCl₂) Consumption (\$0.20/lb delivered)
- "Other" O&M Costs^a

Potential CUB Impacts

 \$17/ton for fly ash & SDA by-product disposal

For Units with ESP

 \$18/ton for lost revenue from fly ash sales (assuming 100% reuse prior to ACI)

Sorbent Name	Manufacturer	Description	Delivered Price (\$/lb) ^b
Super HOK	RWE Rhinebraun	Untreated	0.39
DARCO® Hg	NORIT Americas	Untreated	0.54
DARCO [®] Hg-LH	NORIT Americas	Brominated	0.95
B-PAC™	Sorbent Technologies	Brominated	0.95
Mer-Clean™ 8 and 8-21	ALSTOM-PPL	Chemically- treated	1.35

^a Includes power consumption (\$0.05/kW); operating labor (4 hrs/day @ \$45/hr); ACI equipment maintenance (5% of uninstalled equipment cost); and spare parts (\$10,000 annually).

^b Includes \$0.10/lb for transportation expenses.

Cost Estimates for 70% ACI Mercury Control Bituminous Units

	Portland Unit 1	Monroe Unit 4	Lee Unit 1	Plant Yates Unit 1		
PAC / SEA	Mer-Clean™ 8-21	DARCO® Hg	B-PAC™	Super HOK		
ACI Rate, lb/MMacf	1.39	3.38	4.83	8.98		
Capital Cost, \$	\$1,360,000	\$3,000,000	\$1,270,000	\$1,270,000		
Unit Capital, \$/kW	\$8.00	\$3.82	\$16.02	\$12.66		
First-Y	<mark>ear Annual O&M C</mark>	osts (2006 \$ - 80	% capacity fact	or)		
PAC Consumption, \$/yr	\$410,000	\$2,760,000	\$617,000	\$707,000		
PAC Disposal, \$/yr	\$2,580	\$43,500	\$5,520	\$15,400		
Other, \$/yr	\$107,000	\$167,000	\$106,000	\$111,000		
Total O&M, \$/yr	\$520,000	\$2,970,000	\$729,000	\$833,000		
CUB Impacts ^a , \$/yr	\$1,090,000	\$5,450,000	\$758,000	\$1,080,000		
20-Year	Levelized Cost wit	thout Byproduct	Impacts (Curre	nt \$)		
COE Increase, mills/kWh	0.69	0.75	1.95	1.72		
\$/Ib Hg Removed	\$14,900	\$24,000	\$87,200	\$69,500		
20-Ye	20-Year Levelized Cost with Byproduct Impacts (Current \$)					
COE Increase, mills/kWh	1.84	1.99	3.66	3.66		
\$/Ib Hg Removed	\$39,600	\$63,900	\$164,000	\$148,000		

NETL

^a For units equipped with CS-ESP, by-product impacts include the fly ash disposal cost (\$17/ton) and lost revenue from fly ash sales (\$18/ton) assuming 100% utilization. For the SDA/FF configuration, only the cost of SDA by-product disposal (\$17/ton) is included.

Cost Estimates for 80-90% ACI Mercury Control Bituminous Units

	Portland Unit 1	Monroe Unit 4	Lee Unit 1	
PAC / SEA	Mer-Clean™ 8-21	DARCO® Hg	B-PAC™	
ACI Rate, lb/MMacf	5.34	5.78	8.27	
Capital Cost, \$	\$1,360,000	\$3,000,000	\$1,270,000	
Unit Capital, \$/kW	\$8.00	\$3.82	\$16.02	
First-Year An	nual O&M Costs (2006 \$	- 80% capacity factor	7)	
PAC Consumption, \$/yr	\$1,580,000	\$4,720,000	\$1,060,000	
PAC Disposal, \$/yr	\$9,940	\$74,300	\$9,460	
Other, \$/yr	\$111,000	\$165,000	\$106,000	
Total O&M, \$/yr	\$1,700,000	\$4,960,000	\$1,170,000	
CUB Impacts ^b , \$/yr	\$1,090,000	\$5,450,000	\$758,000	
20-Year Leveliz	zed Cost <i>without</i> Byprod	uct Impacts (Current	\$)	
COE Increase, mills/kWh	1.94	1.20	2.95	
\$/Ib Hg Removed	\$32,300	\$33,800	\$103,000	
20-Year Levelized Cost with Byproduct Impacts (Current \$)				
COE Increase, mills/kWh	3.09	2.45	4.67	
\$/Ib Hg Removed	\$51,500	\$68,800	\$163,000	

^a Cost estimates for 80% Hg control at the Monroe and Lee Stations, and 90% Hg control at Portland Station.

^b For units equipped with CS-ESP, by-product impacts include the fly ash disposal cost (\$17/ton) and lost revenue from fly ash sales (\$18/ton) assuming 100% utilization. For the SDA/FF configuration, only the cost of SDA by-product disposal (\$17/ton) is included.

Cost Estimates for 70% ACI Mercury Control Subbituminous Units

	DJ Unit 3	Holcomb Unit 1	St. Clair Unit 1	Meramec Unit 2	Stanton Unit 1	
PAC / SEA	Mer-Clean™ 8	DARCO® Hg-LH	B-PAC™	DARCO® Hg-LH	B-PAC™	
ACI Rate, lb/MMacf	0.14	0.27	0.60	0.62	0.95	
Capital Cost, \$	\$1,920,000	\$1,310,000	\$1,280,000	\$1,280,000	\$1,280,000	
Unit Capital, \$/kW	\$8.00	\$3.63	\$8.79	\$9.16	\$8.50	
	First-Year Annu	al O&M Costs (20	<mark>06 \$ - 80% capac</mark>	ity factor)		
PAC Consumption, \$/yr	\$75,200	\$128,000	\$179,000	\$138,000	\$217,000	
PAC Disposal, \$/yr	\$474	\$1,140	\$1,600	\$1,230	\$1,940	
Other, \$/yr	\$122,000	\$105,000	\$105,000	\$105,000	\$105,000	
Total O&M, \$/yr	\$197,000	\$234,000	\$286,000	\$244,000	\$324,000	
CUB Impacts ^a , \$/yr	\$1,730,000	\$1,430,000	\$792,000	\$1,060,000	\$566,000	
2	0-Year Levelized	Cost without By	product Impacts	(Current \$)		
COE Increase, mills/kWh	0.30	0.18	0.52	0.48	0.54	
\$/Ib Hg Removed	\$5,970	\$3,910	\$16,300	\$11,100	\$16,500	
20-Year Levelized Cost with Byproduct Impacts (Current \$)						
COE Increase, mills/kWh	1.59	0.89	1.49	1.84	1.22	
\$/Ib Hg Removed	\$32,100	\$19,000	\$47,200	\$42,400	\$36,900	

^a For units equipped with CS-ESP, by-product impacts include the fly ash disposal cost (\$17/ton) and lost revenue from fly ash sales (\$18/ton) assuming 100% utilization. For the SDA/FF configuration, only the cost of SDA by-product disposal (\$17/ton) is included.

Cost Estimates for 90% ACI Mercury Control Subbituminous Units

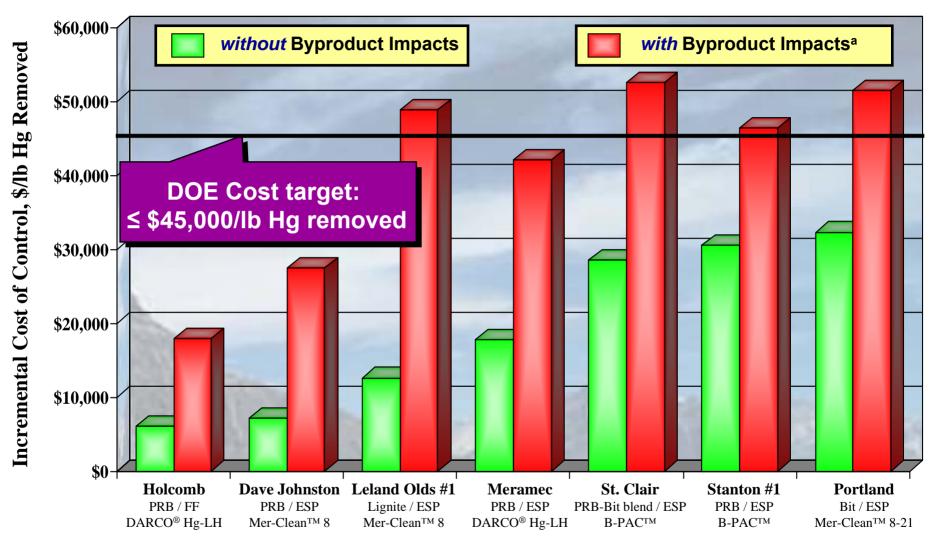
	DJ Unit 3	Holcomb Unit 1	St. Clair Unit 1	Meramec Unit 2	Stanton Unit 1	
PAC / SEA	Mer-Clean™ 8	DARCO® Hg-LH	B-PAC™	DARCO® Hg-LH	B-PAC™	
ACI Rate, lb/MMacf	0.55	1.03	2.31	2.40	3.65	
Capital Cost, \$	\$1,920,000	\$1,310,000	\$1,280,000	\$1,280,000	\$1,280,000	
Unit Capital, \$/kW	\$8.00	\$3.63	\$8.79	\$9.16	\$8.50	
	First-Year Annu	al O&M Costs (20	<mark>06 \$ - 80% capac</mark>	ity factor)		
PAC Consumption, \$/yr	\$291,000	\$493,000	\$692,000	\$532,000	\$837,000	
PAC Disposal, \$/yr	\$1,830	\$4,420	\$6,190	\$4,760	\$7,490	
Other, \$/yr	\$122,000	\$107,000	\$107,000	\$106,000	\$108,000	
Total O&M, \$/yr	\$414,000	\$605,000	\$805,000	\$643,000	\$953,000	
CUB Impacts ^a , \$/yr	\$1,730,000	\$1,430,000	\$792,000	\$1,060,000	\$566,000	
2	0-Year Levelized	Cost without By	product Impacts	(Current \$)		
COE Increase, mills/kWh	0.46	0.37	1.16	0.99	1.29	
\$/Ib Hg Removed	\$7,190	\$6,090	\$28,500	\$17,800	\$30,500	
20-Year Levelized Cost with Byproduct Impacts (Current \$)						
COE Increase, mills/kWh	1.75	1.08	2.13	2.35	1.97	
\$/Ib Hg Removed	\$27,500	\$17,900	\$52,500	\$42,100	\$46,400	

^a For units equipped with CS-ESP, by-product impacts include the fly ash disposal cost (\$17/ton) and lost revenue from fly ash sales (\$18/ton) assuming 100% utilization. For the SDA/FF configuration, only the cost of SDA by-product disposal (\$17/ton) is included.

Cost Estimates for 70% ACI Mercury Control ND Lignite Units

	Leland Olds Unit 1	Stanton Unit 10	Leland Olds Unit 1		
PAC / SEA	Mer-Clean™ 8	DARCO® Hg-LH	DARCO® Hg & CaCl ₂		
ACI Rate, lb/MMacf	0.42	1.15	5.04		
Capital Cost, \$	\$1,760,000	\$1,270,000	\$1,420,000		
Unit Capital, \$/kW	\$8.00	\$21.10	\$6.45		
First-Year An	nual O&M Costs (2006	\$ - 80% capacity fact	or)		
PAC Consumption, \$/yr	\$212,000	\$116,000	\$1,000,000		
PAC Disposal, \$/yr	\$1,330	\$1,040	\$15,800		
SEA Consumption, \$/yr	N/A	N/A	\$214,000		
Other, \$/yr	\$118,000	\$104,000	\$112,000		
Total O&M, \$/yr	\$331,000	\$221,000	\$1,350,000		
CUB Impacts ^a , \$/yr	\$3,240,000	\$579,000	\$3,240,000		
20-Year Leveli	zed Cost <i>without</i> Bypro	duct Impacts (Curre	nt \$)		
COE Increase, mills/kWh	0.42	1.05	1.21		
\$/Ib Hg Removed	\$7,400	\$17,900	\$21,500		
20-Year Levelized Cost without Byproduct Impacts (Current \$)					
COE Increase, mills/kWh	3.05	2.78	3.84		
\$/Ib Hg Removed	\$54,100	\$47,300	\$68,200		

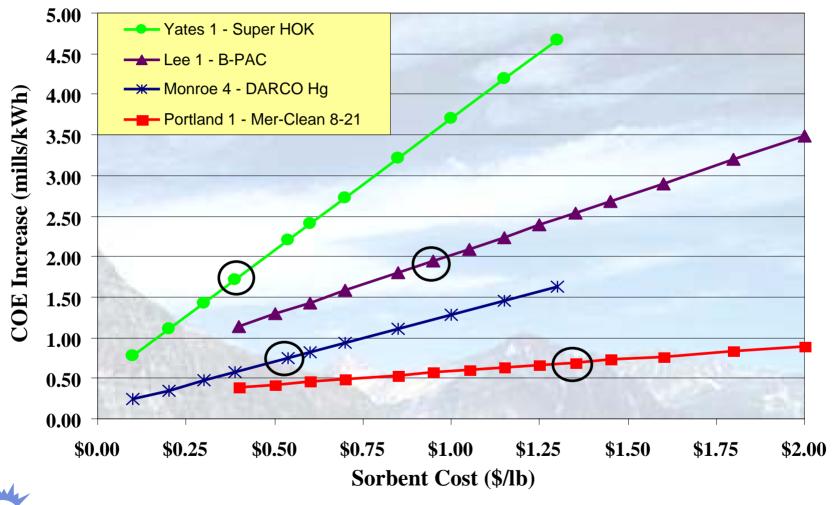
^a For units equipped with CS-ESP, by-product impacts include the fly ash disposal cost (\$17/ton) and lost revenue from fly ash sales (\$18/ton) assuming 100% utilization. For the SDA/FF configuration, only the cost of SDA by-product disposal (\$17/ton) is included.


Cost Estimates for 80-90% ACI Mercury Control ND Lignite Units

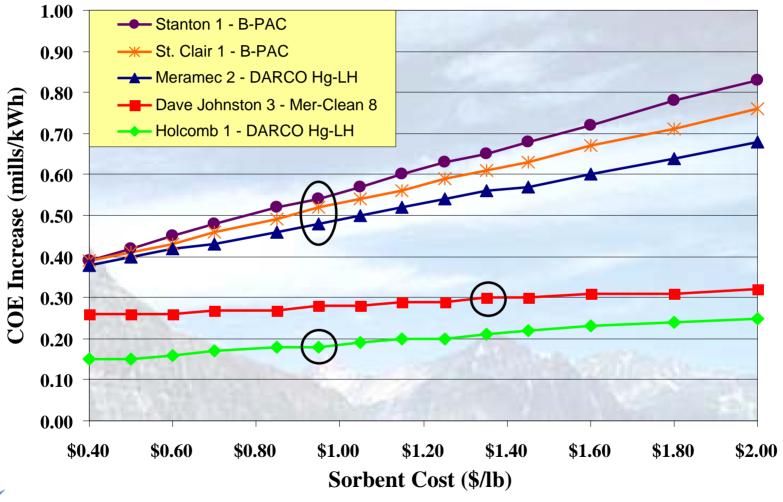
	Leland Olds Unit 1	Stanton Unit 10	Leland Olds Unit 1			
PAC / SEA	Mer-Clean™ 8	DARCO® Hg-LH	DARCO® Hg & CaCl ₂			
ACI Rate, lb/MMacf	1.64	1.98	8.65			
Capital Cost, \$	\$1,760,000	\$1,270,000	\$1,420,000			
Unit Capital, \$/kW	\$8.00	\$21.10	\$6.45			
First-Year An	nual O&M Costs (2006	\$ - 80% capacity fact	or)			
PAC Consumption, \$/yr	\$816,000	\$199,000	\$1,720,000			
PAC Disposal, \$/yr	\$5,140	\$1,780	\$27,100			
SEA Consumption, \$/yr	N/A	N/A	\$214,000			
Other, \$/yr	\$119,000	\$105,000	\$112,000			
Total O&M, \$/yr	\$940,000	\$305,000	\$2,080,000			
CUB Impacts ^b , \$/yr	\$3,240,000	\$579,000	\$3,240,000			
20-Year Leveli	zed Cost <i>without</i> Bypro	duct Impacts (Curre	nt \$)			
COE Increase, mills/kWh	0.91	1.30	1.81			
\$/Ib Hg Removed	\$12,600	\$17,300	\$24,900			
20-Year Levelized Cost without Byproduct Impacts (Current \$)						
COE Increase, mills/kWh	3.54	3.03	4.44			
\$/Ib Hg Removed	\$48,900	\$40,100	\$61,200			

^a Cost estimates for 80% Hg control at the Leland Olds and Stanton Stations, and 90% Hg control via Mer-Clean 8 injection at Leland Olds.

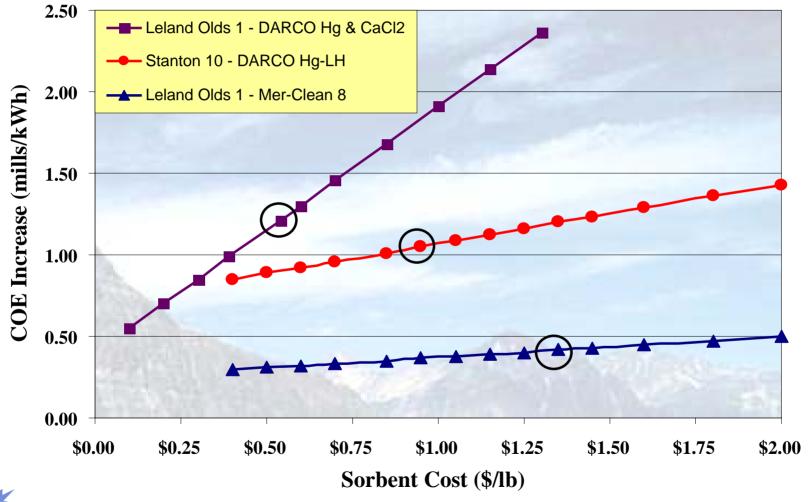
^b For units equipped with CS-ESP, by-product impacts include the fly ash disposal cost (\$17/ton) and lost revenue from fly ash sales (\$18/ton) assuming 100% utilization. For the SDA/FF configuration, only the cost of SDA by-product disposal (\$17/ton) is included.


Incremental Cost of 90% ACI Mercury Control

^a For units equipped with an ESP, byproduct impacts include the fly ash disposal cost (\$17/ton) and lost revenue from fly ash sales (\$18/ton), assuming 100% utilization. For the SDA/FF configuration, only the cost of SDA byproduct disposal (\$17/ton) is included.

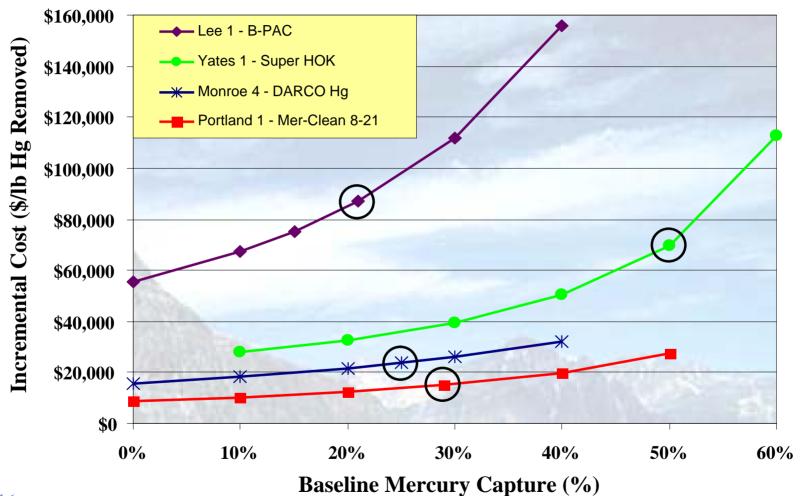

AP Jones December 2007

Sensitivity of Incremental COE Increase^a for 70% ACI Mercury Control to Variations in Sorbent Cost Bituminous Units


^a Economic data excludes CUB impacts.

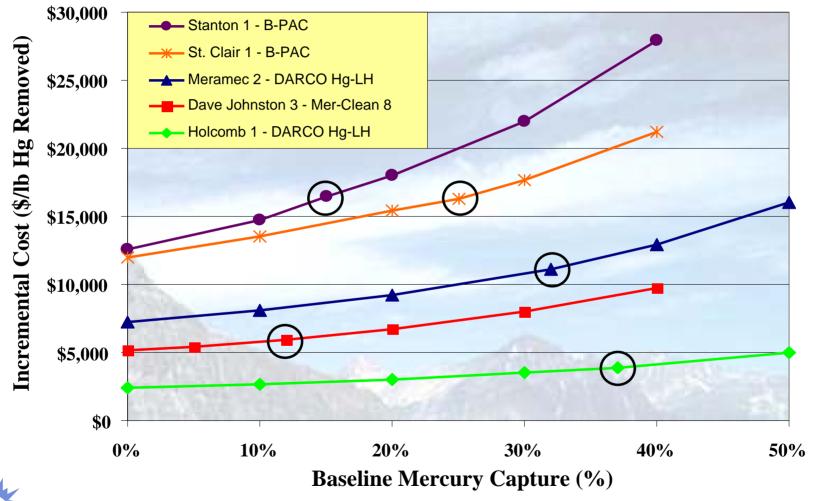
Sensitivity of Incremental COE Increase^a for 70% ACI Mercury Control to Variations in Sorbent Cost Subbituminous Units

^a Economic data excludes CUB impacts.

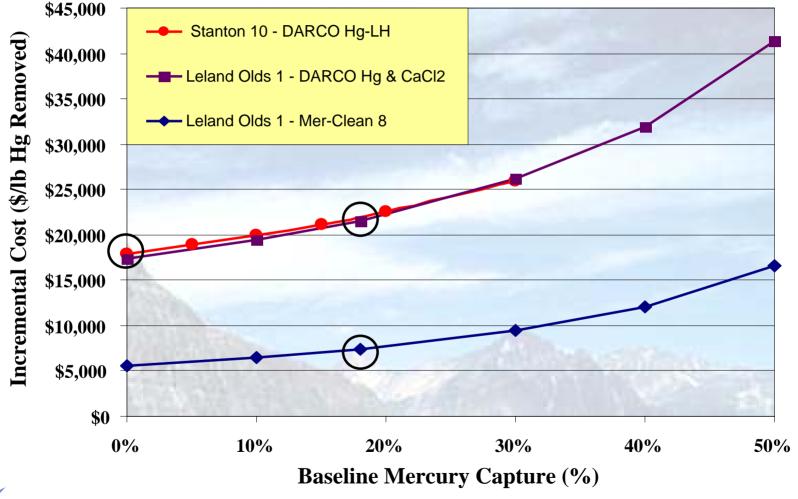

Sensitivity of Incremental COE Increase^a for 70% ACI Mercury Control to Variations in Sorbent Cost ND Lignite Units

^a Economic data excludes CUB impacts.

Sensitivity of the Incremental Cost^a of 70% ACI Mercury Control to Changes in Baseline Mercury Capture


Bituminous Units

Sensitivity of the Incremental Cost^a of 70% ACI Mercury Control to Changes in Baseline Mercury Capture


Subbituminous Units

^a Economic data excludes CUB impacts.

Sensitivity of the Incremental Cost^a of 70% ACI Mercury Control to Changes in Baseline Mercury Capture

ND Lignite Units

Preliminary Conclusions

- Estimated cost of Hg control on a \$/lb removed basis continues to decline under "no CUB impact" scenario
- Excluding CUB impacts, economics of mercury control via ACI are dominated by PAC consumption costs when FF retrofit is not required
- < 2 mill/kWh increase in COE for 90% ACI Hg removal w/ treated ACI at bituminous, PRB, and lignite units
- Incremental Cost of Mercury Control (\$/Ib Hg Removed) can be influenced by a number of factors including:
 - * Baseline mercury removal
 - *** Coal mercury content**

Thank You!!!

Co-Authors

➤ Thomas Feeley, III (DOE/NETL); Jeffrey Hoffmann (DOE/NETL); Dennis Smith (DOE); James Murphy (SAIC)

NETL Project Managers

➤ Andrew O'Palko; Lynn Brickett; Dawn Deel; Pierina Noceti

Field Contractors

➤ Sharon Sjostrom (ADA-ES); Shin Kang (ALSTOM-PPL); Sid Nelson, Jr. (Sorbent Technologies); Michael Holmes (UNDEERC); Carl Richardson (URS)

Host Utilities

➤ AmerenUE; Basin Electric; Detroit Edison; Great River Energy; PacifiCorp; Progress Energy; Reliant Energy; Southern Company; Sunflower Electric

