Enhancing NO_x and Mercury Emission Control Using Coal Wastes

Presented to

DOE/NETL's 2007 Mercury Control Technology Conference

By

Steve Johnson

Quinapoxet Solutions

Project Objectives

 Use waste coal to enhance NO_x and Hg emissions control

Used coal fines from a washing plant

- Renewable resource in Pennsylvania

• Show feasibility and define limits of the concept

Coal Waste Characteristics

- Bituminous
- 13 % moisture
- Sulfur only 0.38 lb/MBtu
- Coking coal (FSI = 7.5)
- Size
 - 32% + 50-mesh
 - 36 % 200-mesh

Figure 1. Coal-Water Gasification Reaction

Step 2. Water shift reaction $H_2O + CO \rightarrow CO_2 + H_2$

provides residual water activated carbon

<u>Step 1.</u> Carbon/water <u>Gasification</u> Cloud: $C + H_2O \rightarrow CO + H_2$

> The carbonaceous fuel may be <u>anything</u> that contains carbon. The carbon will react endothermically with water at temperatures above 1,000°F to form CO, CO₂ and hydrogen.

Coalinister Stury

NO_x Chemistry Enhancements

 Additional hydrogen initiates NO_x destruction via fuel-lean reburning

Dissolve urea in the slurry to destroy more NO_x via SNCR

 Coal injection enhances SNCR at higher temperatures by scavenging oxygen.

Hg Chemistry Enhancements

- Coal is converted to "reactive" carbon through reaction with steam.
- Reactive carbon (RC) absorbs chlorides in the convective section.
- Chlorinated RC may be an effective Hg sorbent at precipitator temperatures.
- Adding other halogens to slurry may offer further improvements.

Project Team

- DOE Cooperative Agreement No. DE-FC26-06NT42807
- Breen Energy Solutions: Prime Contractor
- AES Beaver Valley
- Penn State University
- Headwaters

Boiler Description

- AES Beaver Valley Unit #2
- 35 MW
- B&W Design
- Wall Fired
- OFA and SNCR for NO_x
- ESP for particulate
- Wet FGD for SO₂

Test Program

Initial Shakedown in August

- NO_x testing in early September
- Hg testing in late September

Hg Test Procedures

Speciated Sorbent Traps

- Before and after precipitator
- 1-hour samples
- Traps analyzed on site by Ohio Lumex

Slurry Injection

- 4 Nozzles sizes
- Air-assist
- Various spray angles
- 2 boiler elevations
- Rear wall

Baseline Hg Results

- No Slurry Injection, ESP inlet temperatures 400-430 °F.
- Coal Averaged 12 lb/TBtu Hg (wide daily variation)
- Consistent 40-50 % Hg reduction across ESP
- Further Hg reduction across wet scrubber
- Results similar to 2004

Coal Slurry Results

- Slightly more oxidized Hg with coal slurry injection
- Similar 40 % Hg capture in the ESP
- Enhanced results with halogen in slurry
 - > 60 % capture across the precipitator
 - Remaining Hg was less oxidized
- LOI carbon catalyzes Hg oxidation, but halogenation allows oxidized Hg to stay with the carbon.

Reactivity Tests

	Normal Fly Ash	Fly Ash with CWS Injection
LOI, %	9 to 20	14 to 26
BET Surface Area, m ² /g	15	59
Pore Volume, cc/100g	0.94	3.24
Trace Capacity, g/100cc	0.21	1.45
Breen Energy Solutions	(UINAPOXET

SOLUTIONS

Results Summary

• Promising way to increase Hg capture by 50%

- Limited by high CO and increased opacity
- Better CWS distribution to overcome those limits
- Slurry handling is a dirty business!

