The Impact of Hg Control Technologies on Mobility Pathways of Hg, Ni, As, Se, Cd and Pb from Coal Utilization Byproducts

<u>Carl E. Hensman</u>, Amy L. Dahl, B. Doreen McIntosh, Lucas T. Hawkins, Philip I. Kilner, Josie M. Hein - Frontier Geosciences Inc.

Eric. M. Prestbo – Tekran Corporation

Cindy Gilmour - Smithsonian Environmental Research Center

Lynn Brickett – US DOE - NETL

Principal Investigator

- Carl E. Hensman <u>carlh@frontiergeosciences.com</u>
- Project Coordination
 - Amy L. Dahl <u>AmyD@frontiergeosciences.com</u>
- US DOE NETL Project Manager
 - Lynn Brickett Lynn.Brickett@NETL.DOE.GOV

Overview

- Background and current state
- Total captured
- Thermal release
- SPLP leaching
- Microbial mobility

Background and current state

- The CUBs being tested are generated from NETL mercury control projects
 - Some of the technologies may deposit additional quantities of mercury onto the CUBs
- This effort will support NETL's Innovation for Existing Plants Program goals
 - Maintaining current utilization practices of coal utilization byproducts and increasing utilization to 50% by 2010.
- Also monitoring Ni, As, Se, Cd, Pb.
- Currently the study is ~50% complete
 - 135 separately collected samples
 - 15 separate locations
 - ~8000 analysis
- Individual pathway studies are not designed to be directly interpreted in cross-comparison
 - Looking at the studies to indicate the impact of different Hg control technologies (Hg-CT) on CUBs across different facilities under the same experimental protocol.

Facility Summary (discussed today)

Facility	Sample	Sample Location	Fuel	Load (MW)	Hg-CT
А	Ash	Surge Silo	PRB	360	Halogenated ACI
В	Ash	ESP Hopper	FUL	220	ACI + Proprietary
С	Ash	Spray Dryer Hopper	FUL	400	ACI + Proprietary
D	Ash	Fabric Filter Hopper	FUL	400	ACI + Proprietary
Е	Fly Ash	ESP	Bit. Blend	60	Halogenated ACI
F	Fly Ash	Hopper	PRB/TL Mix	Not Given	Halogen Injection
G	Fly Ash	Hopper	LSEB	Not Given	ACI
Н	Fly Ash	Hopper	PRB	Not Given	ACI

Sample collection and distribution

- Samples delivered from source
 - 3 from a Baseline operation period
 - 3 from the Hg-CT operation period
- Received, photographed and stored
 - Singular location, uniquely for this project
 - Temperature (daily) and ambient Hg (quarterly) monitored
- Sample sub-sampled by one individual
 - Frontier established protocols
- Sub-samples distributed
- Triplicates taken by study group

- HNO₃/HCI/HF bomb digest with evaporative reflux with HNO₃ for removal of insoluble fluorides
- Hg analysis by CV-AFS
- Ni, As, Se, Cd, Pb analysis by ICP/MS

Total in ash

Baseline'

- 3 samples at 3 time periods
- Hg-CT
 - 3 samples at 3 time periods
- Minimum of triplicates of each sample
 - Thermal requires 3 sub-samples and 3 analytical runs at the instrument of each sub-sample of each sample (total of 9 per sample)

Total target metals in ash

Total target metals in ash

$$Ratio = \frac{[Hg - CT]_{Average}}{[Baseline]_{Average}}$$

Facility	Hg	Ni	As	Se	Cd	Pb
Α	7	1	1	1	1	1
В	2	1	1	1	2	1
С	46	1	1	1	1	1
D	72	1	1	1	1	1
Е	4	1	1	5	1	1
F	2	1	1	1	1	1
G	1	1	1	1	1	1
Н	27	1	1	1	1	1

Thermal release from ash

Final Use	Method	Temperature	Time	Support
Soil fill / Landfill	Low-flow heated chamber	40°C	30 days	Glass plate
Asphalt / Wallboard	Tube Furnace	190°C	60 min	Glass plate
Cement	Tube Furnace	1200°C	5 minutes	Glass plate

Thermal release 40°C over 30 Days

Thermal release 40°C over 30 Days

Thermal release 190°C over 1 hour

Thermal release 190°C over 1 hour

Thermal release 1200°C over 5 minutes

Thermal release 1200°C over 5 minutes

Es

- Synthetic Precipitation Leaching Procedure (SPLP)
 - promulgated EPA method 1312
 - definable results since 1986
- Method is modified to sub-sampling at T=18 hours, T=14 days and T=28 days
 - accounts for secondary mineral formation of ettringite (known to immobilize arsenic and selenium)
- Solid at 28 days is sub-sampled for mass balance

SPLP leaching

fş

SPLP leaching - Mercury

SPLP leaching - Selenium

- Potential for metal dissolution, volatilization and methylation by microorganisms
- Using a batch reactor anoxic conditions
- Hg-methylating bacterium sulfate-reducing bacterium *Desulfobulbus propionicus*
- Ideal methylating medium
 - Worse-case methylation potential

Microbial mobility

Microbial mobility

Microbially mobilized for Baseline (percent of total metal)

Microbial mobility

Ratio -	[Cultured] _{Average}
<i>Kuno</i> –	[Abiotic] _{Average}

_	Facility		Methyl-Hg	Hg	Ni	As	Se	Cd	Pb
	Λ	Baseline	33	0.08	0.2	3	0.2	0.1	0.2
	A	Hg-CT	151	0.02	0.2	2	0.3	0.3	0.5
	В	Baseline	261	68	0.6	13	0.08	2	2
_		Hg-CT	622	16	0.5	4	0	1	0.6
	С	Baseline	17	5	0.7	3	0.4	1	1
		Hg-CT	480	1	0.7	2	0.3	1	1
	D	Baseline	129	3	0.4	4	0	0.9	0.5
		Hg-CT	238	2	0.6	7	0	2	3
	E	Baseline	nc	nc	nc	nc	nc	nc	nc
_		Hg-CT	nc	nc	nc	nc	nc	nc	nc
	F	Baseline	132	11	0.9	1	0.4	0.1	0.03
		Hg-CT	153	16	0.9	1	0.2	0.1	3
	G	Baseline	493	1	0.7	1	0.9	1	0.2
		Hg-CT	177	2	0.6	1	0.05	1	0.2
Es	Н	Baseline	148	16	2	5	1	0.1	0.1
		Hg-CT	253	2	2	2	1	0.2	0.2

Summary – Under conditions studied

- There is a general increase in the amount of Hg found in the ash collected from the facilities, during Hg-CT operation
 - More Hg is from in the ash collected at the FF than the SDA
 - All other metal don't exhibit increased concentration in the ash, except for Se at Facility E
- 40°C over 30 days
 - Hg is stabilized in the ash by the Hg-CT
 - Se appears to be the most volatile target metal
- 190°C over 1 hour
 - Most metals are not stabilized in the ash by the Hg-CT, except the FF collected ash of Facility D
- 1200°C over 5 min
 - Up to 100% Se is thermally released from ash
 - Up to 80% Hg is thermally released from ash
 - Up to 50% As is thermally released from ash
 - Up to 40% Cd is thermally released from ash
 - Up to 30% Ni and Pb are thermally released from ash

Summary – Under conditions studied

- Leaching is minimal (<1%) for Hg</p>
 - Hg-CT reduces Hg leaching further (<0.1%)
- Most easily leached metal is Se, followed by Cd
 - Even so the ash leaches <10% Se from the ash</p>
- Microbial activity increases Methyl-Hg for all ash tested
 - Under ideal methylating conditions. Actual disposal environment would need to be simulated for true methylation potential
- Microbial activity decreases Cd and Pb mobility
 - Total dissolved Hg mobility is decreased, but most likely due to Methyl-Hg production (association to particulates)