

Low Cost Options for Moderate Levels of Mercury Control 2007 Update on TOXECON II™

DOE/NETL Mercury Control Technology Conference December 11, 2007 Tom Campbell, ADA-ES, Inc.

DOE/NETL Project Manager: Andrew O'Palko DOE Cooperative Agreement DE-FC26-05NT42307

Test Participants

- DOE/ NETL Andrew O'Palko
- EPRI Ramsay Chang
- Entergy Independence Station
- ADA-ES
- DOE Phase II Participants
- Modeling
 - REI
 - NELS
 - ADA-ES

TOXECON II™ Evaluation Co-funders

Alliant Atco Power DTE **Entergy*** Oglethorpe Power Southern Company Xcel Energy ADA-ES Arch Coal EPCOR EPRI NORIT Americas Calgon Carbon

* Host Sites

TOXECON II™ Full-Scale Evaluation

- Entergy's Independence Steam Electric Station
 - 880 MW
 - PRB Coal from North Antelope
 - Test on 1/8 of Unit 2
- Cold Side ESP
 540 SCA
- Project goal
 50-70% Hg removal

Ash sold for concrete

 PAC/ash routed to
 separate silo during tests

General TOXECON II Layout

ISES ESP General Arrangement

ESP Layout

NELS Model 1/2 of 4 ESP boxes on Unit 2 (3rd field not installed)

TOXECON II™ Design Challenge: Grid Size

Silo and Booster Blower

Injection Grid

2006 Test Results – Summary

- Achieved project goal of 50 to 70% Hg removal
- TOXECON II[™] Hg removal limited to < 80% at full load with up to 8 lb/MMacf DARCO[®] Hg-LH
- TOXECON II[™] Hg removal varied significantly with load (lower removal at high load)
- Hg removal > 80% with pre-ESP injection of DARCO[®] Hg-LH at 1 to 2 lb/MMacf

Suspected that poor distribution contributed to conflicting results from injection upstream of ESP versus TOXECON IITM grid

2007 Testing

- Goals for Testing
 - Improve mercury removal efficiency
 - Inject continuously to evaluate grid operability
 - Minimize sorbent use
 - Manage costs
 - Minimize potential of increased particulate emissions
 - Assess impact of injection on particulate emissions (through EPRI funding)
- Baseline/Parametric/30 day test with Lance Design 2 January – February 2007
- Five-Day Continuous Injection Test with Lance Design 3 May 2007

Original Lance Design – High Load

Phase II - New Distribution Design

- Installed new penetrations to allow on-line lance insertion and maintenance
- Redesigned lances for better top to bottom carbon distribution
- Redesigned nozzles for better plume development and to better direct carbon into gas flow
- Redesigned carrier air distribution for better penetration into gas passages

Design 2 – High Load

ISES TOXECON II™ Results Summary

Hopper, E Field, and Spring 2007 Lance Locations

ADA-ES

Hopper Ash Comparison

★ = Carbon migrating towards control side

Test Results – Balance of Plant

Opacity

- Some opacity spikes measured during last field rapping while operating at reduced ESP power
- Testing with full ESP power and varying the rapping sequence limited the particulate and opacity spikes for all sorbents tested
- Minimal other plant impacts

- Potential fouling with ash handling valves

PAC Injection and ESP Power

Results of February 2007 PM Tests

Fall 2007 Testing

- EPRI/Entergy Supported
- Test 1/2 of B ESP or 1/8 of Unit
 - Install 24 more lances
 - Modify manifold arrangement and carrier line sizes
- Conduct PM measurements on Control and Test sides
- Goals
 - Obtain 90% mercury removal at high load and low load conditions
 - Assess impact of PAC injection on PM emissions

Fall 2007 Testing

Testing 1/8 of unit - 1/2 of B ESP

Preliminary Economics for Independence

Mercury Removal Rate	85%*
Brominated PAC Injection rate for above removal	5 lb/MMacf (960 lbs/hr)
Native Mercury Removal	10 – 15%
Stack Flow	3.2M acfm
Average Coal Mercury Concentration	5.5 lb/ TBtu
Mercury Removed	643 lb/ yr
20 Year Levelized Cost	\$ 7.8M **
20 Year Levelized \$/lb Mercury Removed	\$ 12.0K **

* Includes baseline removal.

** Includes loss of ash sales and disposal fees.

Capital Cost Estimate: \$5.15/kW O&M Cost Estimate: 1.03 mills/KW-hr

Contacts

- **Tom Campbell**, ADA-ES Manager of DOE Demonstrations Project Engineer responsible for site activities at Independence 2005-2007 Tomc@adaes.com
- Sharon Sjostrom, ADA-ES VP Technology Current DOE Project Manager Sharons@adaes.com
- **Cam Martin**, ADA-ES Director of Engineering Responsible for Commercial Applications Camm@adaes.com

(303) 734-1727

