Full-Scale Demonstration of a Mercury Oxidation Catalyst Upstream of a Wet FGD System

DOE-NETL Cooperative Agreement DE-FC26-06NT42778

Gary Blythe URS Corporation

Illustration of Process Concept

Project Overview

- Demonstrate gold catalyst upstream of a full-scale wet FGD module for oxidizing Hg⁰, enhancing FGD removal of Hg
- Being conducted at the Lower Colorado River Authority's (LCRA) Fayette Power Project Unit 3
 - Located near LaGrange, Texas
 - 460 MW
 - Fires PRB coal
 - Low NO_X burners, cold-side ESP, LSFO wet FGD
 - FGD has 3 absorbers, 2 operate at full unit load
 - ~5% flue gas bypass around FGD system
 - Only Module C will have catalyst retrofitted (~200 MW)

LCRA's Fayette Power Project

Project Description

- NETL Project Manager: Chuck Miller
- Total Value: \$4.40 million (\$2.33 million DOE share)
- Period of Performance: 7/24/06-4/30/10
- Project Co-funders/Participants:
 - LCRA (Johnny Madrid, Project Manager)
 - EPRI
 - Great River Energy
 - Johnson Matthey (catalyst supplier)
 - Ontario Power
 - Southern Company
 - SRP
 - TVA (patent holder)
 - URS (prime contractor)
 - Westar

Project Objectives

- Confirm catalyst quantities and life for achieving:
 - Average of ≥70% oxidation of Hg⁰ in PRB flue gas over 24 months
 - Corresponding increase in FGD capture of Hg
- Meet or exceed solicitation objectives:
 - 50% to 70% Hg removal beyond baseline removal
 - Cost at least 50% lower than baseline of \$60,000/lb of Hg removed

Original Project Plan

- Design Module C duct modifications for catalyst retrofit (Aug-Dec 06)
 - Reduce gas velocity to ~15 ft/sec at catalyst
 - CFD modeling of gas flow distribution
 - Note: future application on entire unit would likely be installed at ESP outlet (~5 ft/sec)
- Construct duct modifications (Dec 06-May 07)
- Procure and install catalyst (Dec 06-July 07)
- Operate catalyst upstream of Module C (July 07-June 09)

Schedule Issues in Spring 2007

- Apparent funding shortfall
 - Bid for duct modification construction came in ~2 times original budget (only 1 bidder)
 - Loss of NETL GFY08 co-funding
- Requirement to complete some ductwork mods during Unit 3 Spring 07 outage
- Resolution:
 - Raised additional cost sharing from co-funders
 - Completed only outage-critical work with original bidder
 - Re-bid remaining construction scope for later in year
 - » successful bidder was closer to original budget

Revised Project Schedule

Long-term Catalyst Evaluation

- 24 months duration
- Bimonthly SCEM measurements
 - Hg⁰ oxidation across catalyst,
 - Net removal of Hg across FGD Module C
 - Compare to other FGD module in service
- Three sets of Ontario Hydro verification measurements (each w/triplicate runs)
 - Catalyst inlet, catalyst outlet, Module C outlet
 - "Baseline" sampling across other FGD module
- Track catalyst pressure drop vs. time
- Other flue gas characterization (HCI, etc.)

Catalyst Specifications

Catalyst Type	Gold on gamma alumina, ceramic substrate
Supplier	Johnson Matthey
Cell Pitch	64 cpsi
Catalyst Depth	20 inches (two 6-in. layers, one 8-in. layer)
Design Superficial Velocity	15 ft/sec
Total Catalyst Volume	1174 ft ³ (8712 pieces)
Design Space Velocity	21,300 ^{-hr} (32°F)

Pro Forma Economics for Fayette Demo (200 MW, 2 yrs operation)

		Catalyst Cost, \$/lb of Hg removed*
Catalyst Cost	\$1.66 million*	-
Additional Hg removal @50% improvement	120 lb	\$13,800
Additional Hg removal @70% improvement	170 lb	\$9,800
Value of Fly Ash Sales Retained	\$1.11 million	-

*Does not include capital for ductwork modifications

Net catalyst cost is in the range of \$3000 to \$5000/lb Hg compared to technologies that would adversely affect fly ash sales

URS

Existing Module C Inlet Duct Modified Module C Inlet Duct

Module C Inlet Duct Modifications

Summary of CFD Results

		Gas Flow Split to FGD Modules		Perf Plate dP	Catalyst dP	Average Superficial	
Case	Description	А	В	С	IWG	IWG	Gas Velocity (ft/sec)
1	Existing Operation	50.5		49.5	0.80		
2	Existing Operation		51.0	49.0	0.80		
9	Catalyst	54.8		45.2		1.40	13.2
10	Catalyst		55.1	44.9		1.40	13.1

CFD Modeling Conclusions:

•Existing perforated plate can be removed

 No gas flow straighteners required at catalyst chamber

•Predicted 0.6 IWG pressure drop increase to Module C will not significantly alter gas flow distribution to modules

Ductwork Modifications During Fabrication

Ductwork Modifications During Fabrication (continued)

Side View of Module C Inlet Duct Before Construction

Ductwork Modifications – Demolition of Existing Duct Between Guillotine and Absorber Inlet

Ductwork Modifications – Site Construction (new side wall)

Ductwork Modifications – Site Construction (top hatch for catalyst loading)

What's Next?

- Complete construction effort (December 07)
- Ship catalyst to site (expected end of January 08 – ahead of schedule)
- Install catalyst (expected February 08)
- Begin 2-yr demonstration (March 08)

