Bench-scale Kinetics Study of Mercury Reactions in FGD Liquors

Gary Blythe John Currie David DeBerry, PhD URS Corporation

Acknowledgements

This work was supported by DOE-NETL, with Sara Pletcher and Charles Miller as Project Managers, and by EPRI, with Richard Rhudy as Project Manager.

Introduction

- Project Goal develop a fundamental understanding of Hg "re-emissions" from wet FGD systems
 - Seen as FGD outlet Hg⁰ concentration > inlet Hg⁰
 - Apparent reduction of Hg⁺² removed in FGD absorber
 - Overall reaction:
 - $Hg^{+2} + HSO_3^{-} + H_2O \rightarrow Hg^{\circ}\uparrow + SO_4^{-2} + 3 H^+$
 - Limits overall Hg removal by FGD system
- Expected Benefits the ability to predict FGD reemissions, and change or optimize FGD conditions to minimize or eliminate them

Technical Approach

- UV, CVAA, electrochemical, and bench-scale wet FGD tests conducted to develop Hg re-emission reaction mechanisms and kinetics
- Development of a kinetics model
- Additional bench-scale wet FGD tests to:
 - Verify model predictions
 - Evaluate re-emission additives (e.g., TMT-15)
 - Evaluate solids and other effects on re-emission

UV and CVAA Spectroscopic Results

- Found large effect of chloride
 - Identified a new re-emission mechanism involving chloride rather than sulfite alone
 - Reduction of oxidized mercury to Hg⁰ occurs through formation of Hg⁺²/sulfite/ chloride complexes and decomposition of complexes to form Hg⁰
- pH, sulfite, and chloride concentrations can greatly affect re-emission rates

Summary of Sulfite / pH Results

- Results show significant pH effect between pH 3-6, with faster mercury reduction at lower pH
- Rates generally decrease at higher sulfite concentration
 - Formation of Hg(SO₃)₂-² which is more stable than HgSO₃
- Trends suggest higher reemissions from lower pH, lower sulfite FGD systems (e.g., LSFO)
 - Notwithstanding chloride/other effects

Summary of Chloride Effect

- Chloride slows re-emissions dramatically through change of reaction mechanism, formation of new intermediate: CIHgSO₃⁻
- CIHgSO₃⁻ decomposes to Hg⁰, but much more slowly than Hg(SO₃)₂⁻² or HgSO₃

 Cl₂HgSO₃-² is formed reversibly at higher chloride, does not decompose to Hg⁰ (i.e., low re-emissions at higher Cl concentration)

Kinetics Model Development

- Kinetics model generally reproduces observed trends of mercury reduction rates vs. pH and sulfite
- Current interpretation of modeling results:
 - Re-emissions rate is controlled by mercuric chlorosulfite complexes at pH near 4
 - Controlled by mercuric sulfite complexes at higher pH
- Model indicates the concentration of the aqueous species "sulfite" (SO₃⁻²) is of major importance
 - Species that form ion pairs with sulfite (e.g., calcium, magnesium) can lower SO₃⁻² concentration, affect mercury reduction rates

Diagram of Main Reaction Pathways in Kinetics Model

Bench-scale FGD Test Series

- Use simulated flue gas containing SO₂, HgCl₂, CO₂, O₂, HCI, N₂
- Most tests use clear liquor (NaOH for pH control), real-time sulfite monitoring and H₂O₂ for sulfite control
- First test matrix evaluated pH/sulfite/chloride effects
- Later tests investigating other chemical and physical variables

Bench-scale FGD System

Complete Run Sequence for Bench-scale Run at pH 5.0, 5 mM (400 ppm) sulfite, 100 mM (~3600 ppm) chloride

Variation of Re-emissions with Hg⁺² in Liquid Phase (bench-scale runs at pH 5.0, 5 mM sulfite, 100 mM chloride)

Bench-scale Re-emissions as a Function of pH (100 mM Cl_)

Effect of Chloride and Bromide on Hg⁰ Reemissions at 5 mM sulfite, pH 5.0

Hg^o Re-emissions (µg/Nm³)

NO_X Effects

- Bench FGD re-emissions lower with NO_X in inlet gas
 - Contrary to full-scale observations (<u>higher</u> reemissions with SCR out of service & higher NO_X)
 - But NO_{X} in flue gas also leads to S-N species in FGD liquor
- Tests with synthetic S-N (HADS, possibly HATS) in bench FGD liquor showed higher re-emissions
- Tests needed with NO_X in inlet gas, HADS in liquor
- Incorporation of S-N species into kinetics model possible

Effect of N-containing Species on Hg⁰ Reemissions at 5 mM sulfite, pH 5.0, 100 mM chloride

Hg⁰ Re-emissions (µg/Nm³)

Effects of Calcium Ion (most tests have been run in clear Na solution)

- More complicated than expected
- Appears to depend on pH and perhaps sulfite concentration
- May involve formation of gypsum or other calcium solids
 - Sulfate increases during run to levels close to gypsum saturation

Effect of Calcium on Hg⁰ Re-emissions at pH 4.0, 100 mM chloride

Effect of Calcium on Hg⁰ Re-emissions at pH 6.0, 100 mM chloride

Effect of 1 mM Thiosulfate on Hg⁰ Re-emissions as a Function of pH; 5 mM sulfite, 100 mM chloride

Re-emission Inhibitors – TMT-15

- Complex behavior observed with TMT
 - Some tests showed very low re-emissions
 - Have also seen initial periods of very high reemissions when TMT present
 - TMT can act as a reducing agent may cause high re-emissions under some conditions
 - Re-emissions apparently decrease as precipitation of TMT-Hg solid lowers Hg⁺² concentration in solution
 - Complex behavior seen with Ca, Mg in liquors

Re-emission Inhibitors (continued)

- Nalco additive worked well in one test; more testing needed to characterize
- Diethyldithiocarbamate showed some effectiveness, but not as effective as Nalco additive
- Tests continue with other additives (e.g., Vosteen Consulting's "PRAVO")

Effect of Potential Re-emission Inhibitors; pH 5, 5 mM sulfite, 100 mM chloride

Re-emission at Very Low Sulfite

- Very low sulfite values of interest since typical of forced oxidation FGD systems and lower sulfites expected to give higher re-emissions
 - 0.2 mM is the lowest that can be measured and controlled in bench-scale system
- At 0.2 mM sulfite, re-emissions increase with pH, unlike at higher sulfite
- The change in pH effect is also seen in model simulations but to a lesser extent

Effect of pH on Re-emissions at 0.2 mM Sulfite, 100 mM Chloride

Bench-scale Re-emissions as a Function of pH (100 mM Cl⁻)

Project Status and Conclusions

- Determined that chloride, sulfite, and pH have major effects on reaction rates and mechanism
 - Model developed captures these trends
 - Higher Cl⁻ typically lowers re-emission
 - pH sulfite relationship is complex
- Bench-scale FGD system used to verify and extend results, determine effects of Ca⁺², Mg⁺², thiosulfate, halides, Hg precipitants/inhibitors, organic acids, NO_x, HADS, others
- Final report due in March 2008
- More work needed to verify model at full scale