

DOE/NETL Mercury Control Technology ConferencePittsburgh, PADecember 13, 2007

ECO Multi-Pollutant Control for Coal-fired Boilers

Ray Evans - Manager, Environmental Control and Monitoring, FirstEnergy Service Company Acknowledgements

ECO Development Partners

- DOE/NETL
- Powerspan Corp.
- FirstEnergy Corp.
- Ohio Coal Development Office/Ohio Air Quality Development Authority

Electro-Catalytic Oxidation (ECO) Overview

- Multi-pollutant control technology removes:
 - SO₂ and SO₃
 - NOx
 - Hg and other metals
 - Fine particulate matter (PM_{2.5})
 - Hazardous air pollutants (HAPs), such as HCI and HF
- Produces ammonium sulfate fertilizer, which is sold
- No liquid discharge, no landfill waste
- Reduces outages for installation and maintenance
- Potential to add cost-effective CO₂ capture capability

ECO® Technology – What it does

- Multipollutant Control Process that reduces
 - $-SO_2$
 - NOx
 - Hg
 - Fine Particulate Matter (Pm2.5)
 - Hazardous Air Pollutants (HAPs)
 - Acid gases (like SO₃)
- And produces ammonium sulfate fertilizer
 - Ammonium sulfate fertilizer is safer alternative than ammonium nitrate that can be used in explosives and anhydrous ammonia which is a toxic gas
 - Ammonium sulfate unlike other fertilizers does not require deep-tilling that releases a ton of CO₂/acre
 - Ammonium sulfate provides the sulfur nutrient needed for plants like corn, soybeans and alfalfa

ECO® Technology – How it does it

- Gas processing steps:
 - Dielectric barrier discharge reactor
 - Ammonia-based absorber tower
 - Over Electrostatic Precipitator (WESP)
- Mercury is removed from liquid stream and collected in compact charcoal filter

- Ammonium sulfate fertilizer is resulting co-product which can be readily absorbed by U.S. fertilizer market
- Use of ECO[®] also preserves flyash sales to the concrete industry, which abates CO₂ that would be created by making more cement. Use of more standard technologies could ruin flyash for sale by adding ammonia or activated carbon.

ECO[®] Process Flow

ECO Burger Commercial Unit

- 30 MW ECO at FirstEnergy's Burger Plant, operating >3 yrs
- Demonstrated commercial components and scalability
- 180-day performance test completed successfully; ECO qualified as BACT
- EPRI study concluded ECO as reliable as conventional technology (>99% available)
- FirstEnergy plans full-scale ECO system for Burger Units 4 and 5 - 312 NMW

ECO Mercury Control

- Elemental mercury oxidized in ECO reactor to HgCl₂ or HgO co-benefit of NOx control. Reactor oxidizes 35-50% of Hg^o
- HgCl₂ captured in ammonia scrubber. HgO captured in wet ESP
- ECO has been commercially demonstrated to capture 90+% oxidized mercury and 80-85% total mercury.
- Tekran mercury analyzers used to determine inlet and outlet mercury concentrations. RATA test confirms readings.
- All pollutants captured from the flue gas by ECO go into the liquid, including mercury

Total Hg Measurement Comparison

Actual BCU Operating Data 2006

Run	Date and Time			Inlet			Outlet			Hg Removal		
#	Ope	erating Period		Hg⁰	Hg⊤	Hg⁰/Hg [⊤]	Hg⁰	Hg⊤	Hg⁰/Hg [⊤]	Total	Hg ⁺²	Total
			Hrs of									
	Start	Stop	Ops	(ug / Nm³)	(ug / Nm ³)	(%)	(ug / Nm³)	(ug / Nm³)	(%)	(%)	(%)	(lbm)
1	1/5 11:00	1/12 12:00	170.0	0.4	5.0	9.0	1.2	0.8	160.2	85.8	93.2	0.20
2	1/17 15:00	1/22 19:00	125.0	0.7	4.9	14.6	0.7	0.7	102.7	85.7	101.2	0.09
3	2/2 3:00	2/9 12:00	169.1	0.4	4.1	9.5	0.7	0.9	77.4	73.9	86.6	0.16
4	2/16 6:00	2/23 4:00	167.0	0.7	5.8	11.3	0.5	0.5	86.1	90.6	102.1	0.24
5	3/3 0:00	3/9 13:00	153.2	0.7	6.8	10.7	0.6	0.6	92.6	90.2	101.6	0.26
6	3/14 12:00	3/23 13:00	213.3	0.6	6.8	9.1	0.8	0.9	90.7	86.0	94.9	0.34
7	4/3 5:00	4/7 12:00	100.7	0.5	6.0	8.7	0.8	0.8	97.9	86.5	95.0	0.15
8	4/17 10:00	4/20 15:00	78.0	0.6	8.6	7.5	1.1	1.1	102.4	86.7	94.1	0.15
9	4/25 13:00	5/4 10:00	213.5	0.7	9.9	7.5	1.0	1.0	92.5	89.5	96.7	0.52
10	5/9 10:00	5/16 10:00	168.1	0.5	5.6	8.7	0.7	0.7	97.4	87.5	96.2	0.15
11	5/30 10:00	6/2 11:00	73.6	0.6	5.6	10.9	0.9	0.9	103.8	79.5	94.7	0.07
12	6/7 19:00	6/15 11:00	185.0	0.5	5.4	8.9	0.7	0.8	90.7	84.1	93.5	0.26
13	6/22 12:00	6/29 14:00	170.8	0.6	6.9	8.6	0.8	1.1	72.0	82.6	91.7	0.23
14	7/11 17:00	7/20 12:00	212.0	0.4	6.0	7.4	1.9	1.9	96.8	71.0	73.6	0.18
15	7/25 8:00	7/28 18:00	78.6	0.5	5.6	9.0	0.7	0.7	92.4	74.8	95.6	0.09
16	8/2 14:00	8/10 3:00	182.0	0.4	5.9	7.1	0.5	0.5	94.7	90.9	98.1	0.22
17	8/15 13:00	8/24 13:00	217.0	0.4	5.6	6.4	0.4	0.5	89.7	91.1	97.5	0.19
18	9/7 2:00	9/14 9:00	175.9	0.4	6.8	6.4	0.7	0.8	93.0	88.5	94.6	0.26
19	9/19 22:00	9/27 14:00	185.0	0.4	6.1	7.2	0.4	0.5	94.4	92.3	99.6	0.23
20	10/3 10:00	10/11 15:00	198.0	0.4	6.5	6.7	1.3	1.4	92.2	79.5	84.8	0.25
21	10/17 8:00	10/25 0:00	184.8	0.6	6.4	9.0	0.5	0.6	87.9	90.8	99.5	0.25
22	10/31 5:00	11/9 13:00	218.2	0.5	5.4	8.6	0.5	0.5	100.1	87.9	99.2	0.28
23	11/14 17:00	11/21 10:00	151.1	0.4	5.4	7.4	0.7	0.8	97.2	84.3	92.8	0.16
24	11/28 19:00	12/7 6:00	203.6	0.6	5.9	10.5	0.9	0.9	96.1	84.3	94.3	0.23
25	12/12 2:00	12/18 20:00	158.5	0.7	5.5	13.1	0.8	0.8	96.7	84 7	98.7	0.16

ECO Mercury Control

- ECO liquid is filtered through compact carbon bed to remove captured Hg to below detectable limits
- Mercury-free liquid processed to dry fertilizer and sold
- After approximately 1 year, carbon filters replaced, and saturated filters disposed in a hazardous waste landfill

ECO Crystals

Crystalline Structure

ECO₂ Capture Process

- CO₂ Absorption:
 Flue gas solution contact
- Solution heating for regeneration
- CO₂ release from heated solution
- Solution cooling for re-use

Powerspan CO₂ Development with DOE

- Joint research and development program on CO₂ capture with ammonia (NH₃)
- Lab tests show NH₃ has several advantages over commercially available amine (MEA) process:
 - higher CO₂ loading capacity
 - lower energy consumption for regeneration
 - lower cost reagent
- Powerspan and DOE testing shows 90% CO₂ removal with ammonium carbonate solutions

ECO₂ Development Plans

- Conduct pilot scale tests of CO₂ removal
 - Integrate with ECO process at FirstEnergy's Burger Plant by mid 2008
 - Sequester with MRCSP
 - First project in U.S. to capture and sequester CO₂
 - ~20 ton/day CO_2 / ~ 1 MW equivalent
- Evaluate process performance and economics for scale-up
- Conduct commercial scale test of ECO₂ with CO₂ sold for enhanced oil recovery (up to 2,000 ton/day CO₂ - ~100 MW)

Final Well Depth 8,385'

