Sorption Mechanisms for Mercury Capture in Warm Post-Gasification Gas Clean-Up Systems

Department of Energy Co-operative Agreement DE-FC26-04NT42313. DOE Project Manager: Pieri Noceti

Jost O.L. Wendt and <u>Sung Jun Lee</u> Institute for Combustion and Energy Studies, Utah Clean Coal Center, Department of Chemical Engineering University of Utah, Salt Lake City, UT 84112 Paul Blowers Department of Chemical and Environmental Engineering University of Arizona, Tucson, AZ 85721

Abstract

Trace elements such as As. Se. V. Ni and Cd. and especially Hg compounds, are difficult to control in gasification processes because of high temperature /pressure conditions and reducing atmospheres. This research project is concerned with the use of a high temperature sorbent for Hq⁰ in gasifier offgases. Experimental results show that, with some oxygen present, the sorbent captured more than 80% Hq⁰ in the entrained flow reactor configuration, and up to 100% Hg⁰ in the packed bed reactor configuration, where apparent de-activation was also observed. Temperatures were in the 850°C -1000°C range. Theoretical work has focused on understanding, from fundamental considerations, how Hg products are bound in the solid substrate matrix.

Objectives

The purpose of this study is to elucidate mechanisms of interaction between certain trace metals, including mercury (Hg⁰ and Hg²⁺) and a paper waste derived sorbents (PWDS or more properly, MinPlus), a novel sorbent specially engineered, but currently manufactured in large quantities from residues from paper recycling processes. Data from both entrained flow and fixed bed reactors and *ab-initio* theory will be used.

Materials

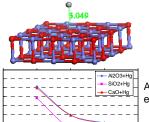
Sorbent Properties -Mean diameter: about 20 μ m -Bulk density: about 0.5 g/cm³ -Major components: CaCO₃(41%), Al₂O₃-2SiO₂ (29%), CaO(23%), others (7%)

Mercury Source & Analyzer PSA Elemental Hg Source Tekran 2537A Hg Analyzer : for low Hg Conc. <25 µg/m³ Oil bath & VICI Hg Perm. Tube Buck Hg Analyzer : for High Hg Conc. >200 µg/m³

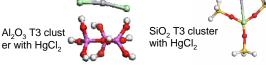
Experimental Setup

Fig. 1 Pictures of Entrained-flow reactor, Fixed bed reactor, and Hg Analysis System Major experimental parameters for entrained-flow reactor (disperse phase) are test temp., sorbents feeding rate, residence time, and high (200 # /m³) / low (25 # /m³) Hg⁰ conc. condition. Fixed bed Hg experiments also carried out at different temperatures and sorbent loadings.

Results & Discussion


Fig. 2 Results of Hg adsorption test with entrained-flow reactor at

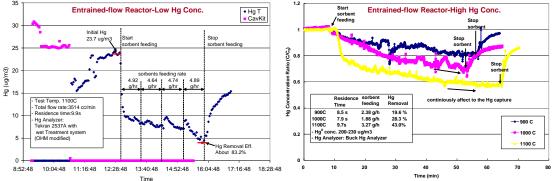
Ha⁰ react with sorbents rapidly and condensed sorbents in the


low Hg concentration (for ~4 hours test)

reactor could affect the Hg removal continuously.

Theoretical Work

Accelrys <u>DMol³</u>. <u>DNP</u> (double numeric with polarization) basis sets, <u>restricted</u> and <u>unrestricted</u> spin calculations, <u>LDA</u> with <u>Harris</u> approximation geometry optimization, energies at <u>LDA</u> with <u>PWC</u> functional and <u>GGA</u> with <u>B</u> <u>LYP</u> correlation functional.


Oxidized forms of mercury adsorb more strongly on all surface models – more work must be done to expand non CaO clusters

Conclusions & Future Work

A new disperse phase entrained flow reactor has yielded data suggesting that PWDS (or MinPlus) is very effective for Hg adsorption at high temperatures, although, insufficient dispersion of sorbent within the reactor may limit the capture observed. Capture is enhanced in the presence of oxygen. Temperature, residence time and sorbent feed rate are important, although at present, these effects may well be confounded by changes in dispersion and mass transfer resistance in the reactor. Future work will focus on mitigating dispersion issues in the flow reactor, on closing the Hg balance through measurement of the captured metal in the substrate, and on determining the effects of other gasification gas components such as CO₂, CH₄, COS, H₂ etc., in the hope that we can show that the presence of O₂ is not required in order for sorption to be effective. Mechanisms of Hg adsorption will be elucidated through surface analysis (I.e XAFS, XRD) complemented by computational efforts.

Acknowledgements

Joep Biermann, Ph.D., MinPlus Inc, Walnut Creek, CA Jake Van Alstyn, Undergraduate, Dept of Chemical Engineering, University of Utah

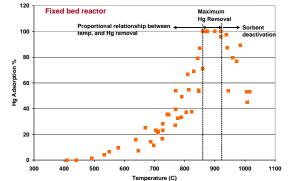


Fig. 3 Results of Hg adsorption test with entrained flow reactor at high Hg concentration (only for 1 hour test) Hg removal efficiency depends on the sorbent's feeding rate, temperature, and residence time. (Hg conc. steadily decreased)

Fig. 4 Temp. effects on the Hg adsorption efficiency in the fixed bed reactor 870-920 C shows max. Hg removal efficiency. Hg adsorption decrease may be due to either sorbent deactivation or channeling and bypassing in the bed, due to sorbent shrinkage

DOE/NETL's Mercury Control Technology Conference Pittsburgh, PA Dec. 11-13, 2006