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Mercury in Flue Gas

• Elemental mercury (Hg0)
− Emitted from high-temperature coal combustion
− Insoluble in water
− Can be removed with activated carbon injection (ACI)

• Oxidized mercury (Hg2+)
− Typically assume HgCl2
− Water soluble, sorbs to AC

• Particle-bound mercury (Hg(p))
− Both Hg0 and Hg2+

− Typically a small fraction of total mercury
• Ratio of Hg0/Hg2+ depends on a number of factors (coal-

Cl, LOI, time-temperature history, etc.)
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Mercury Removal Technologies

• Activated carbon injection (ACI)
− Inefficient mixing/contact: Requires C/Hg ratios 

>1000:1
−AC is a general sorbent
−Potentially makes fly ash unusable as cement 

additive
−Current ‘best bet’

• Catalytic mercury oxidation
−Use catalyst to convert Hg0 to Hg2+

−Removal of Hg2+ with wet FGD (>90% efficient)
• Use of FGD is expected to increase because of 

CAIR
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Mercury oxidation catalysts

• SCR
• Carbon-based materials

−Fly ash, carbon catalysts
• Metals and metal oxides

− Iron, iron oxides
−Noble metals (i.e., gold)

• Data are often reported as ‘% oxidation’
− ‘% oxidized’ is not an inherent physical or chemical 

parameter
−Difficult to interpret results and relate different 

experiments and conditions
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Mercury catalysts: What is needed?

• Better understanding of different catalyst 
materials and supports
−Many materials have been tested, but certainly not 

comprehensive
−What is the most cost-effective?

• Reaction mechanism and kinetics
−Treat catalyst experiments as what they are –

kinetics experiments
−Develop consistent nomenclature
−Consider relationships among broad groups of 

materials (i.e., noble metals)
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Catalysts tested

• Iridium (Ir)
−1% Ir on 4 mm γ-Al2O3 beads

• Ir/HCl
−Prepared by soaking Ir (on γ-Al2O3) in 37% trace 

metals grade HCl, air dry
• Norit Darco FGD
• Thief/HCl
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Experimental conditions

• Slip stream from pilot combustor
−Particle-free, dehumidified flue gas
−Flow rate: 8 ± 1 lpm
−T ~ 280o F (411 K)
−Hg0 concentration adjusted using mercury spiking 

system (5 – 50 μg Nm-3)

• Packed bed
−D = 1.07 cm
− τ = < 0.1 s
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Flue gas composition

90/10 
PRB/Bituminous PRB

O2 (%) 8.3-9.6 8.7-9.4

SO2 (ppm) 225-260 210-230

NOx (ppm) 320-430 330-340

CO2 (%) 10-11 10-11

HCl (ppm) 6.5 1.6

Hg concentration (~80-90% Hg0) varied from 5 – 50 μg Nm-3

depending on extent of Hg0 spiking
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Typical Experiment
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Sorbent activity

• All of the tested materials initially act as sorbents
− Total mercury leaving the bed rises from an initial low level to

an “equilibrium” value
− Catalyst data is collected during equilibrium

• Sorbent characteristics and time to equilibrium are material 
dependent
− Ir and Ir/HCl

• Initial sorption: ~60%
• Equilibrium sorption: ~10 – 20%
• Time to equilibrium: ~1 hr

− Darco FGD
• Initial sorption: >90%
• Equilibrium sorption: ~50%
• Time to equilibrium: ~2.5 hr
• “Used” Darco had smaller equilibrium sorption and time to 

equilibrium than new sorbent.
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Catalyst Results

Catalyst % oxidation Catalyst 
mass (mg)

20

20 - 30

100

100

Ir 40

Ir/HCl 30

Darco 50

Thief/HCl 60 - 70

Thief/HCl gives the highest fractional conversion, 
but it is actually the worst catalyst!
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Reporting catalytic activity

• Is there another way to judge catalysts?
• Reaction: Hg0 + Oxidant Hg2+

−Define bulk reaction rate

−Δ[Hg2+] = concentration change in Hg2+ across the 
catalyst bed

−Δt = residence time (based on bulk flow rate)
−Reduces to derivative for small Δ[Hg2+] and Δt
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Using the bulk reaction rate

• Rgas (apparent gas-phase reaction rate) still hides 
experimental factors
−Catalyst mass/surface area

• In catalysis literature, results are typically 
reported as moles/(m3 sec) or moles/(g sec)
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Where are the results now?

Catalyst Rcat (x1011 mole Hg2+/
g catalyst/sec)

Ir 3.8

Ir/HCl 2.3
Darco 2.2

Thief/HCl 2.1

Experimental conditions:
[Hg0]0 ~ 10 μg Nm-3

T ~ 280o F (411 K)
90/10 PRB/Bituminous mix
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Rate constants

• kgas (apparent gas-phase rate constant) hides 
experimental parameters (like Rgas)
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First estimate for kcat

• Assumptions
− α,β = 1
− HCl is the oxidant

Catalyst kcat(411 K)
(m3 mole-1 sec-1)(m3 cat)(g cat)-1

Ir 25.4 ± 6
Ir/HCl 11.8 ± 3
Darco 3.6 ± 0.9
Thief/HCl 3.3 ± 0.8

[ ][ ]HClHgkR catcat
0=
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Implications of measuring R and k

• First step towards developing a predictive 
model for catalytic mercury oxidation

• Data reported as ‘% oxidation’ are limited to 
the specific experiment, and are difficult to 
apply to different conditions
−Normalizing by catalyst mass (or surface area) 

helps remove this limitation
• A reasonable goal: Predict extent (or rate) of 

mercury oxidation as process scale increases 
from lab pilot full-scale application
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Activation energy

• For the catalytic reaction, Ea is the apparent 
activation energy
−Assuming no mass transfer limitations

• For Ir/HCl, Ea ~ 20 kJ mole-1

−Similar to 30 kJ mole-1 for gold catalyst reported by 
Zhao et al (ES&T, 2006, 40, 1603-1608)
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Reaction order

• [Hg0]inlet
− Ir, Thief/HCl ~ 1
− Ir/HCl: possibly negative

• [HCl]
−Thief/HCl: positive

• Mechanistic insight
−Langmuir-Hinshelwood mechanisms can be either 

+1 or -1 order in individual reactants
• -1 order is a result of surface saturation

−Eley-Rideal mechanisms can be first order in 
individual reactants
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Conclusions

• Ir, Ir/HCl, Darco, and Thief/HCl all catalyze Hg0 oxidation
− Ir > Ir/HCl > Darco > Thief/HCl
− Treating Ir with HCl (and supposedly binding Cl to the surface) 

reduces effectiveness as a catalyst. Why?
− If oxidation occurs at carbon sites in Darco and Thief, we would 

expect Darco to be a better catalyst.
• Thief may be a more economical choice because of low cost

• Data presented as ‘% oxidation’ can be very misleading
− Thief/HCl had the highest % oxidation, but the poorest kinetics

• Considering Hg oxidation as a kinetic problem can lead to 
predictability
− Potential source of error: Bulk rate approximation



22

Future work

• The data presented here are preliminary and 
encouraging; these catalysts require further 
study
−Temperature
−HCl, Hg0 concentrations 

• What is the role of SO2, NOx, etc?
−Bind/deactivate catalyst
−Parallel reactions (i.e., Hg0+HCl competing with 

Hg0+SO2)
• NOx, SO2 reacting with surface Cl?
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