Terrestrial Sequestration: An Adaptation and Mitigation Strategy

Second National
Sequestration Conference

May 5-8, 2003 Alexandria, Virginia

Sarah M. Forbes National Energy Technology Laboratory

The World is a Complex System

Climate change is 500 million times more complicated than any other environmental problem we have faced. – Daniel Esty

What are the vulnerabilities of human systems to global environmental change?

- Flood control systems
- Climate control
- Increased frequency of severe weather events
 - compromise flood control systems
 - compound the UHI effect

How can vulnerabilities be reduced?

Flexibility is Key to Addressing Climate Change

Mitigation

Adaptation

Integrating the forestry sector, EPA, carbon sequestration research, and urban planning communities to improve management plans and national policies would generate a flexible approach.

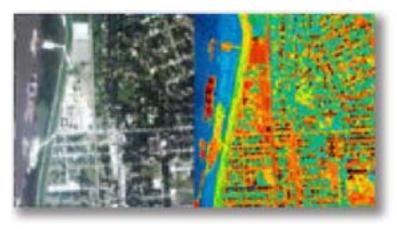
No Single Approach Will Work

Benefits of Protecting, Enhancing, and Reintroducing Terrestrial Carbon Stores

- Improves water infiltration for storm-water management
- Stabilizes land for erosion control
- Reduces urban energy demand
- Improves air quality
- Sequesters carbon for atmospheric CO₂ reduction
- Maintains and creates habitat for biodiversity

Terrestrial Carbon Sequestration

- Four major pathways for terrestrial carbon sequestration could allow for dual mitigative and adaptive roles:
 - Protect and manage existing native ecosystems
 - Improve land reclamation processes and reforestation
 - Extend the use of "carbon friendly" agricultural practices
 - Increase forest and other vegetative cover in metropolitan and urban areas


Terrestrial sequestration actions taken to mitigate adverse effects of urban warming are both reactive and anticipatory of climate change.

What Causes the Urban Heat Island Effect

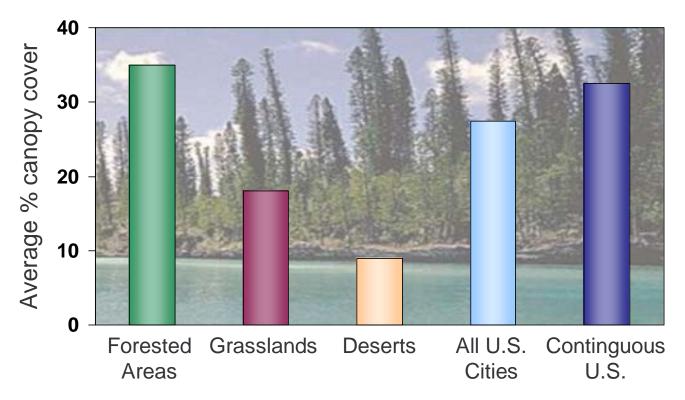
Temperatures in urban areas are rising 1.5 times faster than the global average and cities are 10 degrees warmer than rural areas—Why?

- Tall buildings block infrared radiation from escaping and slow the cooling process
- Waste heat from air conditioners can add as much as 2 degrees to outdoor urban temperatures
- Additional heat is produced by cars, trucks, and factories

Visual and Thermal images of Baton Rouge

Urban Terrestrial Sequestration Efforts

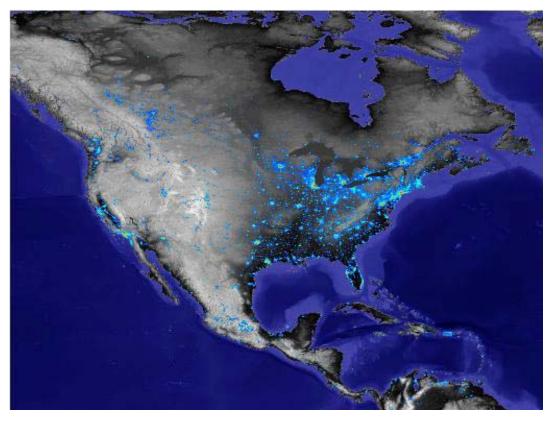
- The USDA Forest Service
 - research on urban tree carbon storage, annual sequestration, and reductions in CO₂ emissions from power plants from efficient building energy use
- The DOE Carbon Sequestration Program
 - terrestrial systems that integrate energy production,
 conversion, and use with biotic sequestration activities
- The EPA Heat Island Reduction Initiative (HIRI)
 - promotes heat island reduction strategies
- Urban Forestry Councils


Potential for Carbon Storage in Urban Forests

- Tree density U.S. urban counties has been decreasing
- 700 million tons of carbon stored in urban trees in the contiguous U.S.
- 22.8 million tons of per year carbon sequestered
- Urban forest C storage density averages 25.1 tons C per ha vs.
 53.5 tons in native forests

% urban	Sq km	tC stored	% tree cover	tC/y	t/ha/y	000s of trees
3.5	281,000	704,397,000	27.1	22,845,000	0.8	3,820,491

The Extent of the Urban Forest Resource Urban Tree Cover in the U.S.


The non-profit organization American Forests recommends a 25% tree cover for urban areas in arid regions of the U.S.

Urban Areas

- The Northeast:
 - most urbanized portion
 - highest proportion of urban tree cover
- Urbanization elongates the growing season, but decreases overall productivity of urban vegetation

North American City Lights: Satellite Image

Source: Nasa/Goddard Space Flight Center Scientific Visualization Studio

Storm-Water Control

- Land development reduces the quantity of water that may infiltrate to the subsurface:
 - impervious surface area expansion
 - loss of vegetation and soil organic matter
 - decreased soil porosity
- In San Antonio:
 - tree loss increased the amount of storm-water flow by 73 million cubic feet
 - the vegetation-in-place saved \$146 million
- 3.86-ac, residential site:
 - 8% canopy cover provides 3% runoff reduction
 - 35% canopy cover provides 12.8% runoff reduction

Reduced Thermal Emissions

- Mid-day air temperature can be reduced by 0.04°C to 0.2°C per % canopy cover increase
- Reduced air temperatures lead to improved air quality and can reduce ozone formation
- 5-10% of the urban electricity demand is consumed by cooling buildings to compensate for the UHI effect
- UHI mitigation could reduce national air conditioning energy use by 20%

Terrestrial Solutions

- San Antonio residents could save an average of \$76 dollars per year by planting residential shade trees
- An 8-sq.-meter patch of lawn on a rooftop equals the same cooling effect as operating an air conditioner for one day (Tokyo study)
- Skyrise greening can reduce ambient air temperatures by 4°C (Singapore study)

State Legal Frameworks that Encourage Urban Terrestrial Sequestration

- Vermont requires new developments over a certain size to meet environmental criteria
- Portland, OR aggressively-plans development within an "urban growth boundary"
- Ashland, OR uses a performance-based system with a "bonus point" scoring system for increased urban forest densities
- Santa Barbara, CA has instated a conservation subdivision design where 40% of the subdivision is open space

Uncertainty is Inherent to Natural Systems

"We admit to uncertainty about the natural systems involved - all the while continuing to act as if the systems were simple and manageable by a centralized control mechanism like a treaty... Moreover, for this to work, we also need to believe that we understand the impacts of such treaties - on natural systems, on economic, political, and cultural systems. Both assumptions are most likely wrong and demonstrate a profound inability to understand the way complex systems evolve."

For More Information, Contact Us...

Sarah Forbes

U.S. DOE/NETL

3610 Collins Ferry Road

P.O. Box 880

Morgantown, WV 26507

Phone: 304-285-4670

Fax: 304-285-1301

sarah.forbes@netl.doe.gov

Rose Dakin

Energetics, Inc.

901 D Street SW

Suite 100

Washington, DC 20024

Phone: 202-406-4129

Fax: 202-479-0229

rdakin@energeticsinc.com

References

- J. Keating, "Trees: the oldest new thing in stormwater treatment," *Stormwater Journal*, February 2003. http://www.forester.net/sw_0203_trees.html
- J. Dwyer, D. Nowak, M.H. Noble, S. Sisinni, Connecting People with Ecosystems: an assessment of our Nation's urban forests, USDA Forest Service 2000
- D. Nowak, "The effects of urban trees on air quality," USDA Forest Service, Syracuse, NY. http://www.fs.fed.us/ne/syracuse/gif/trees.pdf
- H. Akbari (LBNL, Berkeley, CA); M. Pomerantz, H. Taha, "Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas," Solar Energy-Pergamon, 2001, Vol 70, No. 3, pg 295 (16).
- B. Stone and M. Rodgers, "Urban form and thermal efficiency: How the design of cities influences the urban heat island effect," *Journal of the American Planning* Association, Spring 2001, Vol 67, No. 2, Pg 186.
- P. Bosselman and E. Arens, "Urban form and climate," Journal of the American Planning Association, Spring 1995, Vol 61, No. 2, Pg 226.
- "Tree census shows S.A. area is losing valuable greenery," San Antonio Express-News, November 28, 2002.
- "Heat island phenomenon attracts research," The Nikkei Weekly August 19, 2002.
- "Rooftop greenery helps to improve air quality, insulate buildings: survey," Channel NewsAsia Singapore News, September 7, 2002.
- http://www.fs.fed.us/ne/syracuse/unit.html#Energy
- Portland Metro City Planning, http://www.metro-region.org/

