09/2007

U.S. DEPARTMENT OF ENERGY
OFFICE OF FOSSIL ENERGY
NATIONAL ENERGY TECHNOLOGY LABORATORY

CONTACTS

James Hoffman

Project Leader
National Energy Technology
Laboratory
626 Cochrans Mill Road
P.O. Box 10940
Pittsburgh, PA 15236
412-386-5740
james.hoffman@netl.doe.gov

Abbie Layne

Director - Separations and Fuels Processing Division National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4603 abbie.layne@netl.doe.gov

Sean Plasynski

Sequestration Technology Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4867 sean.plasynski@netl.doe.gov

REACTOR DESIGN FOR CO₂ CAPTURE USING SORBENTS

Background

Carbon Sequestration is rapidly becoming accepted as a viable option to reduce the amount of carbon dioxide (CO₂) emitted from large point sources (for example, power generation plants), while continuing to use our Nation's fossil fuels to produce affordable, clean energy. The capture or separation of carbon dioxide from flue gas represents a significant cost and energy penalty in the overall sequestration process. Solid sorbents for CO₂ capture are one option to reduce the penalty associated with capturing flue gas CO₂. In addition to the sorbent development, specific reactor configurations must be developed to manage the flue gas flow, and the sorbent handling and regeneration. The project will facilitate commercial readiness of advanced, cost-effective sorbent-based capture technologies. Technical challenges include identification of candidate reactor designs with sorbents for investigation. Once identified, engineering design criteria must be provided to determine the applicability of the technology in a power generation scheme.

Objective

The project seeks to obtain the optimal design and engineering information for sorbent-based technology. Engineering support and reactor design oversight will be provided for the development of CO_2 removal processes utilizing solid sorbents currently under development by NETL researchers. The sorbent technology will ultimately reach the programmatic goal to be able to remove 90 percent CO_2 while keeping the increase in cost of energy service below 10 percent for post-combustion techniques.

Accomplishments

Based on an external study related to CO, sorbent development, the initial performance target for CO₂ capture with sorbents from flue gas is a reduction of 30-50 percent of the energy required for a wet scrubbing MEA process. Key engineering information (heat of reaction, specific heats, loading capacity, moisture effects, etc.) will be experimentally obtained for candidate in-house sorbents being developed. This information combined with isotherm studies will be used to update the reactor analysis of this external study.

PARTNERS

Matric

University of Pittsburgh

ADDRESS

National Energy Technology Laboratory

1450 Queen Avenue SW Albany, OR 97321-2198 541-967-5892

2175 University Avenue South Suite 201 Fairbanks, AK 99709 907-452-2559

3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4764

626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-4687

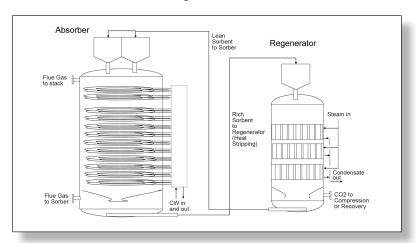
One West Third Street, Suite 1400 Tulsa, OK 74103-3519 918-699-2000

CUSTOMER SERVICE

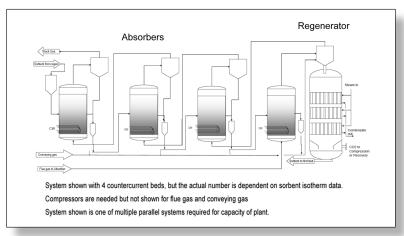
1-800-553-7681

WEBSITE

www.netl.doe.gov


Detailed modeling of both the absorber and regenerator will be performed by university researchers through university consortium partnerships and in-house NETL modelers. The efforts are focusing on management of heat and mass transfer for various reactors configurations, including reactors proposed in an external study. Insertion of chemical kinetics into the modeling effort will also be included. In addition to examining moving and fluid bed concepts, another design under consideration is the use of a transport reactor system.

Key Results to Date Include:


- Measured sorbent parameters play a significant role in the type of reactor that is suited to the application, showing tradeoffs in sorbent properties for fixed-bed, moving-bed, or fluid bed concepts.
- Heat management is critical in both the absorption and regeneration process, and will require significant heat transfer surface in contact with the sorbent.
- Down-selection has produced four conceptual reactor designs.

Benefits

Because of the widespread use of coal to produce power, a novel scrubbing technique is needed to further capture CO_2 in flue gas. Sorbent-based scrubbing can produce certain technical and economic advantages as compared to more traditional wet scrubbing processes. However, the use of the sorbent in a particular reactor design is a key and will ultimately determine whether the realization of a sorbent-based technology can indeed be used for CO_2 capture from flue gas.

Moving Bed Reactors

Fluid Bed / Moving Bed Reactors