D, B, Drantiar os Finigy

CONTACTS

Henry Pennline
Chemical Engineer
National Energy Technology Laboratory
626 Cochrans Mill Road
P.O. Box 10940

Pittsburgh, PA 15236
4I2-386-60I3
henry.pennline@netl.doe.gov

George Richards

Focus Area Leader
National Energy Technology Laboratory
3610 Collins Ferry Road
P.O. Box 880

Morgantown, WV 26507
304-285-4458
george.richards@netl.doe.gov

Sean I. Plasynski
Sequestration Technology Manager
National Energy Technology Laboratory
626 Cochrans Mill Road
P.O. Box 10940

Pittsburgh, PA 15236
4I2-386-4867
sean.plasynski@netl.doe.gov

Ammonia-based Process for Multicomponent Removal from Flue Gas

Background

Carbon sequestration is considered a viable method of reducing carbon dioxide $\left(\mathrm{CO}_{2}\right)$ emissions from large point sources. One point source, the pulverized coal-fired power generator, has been and will be in the near future the predominant power-generating technique. In response, NETL is developing an ammonia-based wet scrubbing process for capturing CO_{2} in flue gas.

The project began as part of an international collaboration with China with an interest in the formation of ammonium bicarbonate fertilizer. However, as there is not a significant market for this type of fertilizer in the United States, NETL recognized the need to develop an ammonia-based scrubbing technology as a regenerable process. In an effort to control multiple acidic gases (e.g., $\mathrm{CO}_{2}, \mathrm{SO}_{2}, \mathrm{NO}_{\mathrm{X}}$, $\mathrm{HCl})$ plus fine particulates from flue gas produced by coal-burning power plants, NETL proposed the use of an ammonia-based process that is regenerative in terms of CO_{2} capture for carbon sequestration. While the ammonia solution is used to produce ammonium sulfate and ammonium nitrate by-products for fertilizer production, the ammonium bicarbonate solution is heated to release high-purity CO_{2}, which

Continuous flow system for testing the ammonia-based process. will be sequestered. The other product of the regeneration step, ammonium carbonate solution, is recycled in the process and reused to absorb more CO_{2}. The regenerative CO_{2} capture chemistry is described by reversible chemistry between the ammonium carbonate and ammonium bicarbonate in an aqueous solution:

$$
\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow 2 \mathrm{NH}_{4} \mathrm{HCO}_{3}
$$

Although commercial ammonia-based processes exist for the removal of SO_{2} and NO_{x} from flue gas, NETL developed this additional scrubbing capability for CO_{2} capture.

Primary Project Goal

The primary goal is to select a regenerable CO_{2} carrier with high CO_{2} carrying capacity. The process must be energy efficient, and the new robust carrier must not be degraded by O_{2} or $\mathrm{SO}_{2}, \mathrm{NO}_{\mathrm{x}}$, and other acidic gases that exist in the fossil fuel combustion flue gases.

PARTNERS

Powerspan Corporation
University of Pittsburgh

ADDRESS
National Energy Technology Laboratory
1450 Queen Avenue SW
Albany, OR 97321-2198
54I-967-5892
2175 University Avenue South Suite 201
Fairbanks, AK 99709
907-452-2559
3610 Collins Ferry Road P.O. Box 880

Morgantown, WV 26507-0880
304-285-4764

626 Cochrans Mill Road
P.O. Box 10940

Pittsburgh, PA 15236-0940
4I2-386-4687
One West Third Street, Suite 1400
Tulsa, OK 74103-3519
918-699-2000

CUSTOMER SERVICE
|-800-553-768|

WEBSITE

- Benefits

- Objectives:
- Major objectives are to:
- Search for a carrier that has overall lower parasitic power loss than other carriers (commercially available monoethanolamine).
- Develop a process to clean criteria pollutants from flue gas and generate salable by-products, such as fertilizers, that could offset the costs of sequestration.
- Develop a single-solvent process for multicomponent control of flue gas emissions.
- - Ensure the process is technically and economically feasible through a systems analysis.
- - Collaborate via a CRADA with an industrial partner, Powerspan Corp., utilizing
- their experience with ammonia scrubbing to further develop the process.
- - In partnership with the University of Pittsburgh, develop a process simulation model to aid in process scale-up to commercial size.

- Accomplishments

- A continuous flow closed-loop reactor was designed and constructed, and parametric - tests were performed. The effects of process operating parameters on CO_{2} removal - efficiencies were analyzed and reported. These quantification/optimization tests - established major impacts of these parameters on CO_{2} carrying capacity, ammonia - losses, and ammonium species. Major ammonium species in the reactor were identified, - and it was determined that excessively high temperatures during regeneration should be - avoided to reduce ammonia gas loss.
- Because of the widespread use of coal to produce power, an alternative scrubbing - technique is needed to further capture CO_{2} in flue gas. Ammonia-based scrubbing can - produce technical and economic benefits compared to current scrubbing technologies. - From the experimental information to date, lower parasitic energy consumption, the - production of a salable fertilizer, and the capability of one solvent to remove many - components are just some of the reasons that the ammonia-based process will be a - significant technology in the carbon sequestration area.

Continuous process flow diagram.

