

U,S, Dupartment of Equaty Office of Rosel Equaty National Equaty Terescology Laboratory

CONTACTS

Sean Plasynski

Sequestration Technology Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4867 sean.plasynski@netl.doe.gov

Jose Figueroa

Project Manager
National Energy Technology
Laboratory
626 Cochrans Mill Road
P.O. Box 10940
Pittsburgh, PA 15236-0940
412-386-4966
jose.figueroa@netl.doe.gov

William Goddard III

Principal Investigator
California Institute of Technology
1200 E. California Blvd
M/C 139-74
Pasadena, CA 91125
626-395-2731
wag@wag.caltech.edu

Background

Growing concern over the effect on global climate of the buildup of greenhouse gases (GHG), particularly carbon dioxide (CO_2), in the atmosphere may lead to the curtailment of CO_2 emissions. One potential course of action by industry to reduce GHG emissions is the subsurface disposal of CO_2 . An important requirement of such disposal is verification that the injected gases remain in place and do not leak to the surface. Perhaps the most direct evidence of a successful sequestration project is the lack of a detectable CO_2 concentration above the background level in the air near the ground. Although measurement of CO_2 concentration can be performed, it is difficult to accomplish at a reasonable cost over the large area that is typical of large, subsurface gas injection projects. One technically attractive approach is to employ a so-called open-path device that uses a laser to shine a beam – with a wavelength that CO_2 absorbs – over many meters. The attenuated beam reflects from a mirror and returns to the instrument for determination of the CO_2 concentration. One instrument can sample a large area, if it can reflect from more than one mirror.

Current commercial instruments capable of this cost tens of thousands of dollars. The purpose of this project is to develop an inexpensive (instrument cost of no more than a few hundred dollars) open-path laser instrument to measure CO₂ concentration over the range of interest (300–500 ppmv). The low-cost target should be attainable by designing an instrument for this one specific application. In contrast, the expensive commercial units can measure the levels of multiple gases over a wider range of concentrations. The newest technology in the communications industry can be used to build a prototype with inexpensive, off-the-shelf components.

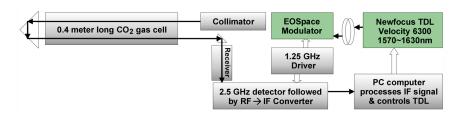


Figure 1. Schematic for bench top CO, measurement using FM spectroscopy.

PARTNERS

California Institute of Technology

PERFORMANCE PERIOD

09/30/2004 to 09/30/2008

COST

Total Project Value \$438,286

DOE/Non-DOE Share \$350,629 / \$87,657

ADDRESS

National Energy Technology Laboratory

1450 Queen Avenue SW Albany, OR 97321-2198 541-967-5892

2175 University Avenue South Suite 201 Fairbanks, AK 99709 907-452-2559

3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4764

626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-4687

One West Third Street, Suite 1400 Tulsa, OK 74103-3519 918-699-2000

CUSTOMER SERVICE

1-800-553-7681

WEBSITE

www.netl.doe.gov

Primary Project Goal

The primary goal is to develop and test an inexpensive open-path instrument that will measure and monitor atmospheric CO_2 concentrations within a range of 300-500 ppmv.

Objectives

The objectives of the project are the following:

- To develop a prototype instrument capable of measuring CO₂ concentration over a 5-kilometer path length with an update speed of once every several minutes and an accuracy of 98-99%.
- To test the prototype instrument over a short range (e.g., 100 m) and determine its performance range.
- To mount the prototype instrument on a rooftop and determine its performance over a range up to 5 km.
- To field test the monitor in an operating CO, geological sequestration site.

Benefits

One approach that is being seriously considered for alleviating the buildup of GHGs in the atmosphere is the capture of CO_2 from fossil fuel–fired power plants and sequestering the CO_2 in geologic formations. Although this approach appears to be technically feasible, the public will not accept it unless they can be assured that the sequestered CO_2 will remain in place and not leak to the surface. A vital part of providing this assurance is the ability to economically measure CO_2 concentrations over large areas so that any leaks can be quickly detected and remediation measures taken. The success of this project will go a long way toward providing an instrument to fill this monitoring need.

Accomplishments

- Specifications and testing protocols have been developed for the CO₂ monitor.
- 1% accuracy has been demonstrated in short period tests (~1 hour).
- Unattended system operation and stability over a period of a week has been demonstrated with and without EDFA (laser power amplifier). EDFA amplification can be further increased by a factor of 3-5, therefore, the operating rage of the instrument is estimated to be 2.5 km (5 km round trip).
- The sensitivity of the instrument to CO₂ leaks has been demonstrated.