04/2008

U.S. DEPARTMENT OF ENERGY
OFFICE OF FOSSIL ENERGY
NATIONAL ENERGY TECHNOLOGY LABORATORY

CONTACTS

Sean I. Plasynski

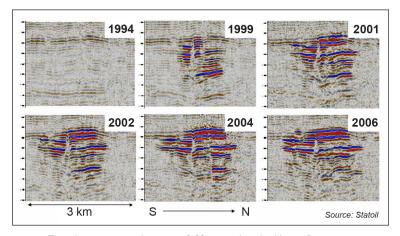
Sequestration Technology Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-4867 sean.plasynski@netl.doe.gov

John T. Litynski

Carbon Sequestration Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1339 john.litynski@netl.doe.gov

THENT OF AND THE STREET OF T

COMMERCIAL-SCALE TESTS DEMONSTRATE SECURE CO₂ STORAGE IN UNDERGROUND FORMATIONS


Two industry-led commercial-scale projects, the Sleipner Project off the coast of Norway and the Weyburn Project in Ontario, Canada, have enhanced the option of sequestering carbon dioxide (CO₂) in underground geologic formations. The United States Department of Energy (DOE) collaborated in both projects, primarily by providing rigorous monitoring of the injected CO₂ and studying CO₂ behavior to a greater extent than the project operators would have pursued on their own – creating a mutually beneficial public/private partnership.

The most significant outcome from both field projects is that CO₂ leakage has not been observed, nor is there any indication that CO₂ will leak in the future.

Sleipner

Statoil's Sleipner field in the Norwegian North Sea is a large producer of natural gas. The natural gas reservoir is deep -3,500 meters below the sea floor - and the natural gas produced contains 9 percent CO_2 . The CO_2 must be reduced to 2.5 percent in order to meet criteria for sale into a natural gas pipeline. Statoil operates a natural gas processing platform that scrubs CO_2 with amine absorbents.

At about 1,000 feet below the seabed and above the Sleipner natural gas reservoir is a large, porous sandstone formation with a shale cap rock, called the Utsira formation. This formation is an ideal setting and Statoil decided to go forward with plans to capture CO_2 from the natural gas processing platform and inject it into the Utsira formation. Prior to the project, the scrubbed CO_2 was vented to the atmosphere, but a CO_2 emissions tax levied by the Norwegian government motivated

Time-lapse seismic datasets of CO₂ stored in the Utsira formation.

ADDRESS

National Energy Technology Laboratory

1450 Queen Avenue SW Albany, OR 97321-2198 541-967-5892

2175 University Avenue South Suite 201 Fairbanks, AK 99709 907-452-2559

3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4764

626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-4687

One West Third Street, Suite 1400 Tulsa, OK 74103-3519 918-699-2000

CUSTOMER SERVICE

1-800-553-7681

WEBSITE

www.netl.doe.gov

Statoil to consider capturing the vented CO₂, compressing it, and injecting it underground. Over 9 million tons of CO₂ have been injected to date, and scientists estimate the Utsira formation has the capacity to store 600 billion tons of CO₂.

The CO_2 flow in the Utsira formation has been monitored using time-lapse seismic technology, in which scientists take a seismic snapshot of a formation before and after injection and study the differences. CO_2 is more compressible than brine, and sound waves travel through it at a different velocity; thus, CO_2 in a saline formation leaves a bright signature. The time lapse seismic results shown in the figure indicate that there is no migration of CO_2 out of the Utsira formation¹.

A primary project goal at Sleipner is to quantify the change in the local gravitational field in order to assess the ability of microgravity techniques to monitor geologically-sequestered CO₂. In 2002 and 2005, DOE supported the University of California in successfully conducting microgravity sea floor surveys with better-than-expected repeatability.

Weyburn

The Weyburn Oilfield in Saskatchewan, Canada, was discovered in 1954 and reached a peak crude oil production of 50,000 barrels per day in 1967. In 1997, the Canadian company, EnCana, announced that it would develop an enhanced-oil-recovery project with the goal of extending the oilfield's life by more than 25 years and extracting an additional 122 million barrels of crude oil.

EnCana solicited proposals for CO_2 supply from anthropogenic sources, which was won by the Dakota Gasification Company, operator of the Great Plains Synfuels plant, in Beulah, North Dakota. Dakota Gasification offered to build a 325-km pipeline between Buelah and Weyburn with a capacity to supply at least 2.7 million metric cubic tons per day (m3/day) of CO_2 . As of May 2003, the cumulative CO_2 injected totaled 3.5 million metric tons; another 20 million tons of CO_2 will be injected over the life of the project.

The Petroleum Technology Research Center (PTRC), a not-for-profit research and development organization with offices and laboratories in Regina, Saskatchewan, Canada, initiated a research project to operate in parallel with the commercial oil recovery project². The goals of the research project are to develop a rigorous baseline of the formation, use the CO₂ flood as an opportunity to gain understanding of the behavior of injected CO₂, field test a range of CO₂ monitoring technologies, and develop the ability to model and predict the flow of CO₂ in an underground formation over long periods of time. DOE co-funded this research project that is managed by its National Energy Technology Laboratory (NETL).

A wide range of CO_2 measurement and monitoring approaches were tested at the Weyburn site, including observation wells; three-dimensional (3-D) seismic, cross-well seismic, and soil monitors; and gas tracers. Researchers predict that they can use 3-D seismic to detect volumes of CO_2 as small as 2,500 metric tons. Soil sampling conducted at the site indicates there is no leakage of CO_2 from the reservoir. DOE is currently working on the next phase of the Weyburn project, which will look to continue CO_2 injection in the region and study the permanence of CO_2 in these geologic formations.

References

¹ Arts, et al., 2004 "Recent Time-Lapse Seismic Data Show No Indication of Leakage at the Sleipner CO₂ Injection Site" presented at the 7th International Conference of Greenhouse Gas Control Technologies (GHGT-7).

² Monea, M., and M. Wilson, 2004, "IEA GHG Weyburn CO₂ Monitoring & Storage Project Summary Report 2000-2004," from the proceedings of GHGT-7.