

Zama Acid Gas EOR, CO, Sequestration, and Monitoring Project

Regional Carbon Sequestration Partnership **Annual Peer Review Meeting**

> Pittsburgh, Pennsylvania October 6, 2008

John Harju **Energy & Environmental Research Center**

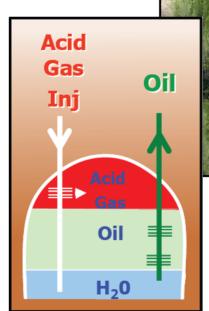
Presentation Outline

- Where are we doing this?
- Why are we doing this?
- What have we done?
- Where are we going?

Acknowledgments

- Apache Canada, Ltd.
- Natural Resources Canada
- Alberta ERCB
- RPS Energy
- · Advanced Geotechnology, Inc.
- U.S. Department of Energy National Energy Technology Laboratory

Where's Zama?


PCOR Partnership Involvement at Zama

Goal

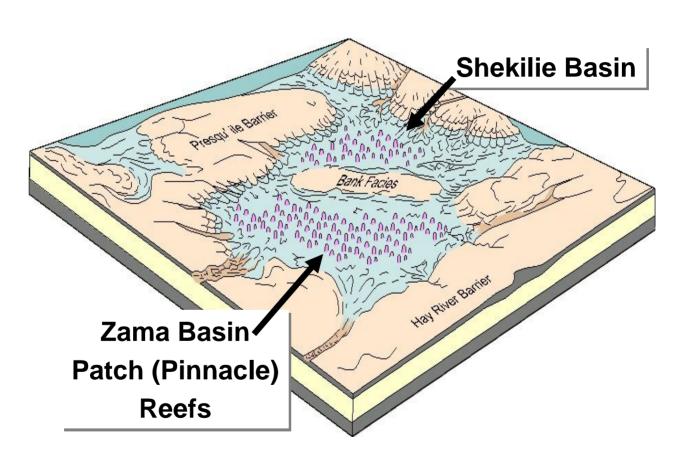
To validate the sequestration of CO₂-rich acid gas (CO₂ and H₂S) in a depleted oil reservoir.

Objectives

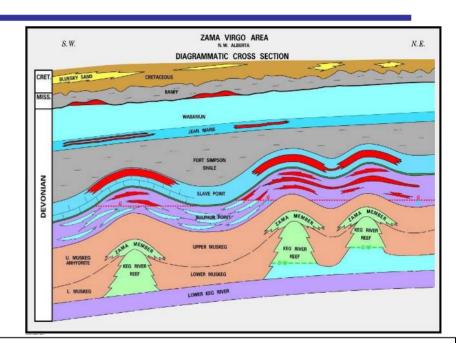
- Determine the effects of acid gas injection on target reservoir and caprock formations.
- Implement a cost-effective approach for monitoring, mitigation, and verification (MMV) for sequestration of a CO₂-rich acid gas stream.

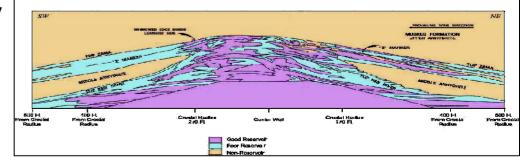
Zama Acid Gas EOR Project

- One of four Alberta demonstration projects to receive royalty credits for injecting CO₂ for enhanced oil recovery (EOR) in 2004 (\$5.0 MM).
- Received \$3.1MM NRCan Grant in 2005 for shutting down the sulfur plant and eliminated CO₂ venting which was utilized for injection into EOR pilot project.
- Unique approach combining acid gas disposal and CO₂ EOR.
- Five pinnacles currently accepting acid gas for EOR.
- Potential for expansion into hundreds of additional pinnacles.



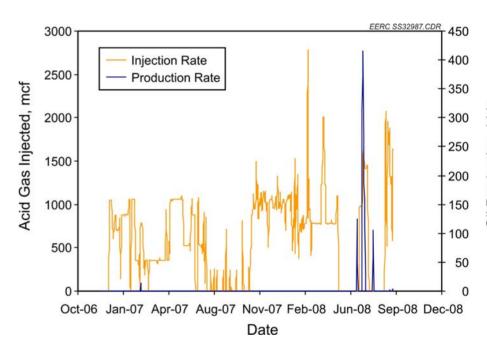
Zama Geological Setting





Zama Pinnacle

- Carbonate reservoir
- 5300 feet deep
- About 40 acres at the base (.16 km²)
- 400 feet tall (120 m)
- Two production wells and one injection well
- 10% average porosity
- 100–1000 md permeability
- 2100 psi initial reservoir pressure



Acid Gas Injection

- Began injection December 15, 2006
- 70% CO₂, 30% H₂S
- Average injection rate around 1 MMCF/day
 - Nearly continuous, with brief operational shutdowns
- Second production well completed June 2008
 - Brief period of oil production followed by injected gas production
- Cumulative injection over 20,000 tons

Philosophy of Monitoring

- Maximize the use of existing data sets in an effort to characterize the baseline conditions of the site.
- Minimize the use of invasive or disruptive technologies to acquire new data.
- MMV data acquisitions will be coordinated with routinely scheduled operation activities.
- Ensure that the monitoring operations are as transparent as possible to the day-to-day field operations.

MMV Operations

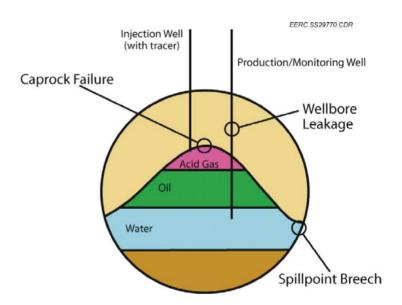
Monitor the CO₂/H₂S plume through:

- Perfluorocarbon tracer injection.
- Reservoir pressure monitoring.
- Wellhead and formation fluid sampling (oil, water, gas).

Monitor for early warning of reservoir failure through:

- Pressure measurements of injection well, reservoir, and overlying formations.
- Fluid sampling of overlying formations.

Determine injection well conditions through:

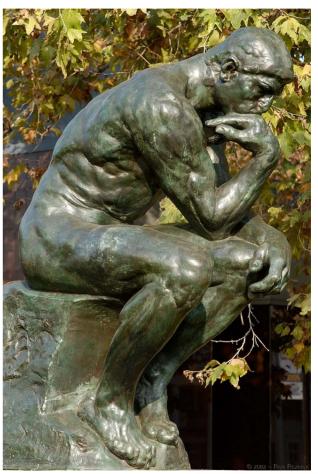

- Wellhead pressure gauges.
- Well integrity tests.
- Wellbore annulus pressure measurements.

Zama Characterization Activities

Hydrogeology

Where's the gas going?

Geomechanics

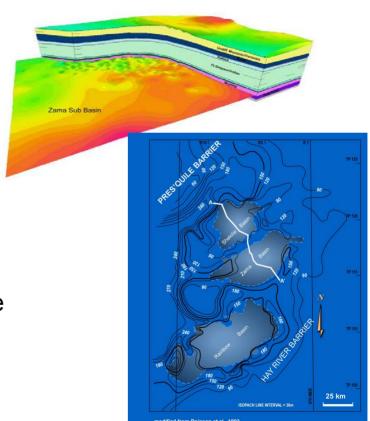

Is the container going to break?

Engineering

How did you do that?

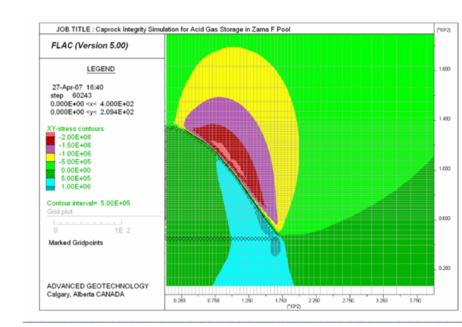
Geochemistry

What's happening down there?



Geology and Hydrogeology Results

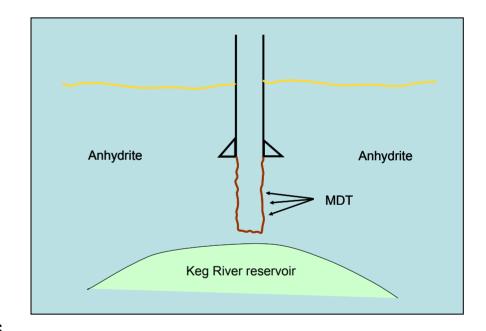
- Conducted to better understand the storage characteristics of regional aquifer systems and the fate of acid gas.
- Results indicate there is minimal potential for acid gas migration to shallower strata and potable groundwater.
- Leakage migration, should it occur, would be a very slow process (thousands of years) and would likely be limited to much less than a kilometer from the site because of dissolution, dispersion, and residual gas trapping along the migration pathway.



Mechanical Integrity

Program elements include:

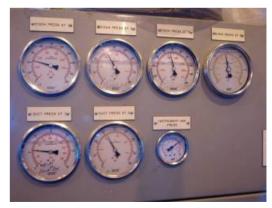
- Evaluation of possible caprock leakage mechanisms.
- Triaxial and unconfined compressive strength.
- Uniaxial pore volume compressibility.
- Schmidt rebound hammer.
- Minimum horizontal in situ stress orientations.
- Vertical stress magnitude.
- Geomechanical simulation of acid gas injection.



Mechanical Integrity (cont.)

Modular Dynamics Test – July 2008

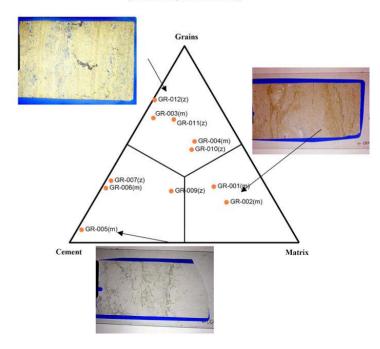
- Performed to obtain horizontal stresses in reservoir caprock
- Tested three intervals
 - Two anhydrite
 - One dolomite stringer (encased in anhydrite)
- Unable to fracture anhydrite!
- Fracture attained in dolomite at over 5000 psi
 - Allowable injection pressure approximately 2100 psi
- All results to date indicate that caprock leakage potential due to a geomechanical mechanism appears to be very low.



Engineering

- Catalog the "process" of acid gas injection from cradle to grave
- Pressure-monitoring evaluation
 - Model historical and current pressure regimes in the injection zone
 - Model historical and current pressure regimes in the monitoring zone
 - Quantify pressure difference across zones
 - Determine flux necessary to identify leakage concern
 - May be used to indicate leakage from the reservoir through caprock and or along wellbores
- Evaluate and coordinate:
 - Tracer injection.
 - Sampling procedures.
 - Coring activities.
- Acid gas phase behavior
 - Determine what is happening in the wellbore and reservoir in a multiphase system

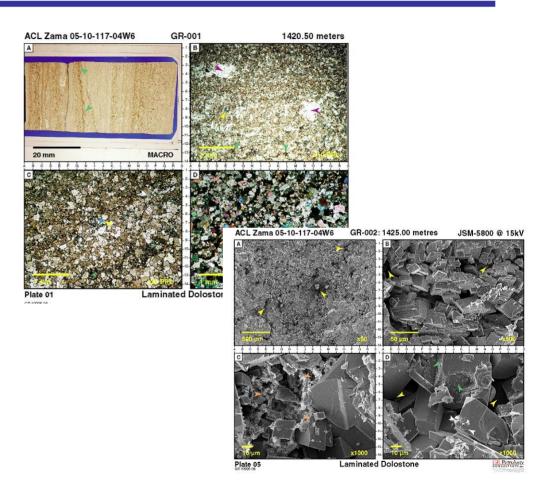
Geochemistry


- New core obtained in 2007
 - Approximately 50 continuous feet from:
 - Muskeg anhydrite.
 - Zama Member (dolomite transition).
 - Keg River Reservoir.
 - Petrophysical evaluation completed
 - Thin sections
 - XRD/XRF
 - SEM
 - Grain size
 - Pore geometry
 - Upcoming/planned work
 - EERC acid gas soak test to determine rates of mineral reactions in carbonates and evaporites

Ternary Composition Diagram Muskeg / Zama Formations 05-10-117-14W6

(excludes recrystallized dolomite)

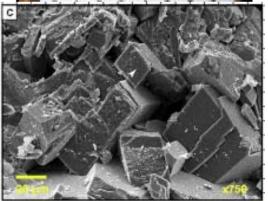
GR 10995 08



GR Petrology

Geochemistry (cont.)

- New core (Oct 2008)
 - Formerly used for acid gas disposal
 - Very unique opportunity!
 - Geochemical models will be created to evaluate reactions in carbonates with respect to:
 - Acid gas.
 - Formation minerals
 - Formation fluids.
 - Complete petrophysical evaluation will be conducted.
 - Conclusions will allow direct determination of mineralogical change due to acid gas injection.



Zama Path Forward

- Injection of acid gas will continue through Year 4 of Phase II.
- Core will be collected from an acid gas disposal zone to examine the mineralogical and geomechanical changes that can occur in a carbonate rock exposed to high-pressure acid gas.
- Additional rock mechanical, relative permeability, and capillary threshold pressure measurement of the caprock will be conducted.
- Engineering data and characterization results will be used to develop a Regional Technology Implementation Plan.

Project Recognition

Officially recognized by the Carbon Sequestration Leadership Forum in March 2007

Zama Characterization Activities (Questions Answered)

Hydrogeology

- Q) Where's the gas going?
- A) Nowhere! Pinnacle geometry, excellent caprock, and extremely slow groundwater flow preclude/minimize migration.

Geomechanics

- Q) Is the container going to break?
- A) No! Safe operating practices and a thorough understanding of the mechanical rock properties at Zama will help prevent this.

Engineering

- Q) How did you do that?
- A) Comprehensive planning using proven oil field practices.

Geochemistry

- Q) What's happening down there?
- A) Work is in progress during Year 4.

For more information on the PCOR Partnership please contact:

John Harju (701) 777-5157 jharju@undeerc.org

Ed Steadman (701) 777-5279 esteadman@undeerc.org