
NISTIR 7374

PHAML User’s Guide

William F. Mitchell
U. S. Department of Commerce
Technology Administration
National Institute of Standards and Technology
Information Technology Laboratory
Gaithersburg, MD 20899 USA

October 2006

PHAML User’s Guide, Version 1.0

William F. Mitchell∗

Mathematical and Computational Sciences Division
100 Bureau Drive Stop 8910

National Institute of Standards and Technology
Gaithersburg, MD 20899-8910

email: phaml@nist.gov

Abstract

PHAML (Parallel Hierarchical Adaptive MultiLevel) is a Fortran mod-
ule for the solution of elliptic partial differential equations. It uses finite
elements, adaptive grid refinement (h, p or hp) and multigrid solution tech-
niques in a message passing parallel program. It has interactive graphics
via OpenGL. This document is the user’s guide for PHAML. The first
part tells how to obtain any needed software, how to build and test the
PHAML library, and how to compile and run the example programs. The
second part explains the use of PHAML, including program structure and
the various options that are available. The third part is a reference manual
which describes the API (application programming interface) of PHAML.
The reference manual begins with a 2 page Quick Start section for the
impatient.

Keywords: adaptive grid refinement, dynamic load balancing, elliptic eigen-
value problems, elliptic partial differential equations, high order finite elements,
hp-adaptivity, multigrid, parallel programming

Contents

1 Introduction 4

2 Software 5
2.1 Obtaining Software . 5

2.1.1 PHAML . 5
2.1.2 Fortran 90 and C Compilers 5

∗Contribution of NIST, not subject to copyright in the United States. The mention of
specific products, trademarks, or brand names is for purposes of identification only. Such
mention is not to be interpreted in any way as an endorsement or certification of such products
or brands by the National Institute of Standards and Technology. All trademarks mentioned
herein belong to their respective owners.

1

2.1.3 BLAS and LAPACK . 6
2.1.4 PVM and MPI . 6
2.1.5 OpenGL (or Mesa), GLUT and f90gl 6
2.1.6 Triangle . 7
2.1.7 ARPACK . 7
2.1.8 hypre . 7
2.1.9 MUMPS . 7
2.1.10 PETSc . 8
2.1.11 SuperLU . 8
2.1.12 Zoltan . 8

2.2 Compiling PHAML . 8
2.2.1 Creating the Makefiles . 8
2.2.2 Compiling the Library . 11

2.3 Testing the Library . 11
2.4 Compiling and Running the Examples 12

3 Scalar Linear Elliptic Boundary Value Problems 14
3.1 Main program . 14

3.1.1 Parallelism . 14
3.1.2 Program structure . 15

3.2 Defining the problem . 16
3.2.1 Defining the PDE . 16
3.2.2 Defining the boundary conditions 18
3.2.3 Defining the domain and initial grid 20
3.2.4 The true solution . 22

3.3 Solution method . 22
3.3.1 Discretization . 23
3.3.2 Refinement . 24
3.3.3 Error indicator . 25
3.3.4 Linear system solver . 26
3.3.5 Load balancing . 31
3.3.6 Termination . 33

3.4 I/O . 33
3.4.1 I/O files . 33
3.4.2 Printed I/O . 34
3.4.3 Pausing . 35

3.5 Graphics . 36
3.5.1 Overview . 36
3.5.2 Example visualizations . 37
3.5.3 View modifier . 41
3.5.4 Colors . 44
3.5.5 Functions . 45
3.5.6 Lights . 46
3.5.7 Contour plots . 46
3.5.8 Multiple solutions . 47
3.5.9 Miscellaneous features . 47

2

3.5.10 Development aids . 49
3.5.11 Postscript . 49

3.6 Post-solution utilities . 49
3.6.1 Store and Restore . 49
3.6.2 Query . 50
3.6.3 Solution evaluation . 50
3.6.4 Functionals . 50

4 Problem Extensions 51
4.1 Eigenvalue Problems . 51
4.2 Coupled Systems or Multicomponent Solutions 52
4.3 Parabolic, Nonlinear, Etc. Problems 52

5 Examples 54

6 Release notes 54

7 Reference Manual 55
7.1 Quick Start . 55

7.1.1 Obtaining the software . 55
7.1.2 Compiling the PHAML library 55
7.1.3 Compiling an Example . 56
7.1.4 Running the Example . 56
7.1.5 Now what? . 56

7.2 Public Entities in PHAML . 56
7.2.1 phaml solution type . 56
7.2.2 my real . 57
7.2.3 pde and my pde id . 57
7.2.4 symbolic constants . 57

7.3 User Provided Routines . 57
7.3.1 bconds . 58
7.3.2 boundary point . 58
7.3.3 boundary npiece . 59
7.3.4 boundary param . 59
7.3.5 iconds . 59
7.3.6 pdecoefs . 60
7.3.7 phaml integral kernel . 60
7.3.8 trues . 61
7.3.9 truexs . 61
7.3.10 trueys . 61
7.3.11 update usermod . 62

7.4 PHAML procedures . 62
7.4.1 phaml compress . 62
7.4.2 phaml connect . 62
7.4.3 phaml copy soln to old 64
7.4.4 phaml create . 64

3

7.4.5 phaml destroy . 66
7.4.6 phaml evaluate . 66
7.4.7 phaml evaluate old . 67
7.4.8 phaml integrate . 67
7.4.9 phaml pclose . 68
7.4.10 phaml popen . 68
7.4.11 phaml query . 69
7.4.12 phaml restore . 71
7.4.13 phaml scale . 72
7.4.14 phaml solve pde . 72
7.4.15 phaml store . 88

1 Introduction

To start using PHAML immediately, see the Quick Start guide in Section 7.1.
PHAML stands for Parallel Hierarchical Adaptive MultiLevel method. It

solves systems of linear elliptic partial differential equations (PDEs) of the form

− ∂

∂x
(p(x, y)

∂u

∂x
) − ∂

∂y
(q(x, y)

∂u

∂y
) + r(x, y)u = f(x, y) in Ω (1)

where the domain Ω is a bounded, connected, region in R2. The boundary
conditions can be Dirichlet on part of the boundary,

u = g(x, y) on ∂ΩD (2)

and natural or mixed on the remainder of the boundary,

p(x, y)
∂u

∂x

∂y

∂s
− q(x, y)

∂u

∂y

∂x

∂s
+ c(x, y)u = g(x, y) on ∂ΩN (3)

where the boundary ∂Ω = ∂ΩD ∪∂ΩN and ∂ΩD ∩∂ΩN = ∅. Periodic boundary
conditions are also supported.

For natural boundary conditions, differentiation with respect to s is with
respect to a counterclockwise parameterization of the boundary (x(s), y(s)) with
‖(dx/ds dy/ds)‖ = 1. Note that when p = q = 1 or the boundaries of the domain
are parallel to the axes, the natural boundary conditions reduce to Neumann
conditions.

If the domain has curved boundaries, it is defined by subroutines that define
the boundary parametrically. If it is polygonal, it can instead be defined by an
initial triangulation given in data files created by the program Triangle.

PHAML also solves elliptic eigenvalue problems where the right hand side
f(x, y) is λu, and λ is an eigenvalue to be determined along with u. For eigen-
value problems, the boundary conditions must be homogeneous, i.e., g = 0.

PHAML discretizes the PDE using the standard finite element method with
piecewise polynomial functions over triangles. The approximating polynomial

4

degrees may be a fixed constant or adaptive. The grid is generated by be-
ginning with a very coarse grid of fixed degree and using uniform or adap-
tive h-refinement in the form of newest node bisection, uniform or adaptive
p-refinement in which the polynomial degree is increased, or hp-adaptive refine-
ment which combines both forms of refinement.

The standard process alternates between phases of grid adaptation and so-
lution of the discrete equations. The default solution method is a hierarchical
basis multigrid method. Other solution methods are available through other op-
tional software packages. All this is performed in parallel using the full domain
partition to minimize communication. The default load balancing method is
a refinement-tree based partitioning algorithm. Other load balancing methods
are available through other optional software packages.

PHAML can be run as a sequential program, a master/slave parallel pro-
gram using MPI-2 or PVM, or an SPMD parallel program using MPI-1, MPI-2,
or PVM. PHAML optionally uses OpenGL to provide menu-driven interactive
visualization.

2 Software

2.1 Obtaining Software

PHAML and all required or optional auxiliary software can be obtained by freely
downloading them from the web, although some have commercial alternatives.
This section explains what software is used with PHAML, when you need that
software, and where to obtain it. Most of this software is optional and you do
not need to install it unless you are using the relevant features as described
below.

2.1.1 PHAML

PHAML is available for download at http://math.nist.gov/phaml. It is a
gzipped tar file. When unpacked, it creates a directory called phaml-x.x.x
where the x’s are the version number. It has been tested under many Unix
systems, but not under MS Windows. It is standard conforming Fortran 90,
so (theoretically) it should work under Windows (at least sequentially) without
too much effort. For the remainder of this document, we will assume that the
operating system is some variant of Unix, including Linux.

2.1.2 Fortran 90 and C Compilers

A Fortran 90 (or later Fortran standard) compiler is required to compile PHAML.
In some cases, a C compiler will also be required to compile some wrapper rou-
tines to C libraries. Most Unix systems already have a C compiler installed, and
many also have a Fortran 90 compiler installed. Check your local documentation
to find out, or look for a command like f90 or f95.

5

http://math.nist.gov/phaml

If you do not have a Fortran 90 compiler, many good commercial compilers
are available for most (if not all) Unix systems. To identify what is available
for your system, see Michael Metcalf’s Fortran 90/95/HPF Information File at
http://www.fortran.com/fortran/metcalf.htm.

There are currently two free Fortran 90 compilers, g95 at http://www.g95.
org and GNU’s gfortran at http://gcc.gnu.org/fortran.

2.1.3 BLAS and LAPACK

BLAS (Basic Linear Algebra Subroutines) and LAPACK (Linear Algebra PACK-
age) libraries are required for PHAML. The reference Fortran implementation
for them can be obtained from Netlib at http://www.netlib.org. However,
for best performance you should use a BLAS library that is optimized for your
computer system. You may find that the BLAS and LAPACK libraries are al-
ready installed on your system, or that there are commercial optimized versions
available for your system.

There are also freely available optimized BLAS packages such as ATLAS
at http://math-atlas.sourceforge.net and GOTO BLAS at http://www.
tacc.utexas.edu/resources/software/.

2.1.4 PVM and MPI

To run PHAML as a parallel program, you must have a message passing library
(PHAML can be run as a sequential program, i.e. one processor, without a
message passing library).

Message passing can be performed by either MPI (Message Passing Inter-
face) or PVM (Parallel Virtual Machine). MPI is considered to be more of an
industry standard, and is the recommended choice in most cases. PVM support
in PHAML is maintained primarily for historical reasons, but PVM does have
some features (for example, specifying the host on which to run the graphics
process) that are not necessarily supported by an MPI implementation. Many
of the other optional packages (e.g. PETSc, hypre, Zoltan, MUMPS, ARPACK)
require MPI and cannot be used if PVM is chosen instead.

Many computer systems will already have an MPI library installed. Check
your local documentation. If not, there are three freely available implemen-
tations of MPI. The Open MPI implementation is available at http://www.
open-mpi.org. The LAM implementation is available at http://www.lam-mpi.
org. The MPICH2 implementation is available at http://www-unix.mcs.anl.
gov/mpi/mpich2.

PVM is available at http://www.csm.ornl.gov/pvm/pvm_home.html.

2.1.5 OpenGL (or Mesa), GLUT and f90gl

If you wish to use the visualization capabilities of PHAML, then you will need
an OpenGL library (graphics library), GLUT (window, mouse, keyboard and
menu management), and f90gl (the Fortran 90 interface to OpenGL and GLUT).

6

http://www.fortran.com/fortran/metcalf.htm
http://www.g95.org
http://www.g95.org
http://gcc.gnu.org/fortran
http://www.netlib.org
http://math-atlas.sourceforge.net
http://www.tacc.utexas.edu/resources/software/
http://www.tacc.utexas.edu/resources/software/
http://www.open-mpi.org
http://www.open-mpi.org
http://www.lam-mpi.org
http://www.lam-mpi.org
http://www-unix.mcs.anl.gov/mpi/mpich2
http://www-unix.mcs.anl.gov/mpi/mpich2
http://www.csm.ornl.gov/pvm/pvm_home.html

Some computers will already have an OpenGL library installed. If not,
there are some commercial OpenGL libraries for some computer systems, and
there is the freely available Mesa library. Mesa can be obtained from http:
//www.mesa3d.org, and further information about OpenGL can be found at
http://www.opengl.org.

If your system already has an OpenGL library, then it is likely to also have
GLUT already installed. However, many versions of GLUT are not compatible
with f90gl, so you may need to reinstall GLUT anyway. If you (re)install GLUT,
you should get it from the software section of the f90gl web pages at http:
//math.nist.gov/f90gl.

It is highly unlikely that f90gl will already be installed on your system. You
can obtain f90gl from http://math.nist.gov/f90gl.

2.1.6 Triangle

PHAML uses Jonathan Richard Shewchuk’s mesh generator, Triangle [22], to
generate the initial grid for arbitrary geometry. If you are only solving problems
on the unit square, then you do not need Triangle – you can use the Triangle
output files in the examples. You also do not need it if you have obtained
Triangle data files elsewhere. Otherwise, you will need it. You also need it if
you choose to define your domain through subroutines. Triangle is available at
http://www.cs.cmu.edu/~quake/triangle.html.

2.1.7 ARPACK

To solve elliptic eigenvalue problems, PHAML needs an algebraic eigensolver.
Currently it only supports one eigensolver, ARPACK [12]. If you are going
to solve eigenvalue problems, you must get ARPACK and PARPACK from
http://www.caam.rice.edu/software/ARPACK. For a sequential compilation
you do not need PARPACK.

2.1.8 hypre

hypre [10][11] is a package of iterative linear system solvers and preconditioners
from the Lawrence Livermore National Laboratory. It is not required, but can be
linked with PHAML to provide alternative linear system solvers. It is available
at http://www.llnl.gov/CASC/linear_solvers.

2.1.9 MUMPS

MUMPS [2][3] is a parallel direct linear system solver. It is not required, but
can be linked with PHAML to provide an alternative linear system solver. It is
available at http://www.enseeiht.fr/lima/apo/MUMPS.

7

http://www.mesa3d.org
http://www.mesa3d.org
http://www.opengl.org
http://math.nist.gov/f90gl
http://math.nist.gov/f90gl
http://math.nist.gov/f90gl
http://www.cs.cmu.edu/~quake/triangle.html
http://www.caam.rice.edu/software/ARPACK
http://www.llnl.gov/CASC/linear_solvers
http://www.enseeiht.fr/lima/apo/MUMPS

2.1.10 PETSc

PETSc [5][6] is a package of iterative linear system solvers and preconditioners
from Argonne National Laboratory. It is not required, but can be linked with
PHAML to provide alternative linear system solvers. It is available at http:
//www-unix.mcs.anl.gov/petsc/petsc-as.

2.1.11 SuperLU

SuperLU [13] is a parallel direct linear system solver from the Lawrence Berkeley
National Laboratory. It is not required, but can be linked with PHAML to
provide an alternative linear system solver. It is available at http://crd.lbl.
gov/~xiaoye/SuperLU.

2.1.12 Zoltan

Zoltan [8][9] is a library of dynamic load balancing methods. It is not required,
but can be linked with PHAML to provide alternative methods for partitioning
the grid for distribution over parallel processors. It can be obtained at http:
//www.cs.sandia.gov/Zoltan.

2.2 Compiling PHAML

This section gives instructions for compiling the PHAML library. Throughout
this section it is assumed that the current working directory is the PHAML root
directory.

2.2.1 Creating the Makefiles

Before compiling you must create a Makefile. The is done by running the shell
script mkmkfile.sh. Before running this script you must edit it to set system
dependent values, like the paths to certain libraries, and specify the configura-
tion you wish to build a Makefile for (what kind of computer, what message
passing library, etc.). Instructions for modifying mkmkfile.sh are contained
in the file, but are also summarized here. There are three steps to modifying
mkmkfile.sh: 1) set the default system configuration, 2) set the paths, library
names, etc., and 3) set values for particular systems.

In step 1, the default system configuration is set. If you will only be running
in one environment, then you can set the configuration here and forget it. In
fact, you can probably just make the Makefile once and forget it. If you will
be using more than one environment, then you can set the defaults here, and
they can be overridden by one of the methods described later in this section.

The configuration variables (e.g. PHAML ARCH) and legitimate values (e.g.
origin) can be found under Step 1 in mkmkfile.sh. You can also get a list of
all the configuration variables, their legitimate values, and current defaults by
executing

./mkmkfile.sh help

8

http://www-unix.mcs.anl.gov/petsc/petsc-as
http://www-unix.mcs.anl.gov/petsc/petsc-as
http://crd.lbl.gov/~xiaoye/SuperLU
http://crd.lbl.gov/~xiaoye/SuperLU
http://www.cs.sandia.gov/Zoltan
http://www.cs.sandia.gov/Zoltan

They are:

• PHAML ARCH origin rs6k sgi sun tflop x86. This defines the type of
computer architecture you have.

• PHAML OS aix cougar irixn32 irix64 linux solaris. This defines the
operating system running on your computer.

• PHAML F90 absoft g95 gfortran intel lahey nag pathscale pgi
sgi sun xlf. This defines the Fortran 90 compiler to use.

• PHAML C cc gcc. This defines the C compiler to use.

• PHAML HASHSIZE 1 2. This defines the size of hash key to use for global
identifiers. 1 uses one integer and 2 uses two integers. Using 1 saves
memory and reduces message sizes; using 2 allows smaller elements (more
refinement levels).

• PHAML PARALLEL messpass spawn messpass nospawn sequential. This
defines the type of parallelism. You can select between running a sequen-
tial program (no parallelism), having a master process that spawns the
slave and graphics processes, and running an SPMD (single program mul-
tiple data) program in which all processes are identical and started from
the command line.

• PHAML PARLIB lam mpi mpich mpich2 myrinet pvm none. This defines
the parallel library to use. lam, mpich, mpich2 and pvm refer to the pack-
ages by those names, mpi to vendor implementations of MPI, myrinet to a
special implementation of MPICH for myrinet networks, and none should
be used if PHAML PARALLEL is sequential.

• PHAML GRAPHICS metro mesa none opengl. This defines what OpenGL
library should be used. opengl refers to vendor OpenGL libraries, mesa
to the MESA library, metro to a commercial OpenGL library for Linux,
and none indicates that the graphics program should not be built.

• PHAML BLAS atlas compiler goto source standard vendor. This de-
fines the BLAS library to use. atlas and goto are as mentioned in Section
2.1.3. compiler refers to a BLAS library provided with the Fortran com-
piler defined in PHAML F90. vendor refers to a BLAS library supplied by
the hardware vendor defined in PHAML ARCH. standard refers to a BLAS
library in a standard location like /usr/lib, and often is not a high per-
formance library. As a last resort, source will use BLAS source code
provided with PHAML.

• PHAML LAPACK atlas compiler source standard vendor. This defines
the LAPACK library to use, and is usually given the same value as
PHAML BLAS.

• PHAML ARPACK no yes. This indicates whether or not to include ARPACK.

9

• PHAML HYPRE no yes 1.6.0 1.9.0b. This indicates whether or not to
include hypre. There were some incompatible changes between hypre ver-
sions 1.6.0 and 1.9.0b, so if you have an older version you should specify
1.6.0.

• PHAML MUMPS no yes. This indicates whether or not to include MUMPS.

• PHAML PETSC no yes. This indicates whether or not to include PETSc.

• PHAML SUPERLU no yes. This indicates whether or not to include Su-
perLU.

• PHAML ZOLTAN no yes with jostle with parmetis
with jostle and parmetis. This indicates whether or not to use Zoltan.
If Zoltan was built with support for ParMETIS and/or Jostle, use the
value that indicates that.

• PHAML SYSTEM none dragon raritan looney looneyjr sgis suns
tflop. This designates a specific computer system for overriding configu-
ration variables in Step 3. Usually it is the hostname of the system.

If you don’t find a value that matches your system, you can either (1) add
that value and modify mkmkfile.sh to handle it by mimicking what is done for
other values, or (2) use a similar value and edit Makefile to correct it for your
system. However, if you edit Makefile then you will lose your changes the next
time you run mkmkfile.sh.

In step 2, set the paths, library names, etc. Here you set shell variables in
mkmkfile.sh with the names of commands, flags, paths, library names, etc.,
for the configurations you will be using. Many of these will already be correct,
but examine them because some of them are specific to the systems on which
PHAML was developed. In particular, many of the compiler command names
have been changed to avoid conflicts between multiple compilers on one system,
and nearly all of the paths will vary between systems.

In step 3, you can override values set in step 2 for particular system config-
urations. For example, suppose your MPICH library has a different name on
Linux than it has on all your other systems. Then in step 2 you set the name
used on most systems, and in step 3 you override it if PHAML SYSTEM is your
linux box.

There are two other ways to override the default configuration variable val-
ues: 1) on the command line for mkmkfile.sh (described below), and 2) by
setting environment variables in your shell. If an environment variable exists
with the same name as a configuration variable, the value of that environment
variable is used. Usually these variables are set in the shell startup file. For
csh-type shell, an example is

setenv PHAML OS linux
Once you finish modifying mkmkfile.sh, running it will create Makefile in

the src directory and all the subdirectories under example and testdir. If

10

a file named Makefile already exists, it is moved to Makefile.bak before the
new file is created. To accept the default configuration, just run

./mkmkfile.sh
To override the default values and values given by environment variables,

specify them on the command line by giving a space-separated list of configura-
tion variables and values. Here, including the “PHAML ” part of the configuration
variable is optional. For example,

./mkmkfile.sh PARALLEL messpass spawn PARLIB lam

2.2.2 Compiling the Library

Once Makefile has been built, just type make in either the PHAML root di-
rectory or src subdirectory to compile the PHAML library. If this shows that
Makefile has errors in it, you can either edit Makefile to fix them (but then
they will appear again if you need to run mkmkfile.sh again), or fix the errors
in mkmkfile.sh and rebuild Makefile. This will create the PHAML library
libphaml.a and copy it to subdirectory lib. It also copies any module files
(e.g., *.mod) to subdirectory modules, and creates a file lib/CONFIG that con-
tains the values of the configuration variables used to create the library.

2.3 Testing the Library

After creating the PHAML library, you can test it by running the PHAML
Test Suite. The suite contains over 100 short test programs to test nearly
all aspects and options of PHAML. Tests that do not apply to the current
compilation of the library are skipped. The tests have not yet been written for
PHAML PARALLEL=messpass nospawn (i.e. SPMD programs). They can only be
run with sequential or messpass spawn (i.e. master/slave) programs.

To run the full test suite, enter the command
make test
from either the PHAML root directory or the testdir subdirectory. To

delete all the files that were created by the tests, enter the command
make test what=clean
The tests can be grouped into three categories. The first tests consists of two

very simple programs to verify that a program can be compiled, linked and run.
The interactive tests test the use of the pause variables to phaml solve pde,
spawning in a debug window, and graphics. The remaining tests are the non-
interactive tests. Depending on how many optional auxiliary packages are in-
cluded, the speed of your computer system, etc., these may take anywhere from
a few minutes to a few hours to run.

You can run just the first tests, just the first and interactive tests, or just
the first and noninteractive tests with the commands

make test what=first
make test what=interactive
make test what=noninteractive

11

If you are running the tests from a batch system where you cannot respond
to interactive prompts, you should use what=noninteractive.

The individual interactive tests can be run by giving what the value pause,
debug, or graphics. The noninteractive tests are in the directories
testdir/test *. You can run individual noninteractive tests by giving what
the name of the subdirectory, with or without test . For example, to run the
ARPACK tests you can use either

make test what=test arpack, or
make test what=arpack
The results of the tests are printed both to the screen and to the file

testdir/testresults. The file only contains standard output, not standard
error, so things like messages from the compiler will not appear in the file.
Each test consists of a short program that is compiled and run with the output
directed to a file. The file is compared to an existing file that contains the ex-
pected output. Each test is identified as SUCCESS, FAILURE or WARNING.
WARNING indicates that the output is not the same as the comparison file.
Often this difference is just minor numerical differences (accumulated round
off error) due to different processors, compilers, versions of auxiliary packages,
etc. The warning message will direct you to a file that contains the differences,
as identified by diff, which you should examine to see if the differences are
significant.

2.4 Compiling and Running the Examples

Next you compile your application and link in the PHAML library. With most
compilers you will need to specify the location of the module files when compil-
ing program units that use phaml. Many compilers use the -I flag for this (e.g.
f90 -I $PHAML HOME/modules myprog.f90), but you should check your com-
piler’s documentation. You also need to link with the PHAML library (e.g. f90
myprog.f90 -L$PHAML HOME/lib -lphaml) and any other libraries your pro-
gram needs (MPI, OpenGL, LAPACK, etc.). Your best start is to look at the
examples in the examples directory, and their Makefiles (which were created
by mkmkfile.sh).

With the examples, a successful make will create up to three executables:

1. the primary executable phaml. This is the program you run.

2. phaml slave if PHAML PARALLEL is messpass spawn. This is spawned by
phaml.

3. phaml graphics if PHAML GRAPHICS is not none and PARALLEL is not
messpass nospawn. This is spawned by phaml and phaml slave if
PARALLEL is messpass spawn, or run from the command line if PARALLEL
is sequential.

In the PHAML root directory, make clean will remove any files created by
compilation (e.g. *.o) in src, examples/*, and testdir/*. make reallyclean
will also remove everything in lib and modules, and the Makefiles.

12

In general, you run phaml as you would any parallel program that uses the
message passing library you have selected. Some examples are:

1. A sequential compilation. Run the primary program.

phaml

If you requested graphics, you must also run the graphics program.

phaml graphics

2. PVM, as a master/slave program. Start the PVM demon on the nodes of
the virtual machine. Then just run the master program, which will spawn
the slaves and graphics.

phaml

3. LAM MPI, with spawning. You only start the master program, which
spawns the slaves and graphics, so specify the number of processors to be
1.
mpirun -w -np 1 phaml

I have also found that in this case you don’t need to use mpirun, you can
just execute the master.
phaml

4. MPICH MPI, as an SPMD program. Since this does not spawn the slaves
and graphics, you must use mpirun to specify the right number of pro-
cesses. If there are to be n slaves, this consists of the sum of the following:
One for the master, n for the slaves, one if the master is doing graphics,
and n if the slaves are doing graphics. For example, if there are four slaves
and the master is doing graphics,
mpirun -machinefile <file with list of hosts> -np 6 phaml

5. See also the file doc/HINTS for my notes on running under debuggers,
using ssh, redirecting displays, etc.

For parallel code with PVM, you will need to have phaml, phaml slave and
phaml graphics (if you are using graphics) in $HOME/pvm3/bin/$PVM ARCH. I
just keep a symbolic link in there for each one, which points to the executable
in my working directory.

If you request graphics, a window should pop up with the graphical display.
The following actions are defined by default:

• arrow keys - pan

• left mouse button - rotate

• middle mouse button - zoom

• right mouse button - a menu of actions

The menu contains a large number of ways to change the graphics. See
Section 3.5 for further details.

13

model PHAML PARALLEL
sequential sequential
master/slave messpass spawn
SPMD messpass nospawn

Table 1: Correspondence between PHAML PARALLEL in mkmkfile.sh and the
parallel programming model.

3 Scalar Linear Elliptic Boundary Value Prob-
lems

The primary function of PHAML is to solve second-order scalar linear self-
adjoint elliptic partial differential equations of the form given in Equation 1
with Dirichlet, natural (often Neumann), or mixed boundary conditions given
by Equations 2 and 3. This section explains how to write a program that uses
PHAML to solve these problems. Other classes of problems that can be solved
using PHAML are addressed in subsequent sections. The information here is
organized by concept. For an organization by subroutine and parameters, see
the reference guide in Section 7.

3.1 Main program

PHAML is a library of subroutines. The user must write a program that calls
these subroutines to solve the application problem. Ordinarily this just requires
a simple main program and subroutines that define the equations, but the pro-
gram can be as complex as needed. Subroutines in the PHAML library can be
called from either the main program or subroutines.

3.1.1 Parallelism

There are three models of parallel processing supported by PHAML. The pro-
gramming model used must correspond to the one specified by PHAML PARALLEL
in mkmkfile.sh when the PHAML library was built (see Section 2.2.1). The
correspondence is given in Table 1.

In the master/slave model, the parallelism is almost transparent to the user.
The user only needs to specify nproc in phaml create, and start the program in
the manner specified by the message passing library, requesting 1 process. With
some libraries, for example LAM and MPICH2, even this can be transparent,
since you can just run the executable when you are only starting 1 process, unless
your system uses a queuing program like PBS. Sequential programs can use the
same program as a master/slave program, and nproc will be ignored. Single
Program Multiple Data (SPMD) programs require a little more knowledge of
the parallelism. Each instance of the program must determine if it is to be the
master, a slave, or a graphics server, and act accordingly. This is explained

14

program simple
use phaml
type(phaml_solution_type) :: sol
call phaml_create(sol,nproc=2)
call phaml_solve_pde(sol, &

max_vert=100000, &
print_grid_when=PHASES, &
print_grid_who=MASTER, &
print_error_when=PHASES, &
print_error_what=LINF_ERR, &
print_error_who=MASTER)

call phaml_destroy(sol)
end program simple

Figure 1: A simple main program.

in the next section. Since SPMD PHAML programs behave as if they were a
master/slave program, with process 0 acting as the master, this document will
often make reference to the master and slaves, even though the program might
be SPMD.

3.1.2 Program structure

3.1.2.1 Master/slave and Sequential

In a master/slave program, the user writes a program for the master process.
The slave and graphics programs are given in the src directory as slave.f90
and graphmain.f90. To compile these programs, see the Makefiles in the
examples directory.

Figure 1 illustrates a very simple main program for a master/slave model.
More complicated examples can be found in the examples directory. This ex-
ample illustrates the main steps in writing a PHAML program.

First it must use module phaml. This gives access to all the public subrou-
tines, the defined constants that are used as values for subroutine arguments, the
phaml solution type data structure, and the defined constant my real which
contains the kind number for reals in PHAML.

Second, there must be at least one variable of type phaml solution type.
Variables of this type contain all the information known about the solution of
the equation, including the current grid, solution, parallel processes, etc. The
type is a public entity in module phaml, but the internals of the type are private.
This means you cannot directly manipulate components of the variable, you can
only pass it to the PHAML subroutines that operate on it.

Next, the solution variable is initialized by subroutine phaml create. This
creates an initial grid, allocates and initializes other components of the variable,
and, for master/slave programs, spawns the slave and graphics processes. Here

15

we requested the use of 2 slave processors. Other arguments will be discussed in
subsequent sections as they become relevant. A full list can be found in Section
7.4.4.

The PDE is solved by calling phaml solve pde. This subroutine requires
that the first argument be a solution variable. There are over 100 more argu-
ments to this subroutine, which will be discussed in subsequent sections and
can be found in Section 7.4.14. To make this manageable, all arguments are
optional, have reasonable defaults, and should be given as keyword arguments,
i.e. dummyarg=value, as shown in the example.

Finally, the solution variable should be destroyed by phaml destroy to free
memory and terminate any processes that were spawned by phaml create.

3.1.2.2 SPMD

An SPMD program is more complicated because the master, slave and graph-
ics processes are identical. However, it still operates like a master/slave program,
so each process must determine if it is the master, a slave, or a graphics server.
This is illustrated in Figure 2 for a program that uses an MPI library.

In addition to using module phaml, it must use module mpif mod to get
access to the MPI include file.

The first step is to initialize MPI, determine how many processes there are,
and determine the rank of this process. This is needed to determine what type
of process this will be, so it cannot be hidden inside phaml create like it is for
master/slave programs.

Then the number of slaves is computed based on the total number of pro-
cesses (which is specified when the program is launched, for example by mpirun)
and how many graphics processes are needed.

Each process determines its type based on its rank (my processor) and the
number of slaves, and calls the corresponding main subroutine. The slave and
graphics main subroutines are in the PHAML library. The main subroutine for
the master is nearly identical to the main program in the master/slave model,
as shown in Figure 2.

3.2 Defining the problem

3.2.1 Defining the PDE

The PDE in Equation 1 must be defined in subroutine pdecoefs. For conve-
nience, the equation is repeated here.

− ∂

∂x
(p(x, y)

∂u

∂x
) − ∂

∂y
(q(x, y)

∂u

∂y
) + r(x, y)u = f(x, y)

pdecoefs receives a point (x, y) and returns the value of the functions p, q,
r and f at that point in the arguments cxx, cyy, c and rs respectively. The
interface for this routine is given in Section 7.3.6. For a scalar PDE, the return
variables are 1× 1 arrays (they have higher dimension for systems of equations;
see Section 4.2) and can be assigned with a whole array assignment statement,

16

program simple_spmd
use phaml
use mpif_mod
integer :: whodrawg
integer :: jerr
integer :: my_processor, total_nproc
integer :: nslave, subtract, divide

! initialize MPI, find out how many processors and what my rank is

call mpi_init(jerr)
call mpi_comm_size(MPI_COMM_WORLD,total_nproc,jerr)
call mpi_comm_rank(MPI_COMM_WORLD,my_processor,jerr)

! set the graphics options

whodrawg = NO_ONE

! determine how many processors for slaves and graphics

subtract = 1
if (whodrawg == MASTER .or. whodrawg == EVERYONE) subtract = 2
divide = 1
if (whodrawg == SLAVES .or. whodrawg == EVERYONE) divide = 2
nslave = (total_nproc-subtract)/divide

! call the master, slave or graphics program depending on my rank

if (my_processor == 0) then
call phaml_master(whodrawg,nslave)

elseif (my_processor <= nslave) then
call phaml_slave

else
call phaml_graphics

endif
end program simple_spmd

subroutine phaml_master(whodrawg,nslave)
use phaml
integer, intent(in) :: whodrawg, nslave
type(phaml_solution_type) :: sol
call phaml_create(sol,nproc=nslave,draw_grid_who=whodrawg)
call phaml_solve_pde(sol, ...)
call phaml_destroy(sol)
end subroutine phaml_master

Figure 2: An SPMD main program using MPI.
17

subroutine pdecoefs(x,y,cxx,cxy,cyy,cx,cy,c,rs)
use phaml
real(my_real), intent(in) :: x,y
real(my_real), intent(out), dimension(:,:) :: cxx,cxy,cyy,cx,cy,c
real(my_real), intent(out), dimension(:) :: rs
cxx=1
cxy=0
cyy=1
cx=0
cy=0
c=0
rs=0
end subroutine pdecoefs

Figure 3: pdecoefs for Laplace’s equation.

making their “arrayness” transparent. Figure 3 shows how pdecoefs could be
written for Laplace’s equation ∇2u = 0.

Subroutine pdecoefs also takes three more return arguments: cxy, cx and
cy. These are not currently used. They are included for a possible future
extension of the class of problems that PHAML can solve. Strictly speaking
they do not need to be set, but it would be wise to set them to 0 to avoid
possible problems in the future if PHAML does start using them.

3.2.2 Defining the boundary conditions

The boundary conditions are defined in subroutine bconds. The interface for
this routine is given in Section 7.3.1. On each piece of the boundary (Section
3.2.3 explains how to define the boundary piecewise and send a piece ID number
to bconds) the boundary can be Dirichlet as defined by Equation 2

u = g(x, y),

natural (usually Neumann) or mixed as defined by Equation 3

p(x, y)
∂u

∂x

∂y

∂s
− q(x, y)

∂u

∂y

∂x

∂s
+ c(x, y)u = g(x, y),

or periodic (usually on opposite sides of a rectangle).
bconds receives as input a point (x, y) at which to return the boundary

conditions, and bmark, an integer ID number for the piece of the boundary that
(x, y) is on. This ID is defined along with the boundary of the domain (Section
3.2.3).

The type of boundary condition for the indicated piece is returned in itype
using a symbolic constant listed in Table 2. The functions p and q in Equation
3 are the same as those in the PDE, Equation 1, which are defined in subroutine

18

subroutine bconds(x,y,bmark,itype,c,rs)
use phaml
real(my_real), intent(in) :: x,y
integer, intent(in) :: bmark
integer, intent(out) :: itype
real(my_real), intent(out) :: c(:,:),rs(:)
if (bmark == 1) then

itype = NATURAL
else

itype = DIRICHLET
endif
c=0
rs=0
end subroutine bconds

Figure 4: bconds for homogeneous boundary conditions, natural on boundary
piece 1 and Dirichlet elsewhere.

boundary condition itype
Eq. 2 DIRICHLET
Eq. 3 with c = 0 NATURAL
Eq. 3 with c 6= 0 MIXED
periodic PERIODIC

Table 2: Permitted values for itype to specify the type of boundary conditions.

19

pdecoefs (Section 3.2.1) and not repeated here. The function c in Equation 3
is returned in the variable c. Finally, the function g in Equations 2 and 3 is
returned in rs.

c and rs are arrays, but for scalar problems the dimensions are all 1, and
they can be assigned with a whole array assignment statement. (They have
higher dimension for systems of equations; see Section 4.2.)

Assuming the domain is the unit square with the left side assigned 1 for the
ID, Figure 4 shows a subroutine for the boundary conditions

∂u/∂n = 0 on x = 0 (4)
u = 0 elsewhere (5)

Periodic boundary conditions say that the value of the solution on one piece
of the boundary is the same as the value on another piece. Usually the two
pieces are opposite sides of a rectangle, but for generality we need a means of
indicating which two pieces are matched up. This is done by making the piece
ID of the two pieces have the same absolute value, with one positive and the
other negative. c and rs are not used with periodic boundary conditions, but
it is prudent to set them to 0. For an example of periodic boundary conditions,
see examples/periodic.

Natural and periodic boundary conditions require that there be at least one
point with Dirichlet boundary conditions to make the solution unique.

3.2.3 Defining the domain and initial grid

The domain and initial grid can be defined in one of two ways. The first is
to supply subroutines that define the boundary explicitly as a piecewise curve
in R2. This approach is required if the boundary is not polygonal, i.e. if it
has curved pieces, but can also be used for polygonal domains. The second is
to provide triangle data files that were produced by the program Triangle [22].
These files can be created by writing a .poly file and running Triangle, or by
using the first approach once and saving the triangle data files that PHAML
creates, or by using the triangle data files from one of the PHAML examples. In
either case, this gives a starting triangulation, which is preprocessed to create
the initial grid.

To define the domain with subroutines, you must write three subroutines
similar to those used by the domain processor of Rice [21].

subroutine boundary point(ipiece,s,x,y) contains the definition of the
boundary. Each piece of the boundary is given by a parametric curve (x(s), y(s))
for s in some range of R. The ending point of one piece must be the same as the
starting point of the next piece, including the last piece of the outer boundary
connecting to the first piece of the outer boundary, and the last piece of each
hole connecting to the first piece of the same hole. The input parameters ipiece
and s indicate which piece of the boundary and parameter value to evaluate,
and the output parameters x and y are the requested point on the boundary.

20

ipiece is also used as the boundary marker for the triangle data files, and
will be passed to bcond (Section 7.3.1) to simplify evaluation of boundary con-
ditions. The endpoints of the boundary pieces will always be vertices of the
grid, and are assigned the boundary marker of the piece they start. To get a
boundary marker that is unique to an individual vertex, define a boundary piece
of length 0 at that vertex (i.e., starting and ending parameters are the same).
The last boundary piece cannot be a single point. Instead, make that point be
the first piece.

function boundary npiece(hole) (Section 7.3.3) returns the number of
pieces used to define the boundary. If hole is 0, it should return the number of
pieces that define the outer boundary. Otherwise it should return the number
of pieces that define the holeth hole. The holes are numbered consecutively
starting with 1. boundary npiece(0) must return a positive integer if and only if
subroutines are used to define the boundary. If it returns 0 or a negative integer,
the starting triangulation is read from triangle data files. If hole is larger than
the number of holes in the domain, it should return 0.

subroutine boundary param(start,finish) returns the range of param-
eter values for every piece of the boundary. The output variables start and
finish are real(my real) arrays of length equal to the total number of bound-
ary pieces, and should be assigned the starting and ending parameters of each
piece.

The starting grid is created by PHAML by creating a .poly file for input
to Triangle, which is then run to create triangle data files. Running Triangle
involves a call to the intrinsic subroutine system, which is not standard in For-
tran 90. Most compilers provide this routine as an extension, and use the same
behavior for it, but if you have trouble you may have to change the definition
of my system in sysdep.f90.

You can control the fineness of the starting grid with the parameter max blen
in phaml create. No triangle boundary side in the starting triangulation will
have length longer than max blen, and Triangle is run with -a max blen2

√
3/4

to limit the area of the triangles to that of an equilateral triangle with side
length max blen.

The name of the .poly file is determined by the parameter triangle files
in phaml create, which has the default value "domain". The file name will be
the character string with the added suffix .poly. Note that if the full path is not
given in triangle files, the location of the file may be compiler dependent.

The second method for defining the domain and initial grid is to use triangle
data files. These are the edge (.edge), element (.ele), neighbor (.neigh), node
(.node) and poly (.poly) files created by the program Triangle.

To indicate that the starting grid is given by triangle data files, have function
boundary npiece(0) return 0 or a negative number. The parameter
triangle files in phaml create, which has the default value "domain", then
contains the root of the name of the five triangle data files. If Triangle inserted
an iteration number (e.g. .1) into the name, then it should be included.

If you are solving a PDE on the unit square, or on one of the other domains
in the examples, then you only need to copy the triangle data files from the

21

example and, if necessary, specify the name of the files.
Otherwise you must define the polygonal domain with a .poly file, which is

basically a list of vertices and boundary line segments. Holes are allowed. See
the documentation for Triangle [23] for the exact definition of a .poly file. You
should specify a boundary marker for each vertex and boundary segment. This
boundary marker will be passed to function bcond to simplify the definition of
boundary conditions. With a .poly file defined, create the triangle data files
with the command

triangle -pneqj root of filename.poly
The -p flag indicates the input is a poly file. The -n, and -e flags force the

writing of neighbor and edge files. The -q flag requests a quality mesh, which
imposes bounds on the angles. The -j flag says to jettison (remove) vertices
that are not part of the triangulation. Also, the -a flag may be useful to impose
a maximum size (area) of the triangles, and the -I flag can be used to prevent
the insertion of the iteration number in the filename. See the documentation
for Triangle [23].

Regardless of whether they are created by Triangle from a .poly file, created
by PHAML from the boundary subroutines, or copied from somewhere else, the
triangle data files define a starting triangulation. PHAML requires an initial
grid that satisfies certain conditions. This initial grid is determined from the
starting triangulation automatically by PHAML through a process of refinement
and grid smoothing as described in [20]. The triangles of the initial grid are
obtained by bisection or trisection of the starting triangles, followed by some
node movement.

3.2.4 The true solution

If the true (a.k.a. exact or analytical) solution is known, it and its first deriva-
tives can be provided through subroutines trues, truexs and trueys. If these
are provided, then the program can print norms of the error (Section 3.4.2)
or choose the error as the function to visualize with the graphics. If trues is
defined, but truexs and/or trueys is not, then the energy norm of the error
cannot be printed, but all other norms and the graphics are still valid.

The interfaces for these routines are given in Sections 7.3.8, 7.3.9 and 7.3.10.
They are function subroutines that return the value of the solution, x derivative
of the solution, and y derivative of the solution, respectively. The input vari-
ables give the point (x, y) at which to return the solution. There are also two
input variables, comp and eigen, that are not relevant for scalar boundary value
problems (they are used for systems of equations and eigenvalue problems).

3.3 Solution method

There are many arguments to phaml solve pde that affect the details of the
solution method. This section explains the options available. It is organized
with sections on discretization, refinement, the error indicator, the linear sys-
tem solver, load balancing and termination. Each section briefly describes the

22

methods used, but this is not intended to be a thorough treatment of parallel
adaptive multilevel finite element methods. See the references for more details
of the methods.

See also Section 7.4.14 which formally defines the arguments to
phaml solve pde.

3.3.1 Discretization

PHAML uses a standard Galerkin finite element method (see, for example
[24][25]) to approximate the solution of Equations 1-3, which we briefly de-
scribe here. The domain is partitioned into a set of conforming triangles, T ,
(the grid or mesh) and the approximation space is defined as the Hilbert space
of continuous functions that are polynomials over each triangle. The degree of
the polynomial can be different over different triangles, but PHAML restricts
the polynomial degrees to differ by at most 1 between two triangles that share
an edge. The p-hierarchical basis, Φ = {φi}, of either Szabo & Babuška [25] or
Carnevali et al. [7] spans the space, and gives a representation for the approxi-
mate solution

uT =
∑
φi∈Φ

αiφi (6)

Basis functions can be categorized in three groups. The linear (p = 1) basis
functions are in one-to-one correspondence with the vertices of the grid. Higher
order basis functions are associated with edges or faces (triangles). There are
p− 1 edge bases associated with an edge of degree p, and (p− 1)(p− 2)/2 face
bases associated with a face of degree p.

The space has the energy inner product defined by

〈u, v〉 =
∫

Ω

puxvx + quyvy + ruv (7)

where p, q and r are from Equation 1, and the subordinate energy norm ‖u‖2 =
〈u, u〉. The approximate solution is the function in the space that minimizes
the energy norm of the error, i.e. the error is orthogonal to the space under the
energy inner product. Thus the approximate solution satisfies

〈uT , φi〉 = 〈f, φi〉2∀φi ∈ Φ (8)

where 〈., .〉2 is the L2 inner product 〈u, v〉2 =
∫
Ω

uv. Substituting Equation 6
into Equation 8 leads to the discretized form of the problem Ax = b with aij =
〈φi, φj〉, bi = 〈f, φi〉2, and x the vector of αi’s. Natural boundary conditions
are imposed automatically by the energy inner product. Dirichlet boundary
conditions are imposed by replacing the corresponding equations with equations
that set the corresponding αi’s directly from the boundary condition.

There are only three arguments that affect how discretization is performed.
First, if p-refinement is not performed (see Section 3.3.2), then you can select
the (constant) degree of the polynomials in the approximation space with the

23

argument degree. Second, the integrals of Equation 7 are computed by nu-
merical quadrature, with the order of the quadrature rule determined such that
integrals are exact for polynomials of the degree 2(p− 1) where p is the degree
of the basis over each triangle. Sometimes this may not be accurate enough, in
which case you can supply an increase of the order through inc quad order.
Finally, in triangles that are owned by a different processor (see Section 3.3.5),
the order of the quadrature rule is increased to the maximum supported order.
If this were not done, then the integrals over those triangles would be less accu-
rate than the same integrals on the processor that owns the triangle, because it
will have refined the triangle into many smaller triangles. However, sometimes
this doesn’t matter, such as when solving Laplace’s equation (all the integrals
are exact) or when using one of the auxiliary solvers (see 3.3.4) which don’t use
the unowned triangles. You can avoid the extra computation of the higher order
quadrature with ignore quad err=.true.

3.3.2 Refinement

One of the major phases in phaml solve pde is refinement of the grid to increase
the size of the approximation space, which reduces the norm of the discretiza-
tion error. h-refinement refers to subdividing triangles by newest node bisection
(see [14][16]). p-refinement refers to increasing the polynomial degree over a tri-
angle. In either case the refinement can be undone, referred to as derefinement.
Derefinement can be switched off with the argument derefine=.false. Re-
finement can be done uniformly, i.e. refine all triangles in the grid, or adaptively,
i.e. refine a selected subset of the triangles.

The type of refinement that is performed is determined by the argument
reftype. This argument can have one of the values H UNIFORM, H ADAPTIVE,
P UNIFORM, P ADAPTIVE or HP ADAPTIVE. With HP ADAPTIVE an element may be
refined by either h- or p-refinement. This is still experimental in PHAML.

There are several ways to determine how much refinement to perform in one
refinement phase. This is controlled by the argument refterm. The allowed
values for this argument are given in Table 3.

“Double” means that the refinement should approximately double the num-
ber of vertices, elements or equations in the grid. The factor 2 was chosen
because this corresponds to the increase that would occur with one uniform
h-refinement of the grid. If a different factor is desired, it can be specified with
the real valued argument inc factor.

Strictly doubling the number of entities may lead to grids that are nonsym-
metric, which may be undesirable if the solution is symmetric. This can be
improved by using the values that contain SMOOTH. With these values, after the
doubling is completed the refinement will continue by refining all elements with
a similar error indicator (Section 3.3.3) to the last element refined.

“Keep” attempts to change the grid by derefining some elements and refining
others while keeping the total number of entities approximately the same. This
is useful, for example, with time dependent problems where the grid should
track the movement of some feature of the solution.

24

DOUBLE NVERT
DOUBLE NVERT SMOOTH
DOUBLE NELEM
DOUBLE NELEM SMOOTH
DOUBLE NEQ
DOUBLE NEQ SMOOTH
HALVE ERREST
KEEP NVERT
KEEP NVERT SMOOTH
KEEP NELEM
KEEP NELEM SMOOTH
KEEP NEQ
KEEP NEQ SMOOTH
ONE REF

Table 3: Permitted values for refterm to determine how much refinement to
do.

HALVE ERREST refines the grid until the maximum error indicator has been
reduced by half. This corresponds to the expected reduction of error by a
uniform h-refinement with degree=1 and a smooth solution.

ONE REF is a scheme in which no element gets refined more than once in
a refinement phase. The argument reftol can provide a tolerance for which
elements should be refined. All elements with an error indicator larger than
reftol/

√
n are refined, where n is the starting number of equations.

3.3.3 Error indicator

The heart of an adaptive refinement strategy is the error estimator, or more
properly, error indicator. An error indicator is computed for each triangle,
and those with the largest error indicators are refined. PHAML currently con-
tains three error indicators. The error indicator is selected by the argument
error estimator which takes one of the values LOCAL PROBLEM,
HIERARCHICAL COEFFICIENT or TRUE DIFF.

LOCAL PROBLEM is the primary error indicator in PHAML. It is based on
solving a small local problem. (See [1] for a more detailed treatment of error
indicators.) Equation 1 is modified by replacing f with the residual f − LuT

where L is the differential operator. For a linear PDE, the solution of this equa-
tion is the error. The modified equation is solved on a domain consisting of one
or two triangles to get an estimate of the error over that small domain. To ap-
proximate the solution of this small problem with slightly higher accuracy than
the current solution uT , the triangle(s) are refined once either by h-refinement
or p-refinement. The h-refinement form uses two triangles and refines them as a
pair by bisection. Homogeneous Dirichlet boundary conditions are applied. The
p-refinement form uses one triangle with polynomial degree one larger than that

25

used for uT . Natural boundary conditions are applied based on the jump in the
normal derivative of uT across the triangle edges. Currently PHAML uses the
h-refinement form as the error indicator for h-refinement and the p-refinement
form as the error indicator for p-refinement. Since the refinement used for the
error indicator is exactly what would occur if the triangle(s) was (were) chosen
for refinement, this gives an estimate of how much the solution would change if
this triangle(s) was (were) refined.

The local problem error indicator is very accurate, but it is relatively ex-
pensive, because of the computation required to set up and solve the elemental
matrices for each triangle. A less expensive approach, given by
HIERARCHICAL COEFFICIENT, is to simply examine the hierarchical coefficients
(see [14]) of uT over each triangle, which is similar to computing the local
problem indicator one refinement back. This is a very fast indicator which
is less accurate than the local problem indicator, but often adequate for cre-
ating a good adaptive grid. Currently, this indicator can only be used for
reftype=H ADAPTIVE and degree=1.

The TRUE DIFF error indicator uses the difference between the true solution
(if given, see 3.2.4) and uT . This is primarily available for comparison with new
error indicators and would not normally be used.

3.3.4 Linear system solver

Another major phase of phaml solve pde is the solution of the linear system
of equations to get the coefficient vector of the solution. PHAML contains a
hierarchical basis multigrid method (see [15][17][18]) as the primary linear sys-
tem solver. It also contains hooks into several freely available software packages
of direct and iterative parallel solvers for comparative studies and for situa-
tions where the multigrid algorithm is not appropriate (for example, indefinite
problems). For information on obtaining the optional software discussed in this
section, see Section 2.1. The solver is selected by the arguments solver and
preconditioner.

3.3.4.1 Hierarchical basis multigrid solver

The hierarchical basis multigrid solver (HBMG) is selected by solver =
MG SOLVER. The approach is to cycle through a sequence of nested grids. The
grids come from the refinement process with the `th grid consisting of triangles
with refinement level up to `. Equations corresponding to high order face basis
functions are removed from the system by static condensation [18] before the
multigrid cycles, and solved directly after the multigrid cycles are complete.
In each cycle, the equations corresponding to high order edge basis functions
are first relaxed by some Gauss-Seidel iterations and the residual is injected
into the equations corresponding to the linear basis functions. The equations
corresponding to the linear basis functions are relaxed by some red-black Gauss-
Seidel iterations. The black equations are those corresponding to equations in
the coarse grid, and the red equations are from the fine grid but not the coarse
grid. A basis change is then performed on those equations to convert from a

26

nodal basis to a 2-level h-hierarchical basis, and the coarse grid equations are
extracted. The process of relaxation, basis change and extraction is repeated
until the grid consists only of the initial grid, i.e. all elements have refinement
level 1. The coarsest grid problem is solved with a LAPACK direct solver.
The process is then reversed by performing relaxation followed by conversion
from 2-level h-hierarchical basis to nodal basis to get the next finer grid. When
the cycle has returned to the finest grid, another relaxation is performed on the
equations corresponding to the high order edge basis functions. This constitutes
one multigrid V-cycle. Cycles are repeated until some termination criterion is
met.

There are several arguments to phaml solve pde that determine the specifics
of the multigrid algorithm. mg prerelax ho, mg postrelax ho, mg prerelax
and mg postrelax give the number of half-red-black Gauss-Seidel iterations to
perform before and after solving the coarse grid problem for the high order
equations and the linear equations, respectively. A half iteration relaxes the
red equations but not the black equations. So, for example, mg prerelax=2
specifies one red-black iteration.

The termination of the multigrid cycles can be specified as a fixed number of
cycles or by a tolerance on the residual of the linear system. To terminate by a
tolerance, specify the tolerance in mg tol. Iterations continue until the `2 norm
of the residual of the scaled linear system is less than mg tol. There are two
symbolic constants that provide special values for mg tol. MG ERREST TOL says
to cycle until the residual is reduced to some fraction of the global error estimate.
This avoids excess computation from solving the system more accurately than
is necessary relative to the discretization error. MG NO TOL says to use a fixed
number of iterations rather than a tolerance. The argument mg cycles gives
the fixed number of cycles to perform. Used in conjunction with a tolerance,
mg cycles provides an upper bound on the number of cycles to guarantee the
iteration will terminate.

3.3.4.2 Alternative direct solvers

3.3.4.2.1 LAPACK

The LAPACK library [4] is always linked with a PHAML program. In
limited situations it can be used as the linear system solver. It is specified
by solver=LAPACK SPD SOLVER for most problems, which generate a symmetric
positive definite matrix, or by solver=LAPACK INDEFINITE SOLVER for problems
that generate an indefinite symmetric matrix. However, it can only be used as
the solver for sequential programs because it is not a parallel library. And it
should only be used for relatively small problems.

3.3.4.2.2 MUMPS

MUMPS [2][3] is a parallel direct solver from the European project PARA-
SOL. Currently the PHAML interface to MUMPS only supports double pre-
cision, i.e. my real=kind(0.0d0) in global.f90. MUMPS is specified with

27

PETSC RICHARDSON SOLVER Richardson
PETSC CHEBYCHEV SOLVER Chebychev
PETSC CG SOLVER conjugate gradients
PETSC BICG SOLVER BiConjugate Gradients
PETSC GMRES SOLVER generalized minimal residual
PETSC BCGS SOLVER biconjugate gradients stabilized
PETSC CGS SOLVER conjugate gradient squared
PETSC TCQMR SOLVER transpose-free quasi-minimal residual
PETSC TFQMR SOLVER transpose-free quasi-minimal residual
PETSC CR SOLVER conjugate residual
PETSC LSQR SOLVER least squares

Table 4: Available values of solver for the PETSc solvers.

NO PRECONDITION no preconditioning
MG PRECONDITION one hierarchical basis multigrid V-cycle
FMG PRECONDITION one F cycle of the MG preconditioner
FUDOP DD PRECONDITION an experimental domain decomposition
COARSE GRID PRECONDITION precondition with solution on a coarse grid
PETSC JACOBI PRECONDITION Jacobi
PETSC BJACOBI PRECONDITION block Jacobi
PETSC SOR PRECONDITION SOR and SSOR
PETSC EISENSTAT PRECONDITION SOR with Eisenstat trick
PETSC ICC PRECONDITION incomplete Cholesky
PETSC ILU PRECONDITION incomplete LU
PETSC ASM PRECONDITION additive Schwarz

Table 5: Available values of precondition for the PETSc solvers.

solver=MUMPS SPD SOLVER or solver=MUMPS GEN SOLVER for the symmetric pos-
itive definite and general solvers, respectively.

3.3.4.2.3 SuperLU

SuperLU [13] is a parallel direct solver from the Lawrence Berkley National
Laboratories. It is specified by solver=SUPERLU SOLVER.

3.3.4.3 Alternative iterative solvers

3.3.4.3.1 PETSc

PETSc [5][6] is a parallel library of preconditioners and Krylov space iterative
solvers from Argonne National Laboratories. PHAML provides access to most
of the methods in PETSc and several parameters to those methods. Table 4 con-
tains the available PETSc solvers as specified by solver. Table 5 contains the

28

real(my real) petsc richardson damping factor
real(my real) petsc chebychev emin
real(my real) petsc chebychev emax
integer petsc gmres max steps
real(my real) petsc rtol
real(my real) petsc atol
real(my real) petsc dtol
integer petsc maxits
integer petsc ilu levels
integer petsc icc levels
real(my real) petsc ilu dt
real(my real) petsc ilu dtcol
integer petsc ilu maxrowcount
real(my real) petsc sor omega
integer petsc sor its
integer petsc sor lits
logical petsc eisenstat nodiagscaling
real(my real) petsc eisenstat omega
integer petsc asm overlap

Table 6: Arguments that are passed to the PETSc solvers.

HYPRE BOOMERAMG SOLVER algebraic multigrid
HYPRE PCG SOLVER preconditioned conjugate gradients
HYPRE GMRES SOLVER generalized minimal residual

Table 7: Available values of solver for the hypre solvers.

available preconditioners for the PETSc solvers specified by preconditioner.
The FMG, FUDOP DD and COARSE GRID preconditioners are experimental
and may be removed in a future release of PHAML. Their use is discouraged.

There are a number of arguments that are used as parameters to the PETSc
methods. These are listed in Table 6. Refer to the PETSc User’s Manual [6] for
explanations of these arguments.

If the preconditioner is not one of the ones starting with PETSC, then memory
can be saved by not copying the matrix to the PETSc format. This is specified
by petsc matrix free=.true.

3.3.4.3.2 hypre

hypre [10][11] is a package of parallel iterative solvers and preconditioners
from Lawrence Livermore National Laboratories. The hypre solvers are listed in
Table 7 and preconditioners are listed in Table 8. Note that the BoomerAMG
solver does not use a preconditioner, and the ParaSails preconditioner cannot
be used with the PCG solver. There are also several arguments that are passed

29

NO PRECONDITION no preconditioning
HYPRE DS PRECONDITION diagonal scaling
HYPRE BOOMERAMG PRECONDITION algebraic multigrid
HYPRE PARASAILS PRECONDITION sparse approximate inverse (GMRES only)

Table 8: Available values of precondition for the hypre solvers.

integer hypre BoomerAMG MaxLevels
integer hypre BoomerAMG MaxIter
real(my real) hypre BoomerAMG Tol
real(my real) hypre BoomerAMG StrongThreshold
real(my real) hypre BoomerAMG MaxRowSum
integer hypre BoomerAMG CoarsenType
integer hypre BoomerAMG MeasureType
integer hypre BoomerAMG CycleType
integer hypre BoomerAMG NumGridSweeps(:)
integer hypre BoomerAMG GridRelaxType(:)
integer hypre BoomerAMG GridRelaxPoints(:,:)
real(my real) hypre BoomerAMG RelaxWeight(:)
integer hypre BoomerAMG IOutDat (not available after hypre 1.6.0)
integer hypre BoomerAMG DebugFlag
real(my real) hypre ParaSails thresh
integer hypre ParaSails nlevels
real(my real) hypre ParaSails filter
integer hypre ParaSails sym
real(my real) hypre ParaSails loadbal
integer hypre ParaSails reuse
integer hypre ParaSails logging
real(my real) hypre PCG Tol
integer hypre PCG MaxIter
integer hypre PCG TwoNorm
integer hypre PCG RelChange
integer hypre PCG Logging
integer hypre GMRES KDim
real(my real) hypre GMRES Tol
integer hypre GMRES MaxIter
integer hypre GMRES Logging

Table 9: Arguments that are passed to the hypre solvers.

30

to the hypre methods listed in Table 9. See the hypre user’s guide (distributed
with the software) for an explanation of these.

3.3.5 Load balancing

A parallel program with adaptive grid refinement must perform dynamic load
balancing. When the grid is refined adaptively, some processors will perform
more refinement than others, resulting in more grid elements, and hence more
of the computational load, than others. Dynamic load balancing redistributes
ownership of the elements to balance the load among the processors.

In PHAML, load balancing is performed by partitioning the grid into P
sets where P is the number of slave processes. Each process is said to own
the triangles in one of the partitions. Each vertex and edge has an associated
triangle and is owned by the process that owns that triangle. PHAML uses a
full domain partition (FuDoP) [16] in which each process also has additional
coarse elements that cover the unowned part of the domain. Figure 5 illustrates
an adaptively refined grid and the grid that would be seen by each of three
processors, with the color indicating ownership.

One normally thinks of performing load balancing after refinement to redis-
tribute the new grid. But it is also possible to perform predictive load balancing
before refinement, which can reduce the amount of data to be redistributed.
There also may be advantages to basing the balance on the number of elements,
number of vertices or number of equations. PHAML provides the choice of bal-
ancing any of these entities before and/or after refinement. For balancing after
refinement, it divides up the number of entities equally. For balancing before
refinement, it uses the error indicator as a weight in the partitioning algorithm,
so that those that are likely to be refined more times are given more weight.
The selection of what to balance and when to balance is given by the argu-
ments prebalance and postbalance which can take the value BALANCE NONE,
BALANCE ELEMENTS, BALANCE VERTICES or BALANCE EQUATIONS. Usually, one of
the two arguments is BALANCE NONE so that either regular or predictive bal-
ancing is performed, but it is possible to perform balancing on both sides of
refinement.

Grid partitioning algorithms have been the topic of extensive research, and
there are several algorithms available. The method built into PHAML is the
k-way refinement tree method [19]. This method uses the inherent refinement
tree where the tree nodes correspond to triangles and the children of a tree
node are the triangles created when a triangle is refined. Weights are attached
to the leaf nodes and a tree traversal is performed to sum the weights. A second
traversal is performed to partition the tree into P subtrees of equal summed
weight. The children in the tree are ordered such that a tree traversal gives a
space filling curve through the grid, and partitions are connected.

The choice of partitioning method is determined by the argument
partition method. The built in k-way refinement tree method is selected by the
value RTK. Alternative partitioning methods are provided through the optional
Zoltan dynamic load balancing library [8][9]. The values for selecting methods

31

Figure 5: An adaptive grid partitioned for 3 processors, and the grid seen by
each of the processors.

ZOLTAN RCB recursive coordinate bisection
ZOLTAN OCT RPI’s Octree method
ZOLTAN METIS local diffusion method from ParMETIS
ZOLTAN REFTREE refinement tree
ZOLTAN RIB recursive inertial bisection
ZOLTAN HSFC Hilbert space filling curve

Table 10: Available values of partition method for Zoltan partitioners.

32

from Zoltan are given in Table 10. See the Zoltan User’s Guide for descriptions
of these methods.

3.3.6 Termination

There are several ways to specify how long phaml solve pde should continue
to work on the solution, i.e. when to terminate. This section presents them.
At least one of them must be specified or else the subroutine will run forever.
Multiple termination criteria can be specified, and the routine will return when
any of them are satisfied.

The argument task selects what task should be performed by
phaml solve pde. Three of the values for task invoke a single pass of one
part of the program, and no further termination criterion is needed. These are
BALANCE ONLY, REFINE ONLY, and SOLVE ONLY. The value BALANCE REFINE SOLVE
invokes a loop over the three phases until one of the termination criteria is met.
SET INITIAL also loops over the three phases, but for the solve phase it inter-
polates the function in subroutine iconds (see Section 7.3.5). This is usually
used for setting initial conditions for a time dependent problem, or an initial
guess for a nonlinear problem (see Section 4.3).

The termination criteria are given by optional arguments and fall into two
categories. The first is those that specify an upper bound on the number of
something. These arguments all take an integer value. The arguments are
max elem (elements), max vert (vertices), max eq (equations in the linear sys-
tem), and max refsolveloop (number of times through the refine/solve loop).
You can also specify max lev (refinement levels) and max deg (polynomial de-
gree), but these are not termination criteria – if the refinement of an element
would exceed the given value, then it is simply not performed.

The other category is to terminate when an error estimate is small enough.
The global error estimate is computed from the local error indicators and can
be based on h or p as described in Section 3.3.3. The estimate can be an
estimate of the energy norm, L∞ norm, or L2 norm of the error. The arguments
term h energy err, term p energy err, term h Linf err, term p Linf err,
term h L2 err and term p L2 err all take a real(my real) value.

3.4 I/O

3.4.1 I/O files

PHAML writes printed output to two units, which can be specified through the
integer arguments output unit and error unit of subroutine phaml create.
Error messages and warnings are written to error unit and all other printed
output is written to output unit. By default, output unit is 6 which most
compilers provide as a pre-connected unit, often referred to as stdout. Also
by default, error unit is 0 which most compilers provide as a pre-connected
unit, often referred to as stderr. If your compiler uses different unit numbers
for pre-connected units, the correct units can be specified through these argu-
ments. The two units can be the same if you want to have error messages and

33

printed output intermixed. Warning messages from the master and slave pro-
cesses can be suppressed by passing print warnings=.false. to subroutine
phaml solve pde. Error messages and warnings from graphics processes cannot
be suppressed.

Usually stdout and stderr print to the terminal screen. In particular, they
usually print to the window from which the program was started. However,
the processes of a parallel program might not have an associated window, and
the destination of stdout and stderr is determined by the parallel library. For
example, if using a master/slave model with LAM as the parallel library, output
from the master process will go to the window from which it was started, but
output from the slave processes will go to the window from which lamboot was
run. Moreover, output from all the slaves is intermixed in this window. To
get more control over the destination of output from the slaves you can use
spawn form=DEBUG SLAVE in phaml create. This will open a window for each
slave process and normally the printed output goes to those windows.

If you prefer to have the printed output directed to a file, then you can open
a unit and specify that unit in output unit and/or error unit. PHAML pro-
vides “parallel open” and “parallel close” subroutines for this purpose. Subrou-
tine phaml popen (Section 7.4.10) opens a unit with a different file for the master
and each of the slaves. If you specify the name of the file to be root.suffix
then the actual filenames are rootXXXX.suffix for slave number XXXX, where
the number of digits in XXXX is the minimum needed for the number of slaves.
The master process is number 0. Subroutine phaml pclose (Section 7.4.9) closes
the unit.

Thus the usual process for directing printed output (or error) to files is: 1)
call phaml create with some non-pre-connected unit number in output unit,
2) call phaml popen with that unit number and some root file name, 3) call
phaml solve pde, 4) call phaml pclose with that unit number. Note that if
there are any error messages printed by phaml create, they cannot be written to
this file because the unit has not yet been opened. These messages are written
to unit 0 by default. You can specify a different unit through the argument
output now, but it must be a pre-connected unit.

3.4.2 Printed I/O

PHAML provides for the printing of various quantities at various times during
the execution of phaml solve pde. By default, the only printed output is a
header containing a summary of the input variables to phaml solve pde and a
trailer containing termination information, printed by the master process. Other
output is controlled through a series of “when” and “who” arguments. The
“when” arguments indicate how often to print something. They take the values
NEVER (don’t print that quantity), FINAL (print it just before returning), PHASES
(print it once in each refine/solve loop), and FREQUENTLY (print more often,
usually used for debugging). The “who” arguments indicate which processes
should print something. They take the values NO ONE (don’t print that quantity),
MASTER (the master prints that quantity for the entire grid), SLAVES (each slave

34

prints that quantity for the part of the grid that it owns), EVERYONE (both the
master and the slaves print), and MASTER ALL (the master prints the quantity
for each of the slaves).

print grid when and print grid who provide for printing a summary of the
grid, such as the number of vertices, number of elements, etc. print linsys when
and print linsys who provide for printing a summary of the linear system, such
as the number of equations, etc.

print error when and print error who provide for printing certain norms
of the error (if the true solution is provided) and error estimates.
print error what indicates what global norm(s) to print, with the available
norms being the energy norm, L∞ norm, and L2 norm. The values for this
argument are NEVER, ENERGY ERR, LINF ERR, L2 ERR, ENERGY LINF ERR,
ENERGY L2 ERR, LINF L2 ERR, and ENERGY LINF L2 ERR. The energy and L2 er-
rors are approximated using a sixth order quadrature rule for the integrals.
The L∞ norm is approximated using the quadrature points of a sixth order
quadrature rule.

print errest what controls which global error estimates are printed. It
takes values that are similar to print error what except that “ERR” is replaced
by HERREST, PERREST or HPERREST. HERREST indicates that the estimate of the
requested norm(s) should be computed using the h-refinement error indicator,
PERREST indicates the p-refinement error indicator should be used, and HPERREST
indicates that both indicators should be printed.

print error when also provides for monitoring the convergence rate of the
iterative linear system solver, if the solver is the built-in hierarchical basis multi-
grid method or one of the solvers from PETSc. If it has the value FREQUENTLY
then the `2 norm of the residual is printed after each iteration. It also accepts
the value TOO MUCH which additionally sets the solution to 0.0 before starting
the iterations, to avoid convergence in 1 iteration.

print time when and print time who provide for measuring execution time
of the program. The execution time of each section of the program (refinement,
reconciliation, load balancing, matrix assembly, linear system solution, com-
munication) is printed. Each time the time is printed it prints the time for
the most recent pass through the refine/solve loop and the total time so far.
clocks determines how the time is measured. It can be CLOCK C for the cpu
clock, CLOCK W for the wall clock, or CLOCK CW for both.

print header who and print trailer who specify which processes should
print the header and trailer, respectively.

3.4.3 Pausing

In order to examine printed or graphical output while a PHAML program is
running, it is often useful to have the program pause until you indicate that it
may continue. There are several “pause” arguments to phaml solve pde that
provide for this. They are logical arguments. When the program pauses, the
master prints “press return to continue” to its printed output unit. It then
reads from standard input, which is usually associated with the window from

35

which the master program was run. The pause arguments are pause at start
(pause upon entering phaml solve pde), pause at end (pause before leaving
phaml solve pde), pause after phases (pause at the end of each refine/solve
loop), and pause after draw (pause each time the graphics is updated).

3.5 Graphics

3.5.1 Overview

Graphics, or visualization, in PHAML is provided using OpenGL, which is a
platform-independent specification of a graphics application programming in-
terface, and GLUT, which supplies window, keyboard and mouse usage for
OpenGL. There are libraries for both of these specifications available for nearly
every computer. See Section 2.1.5 for URLs for more information on OpenGL
and GLUT and how to obtain the software.

PHAML’s graphics are interactive and menu driven. There may be graph-
ics windows associated with the master process and/or with each of the slave
processes. The master’s graphics shows the grid and solution as a whole en-
tity, whereas the slaves each show the grid and solution as they know it. The
selection of which processes will have graphics is made with the argument
draw grid who to phaml create, which can have the value MASTER, SLAVES,
EVERYONE, or NO ONE. There is no option to have only a subset of the slaves do
graphics.

The graphics servers, which are separate processes in the parallel program,
receive messages from the associated master or slave whenever the grid or so-
lution changes. For a program under a sequential compilation of PHAML, the
messages are passed by writing files to /tmp. For a master/slave program,
the graphics servers are spawned automatically during the execution of sub-
routine phaml create. For an SPMD program, the graphics servers should
be included in the number of processes launched (see Section 2.4). For a se-
quential program, you must start the graphics server, phaml graphics, from
the command line. If a sequential program terminates abnormally, you must
terminate phaml graphics by hand, and should check /tmp for leftover files
phaml message and phaml lock, and remove them if they exist.

All interaction with the graphics is performed with the mouse and arrow
keys. The left and middle mouse buttons and arrow keys can be assigned various
operations to change the view, as discussed in Section 3.5.3. By default, the left
button rotates, the middle button zooms and the arrow keys pan. The right
button brings up a menu of actions you can take to modify the graphics. The
main menu is shown in Table 11. Menu items with a right arrow (⇒) bring up
submenus.

The next section will show some of the visualizations that are available.
The subsequent sections will discuss how to manipulate the graphics through
the submenus.

36

view modifier ⇒
element edge color ⇒
element interior color ⇒
function ⇒
contour plots ⇒
preprocess function ⇒
subelement resolution ⇒
color scheme ⇒
toggle lights ⇒
element label ⇒
edge label ⇒
vertex label ⇒
associated element ⇒
eigenfunction to use ⇒
component to use ⇒
space filling curve ⇒
grid offset ⇒
crop (debug window)
toggle axes
write postscript ⇒

Table 11: The main graphics menu.

3.5.2 Example visualizations

The PHAML graphics server has many options in the graphics menu. Primarily
the graphics options are for different displays of the grid properties, functions
over the grid, and the partitioning of the grid over the slaves. The functions
that can be displayed include not only the computed solution, but also the true
solution and error (if the true solution is given), and error estimates. In this
section we present some examples of PHAML’s graphics capability with very
brief descriptions. The subsequent sections will discuss how to use the submenus
to create these and other graphical displays.

Figure 6 shows several of the different ways you can display a function. Parts
(a)–(f) show surface plots of the solution, which comes from using the menu
to select function to be solution. Part (a) shows the surface with the triangle
interiors colored by the solution value using the rainbow color scheme where
blue represents small values and red represents large values. In part (b) the
same function is shown with the grid added to the surface, drawn in black. Part
(c) displays the grid in black on the surface, but selects element interior color
to be transparent. Part (d) is the same but with hidden lines removed, which
is achieved by selecting element interior color to be white so that the triangle
faces hide the grid lines behind them. Part (e) also has the grid on the surface
and hidden lines removed, but with the grid lines colored by solution value.
Part (f) is a surface plot using the striped color scheme and placing contour

37

Figure 6: Visualizations of the solution.

38

Figure 6: (continued) Visualizations of the solution.

39

Figure 6: (continued) Visualizations of the solution.

40

left mouse button ⇒
middle mouse button ⇒
arrow keys ⇒
reset to initial view
view from above
view from above origin
quit

Table 12: The view modifier submenu.

lines on the surface. Parts (g)–(l) show 2D displays of the solution obtained by
selecting function to be no function and viewing from straight above. Part (g)
uses the striped color scheme with contour lines drawn in the x-y plane. Part
(h) shows the solution using the rainbow color scheme. Part (i) adds the grid
to the previous image, and part (j) colors the triangle interiors transparent and
the grid lines with the solution value. Part (k) is simply a contour plot with
no grid lines and the triangle interiors transparent. Finally, part (l) adds the
coloring of the triangle interiors by the solution value using the gray scale color
scheme.

Figure 7 shows some additional visualizations of the grid. Part (a) simply
shows the grid drawn in black. Part (b) shows the regions in which the grid is
coarse or fine by coloring the interiors of the triangles by the triangle size, using
blue for small triangles and red for large. In part (c) the triangle interiors are
colored by the polynomial degree of the triangle, for visualizing the effect of p-
and hp-adaptive refinement. And in part (d) we use function ⇒ levels to create
a hierarchy of grids based on refinement level.

Figure 8 shows a few of the ways you can visualize how the grid has been
partitioned for distribution over the slaves during the load balancing step. In
part (a) the interior of the triangles is colored by owner and the grid lines are
colored black. Part (b) colors the grid lines by owner and leaves the interior
transparent. In part (c) the interiors are again colored by owner, but only the
triangle edges that are on partition boundaries are drawn. Finally, part (d)
shows an exploded grid where the partitions are physically separated.

3.5.3 View modifier

In this section, we discuss the view modifier. The view modifier submenu is
shown in Table 12.

The first three items set the operation performed by the left mouse button,
middle mouse button and arrow keys, respectively. The selected operation re-
mains in effect until you select another one. The submenus below each of these
are all the same. They contain rotate, zoom, pan, scale x (stretch or shrink
along the x axis), scale y, scale z, explode (as in Figure 8(d)), and move light
(see Section 3.5.6).

The next three entries are quick changes to a specific view of the grid. reset

41

Figure 7: Visualizations of the grid.

42

Figure 8: Visualizations of the partitions of the grid for load balancing.

43

to initial view resets the rotation, zoom and pan settings to the original settings.
view from above sets a view that looks straight down and at the center of the
grid, with the (xmin,ymin) corner of the domain at the lower left corner of the
image. This is normally used with function ⇒ no function for visualizations of
the grid and contour plots. view from above origin looks at the point (0,0,0)
from straight above. This is useful if you want to zoom in on the origin without
having to pan repeatedly.

The final entry, quit, should not normally be used. If you terminate the
graphics program using this menu item, it may or may not kill the master and/or
slaves. The graphics program will terminate properly when phaml destroy
is called. Using the quit entry in the menu is only useful if the master or
associated slave terminated early, and even then there might be a better way to
terminate the graphics server (for example, with LAM the command lamclean
will terminate all the processes).

3.5.4 Colors

By default, PHAML uses a rainbow color scheme. Colorization of items that
have a continuous numerical value, like the solution, comes from a continu-
ous spectrum with blue corresponding to small values and red to large values.
Normally the spectrum is scaled to correspond to the minimum and maximum
values of the item begin drawn. Colorization of items that have a finite set of
N discrete values, like the owner, comes from an equally spaced set of N colors
in the spectrum from red to magenta with red assigned to the first item.

There are two other color schemes available. The color scheme is selected
in the submenu under color scheme which has the selections rainbow, gray scale,
and striped. The gray scale scheme uses a continuous gray scale from black to
white with black corresponding to small values and white to large values. The
striped scheme is like the rainbow scheme except the colors are from a discrete
set of equally space colors from the spectrum from blue to red. The number
of colors in the scheme is one less than the number of contour lines used for
contour plots, so that contour lines will fall on the boundary between colors.

With a color scheme selected, you can choose how to color the grid lines (i.e.
element edges) and triangles (i.e. element interiors) to get different information
about the grid, partition, solution, error, etc. Table 13 shows the element edge
color submenu for selecting how to color the element edges. no lines means don’t
draw the grid. black draws the edges black for a simple drawing of the grid.
edge owner selects the color to indicate which slave process owns each edge.
vertex owner selects the color to indicate the owner of the vertices at the ends
of each edge. If the owners of the two endpoints are different, the color blends
from one to the other along the length of the edge. computed solution uses the
color corresponding to the value of the computed solution at the endpoints,
and blends the colors along the length of the edge. true solution is similar but
uses the true solution if it is given in function trues. Likewise, error uses the
computed solution minus the true solution, if it is available. size colors the
edges according to their length, using red for the largest edges and blue for

44

no lines
black
edge owner
vertex owner
computed solution
true solution
error
size
degree
partition boundary black

Table 13: The element edge color submenu.

the smallest. This is useful for distinguishing element sizes when the grid is
so fine that drawing the edges black would result in large black areas. degree
colors the edges by the polynomial degree of the approximation space along that
edge. Finally, partition boundary black draws only the edges that fall between
two triangles with different owners, and edges on the domain boundary. This
results in the partition boundary being drawn black.

The submenu for element interior color is similar to the one for element edge
color, with just a few differences. The no lines entry is replaced by transparent,
but has the same meaning of don’t draw the element. black is replaced by white.
Coloring an element interior white, which is the same as the graphics window
background, has the effect of blocking whatever is behind the element, and can
be used to draw hidden line plots. There is only one owner entry, used to indicate
which slave owns each element. computed solution, true solution, error, size, and
degree all have the same meaning as with edge color. There is no partition
boundary entry. It has an additional entry for coloring each element by its error
indicator. This entry has a submenu to select whether to color according to the
h error indicator or the p error indicator. It also has entries for h and p error
estimates, but those are currently the same as the error indicators. You also
have the choice of scaling the two types of indicators individually or collectively.
By scaling collectively you can switch between the two to see whether the h or
p error indicator is larger in an element.

3.5.5 Functions

The function submenu determines what function to draw as surface plots and
contour plots. This menu has six entries. The first is no function, which simply
draws the elements in the x-y plane. This is usually used in conjunction with
viewing from above. The next three entries are computed solution, true solution,
and error. They draw the corresponding function. The fifth entry is levels. This
draws the elements, including parent elements, in L discrete planes parallel to
the x-y plane, where L is the number of refinement levels in the grid (see Figure
7(d)). Each level contains the elements of that refinement level. You may find it

45

useful to use scale z from the view modifier (Section 3.5.3) with this. The final
entry is error estimates with the same submenu as the error estimates submenu
under element interior color (Section 3.5.4). This is a piecewise constant function
with each element drawn at the height corresponding to its error indicator.

The functions (except levels) can be preprocessed in several ways with the
submenu under preprocess function. The menu entries indicate what would be
applied to a function f . They are none (no preprocessing, the default), -f
(negate), abs(f) (absolute value), f**2 (square), and log(abs(f)) (logarithm of
the absolute value).

3.5.6 Lights

When the function is no function, levels or an error estimate, or the striped color
scheme is used, the image is rendered in flat light. Otherwise, it is rendered
with a light source resulting in a 3D appearance with shadows. There are five
lights available in the PHAML graphics. Four of them are fixed in position:
one to the right, one to the left, one above and one below. The fifth light is
movable. The default is that only the light to the right is turned on. Lights can
be turned on and off with the submenu under toggle lights. The movable light
can be moved with the mouse or arrow keys by selecting move light under the
view modifier submenu.

3.5.7 Contour plots

In addition to being drawn as a surface or being represented by color, a function
can be drawn as a contour plot. Contour plots are controlled by the submenu
under contour plots. This submenu has four entries for selecting what function
to plot, and three submenus for changing the properties of the contour plot.

The first four entries in the contour plot submenu select the function to plot.
As usual, they are no contour plot, computed solution, true solution, and error.
By default, no contour plot is drawn.

The next entry is set number of uniform lines. Initially PHAML uses 21
equally spaced contour values between the minimum and maximum values of
the function. This submenu allows you to change the number of values while
keeping them equally spaced. There are six entries that allow you to make
the change directly from the menu: increment by 1, decrement by 1, increment
by 10, decrement by 10, double, and cut in half. The final entry, enter num-
ber in debug window, lets you type in the number of contour lines you want.
However, it prompts for this number from standard input, so the graphics pro-
cess must have an associated window. This is achieved by using spawn form =
DEBUG GRAPHICS or spawn form = DEBUG BOTH in the call to phaml create (see
Section 7.4.4).

You can also space the contour lines nonuniformly by using set nonuniform
lines. This also requires a debug window. You will be prompted for the number
of contour lines, and then to enter a comma separated list of the values for the
contour lines.

46

The final menu entry gives two choices for the placement of the contours.
They can either be placed on the x-y plane, or be elevated by the function value,
i.e., placed on the surface.

3.5.8 Multiple solutions

If you solve a coupled system of equations (multicomponent solution) or solve
for more than one eigenvalue of an eigenvalue problem, then there is more than
one solution to draw. Two submenus let you select which function to display.
The default is to display the first one.

eigenfunction to use provides the selection of which eigenfunction to display.
It has an entry of the form eigenfunction 1, eigenfunction 2, etc., up to the number
of eigenvalues computed. If there are more than 9 eigenvalues, the last entry
is more ⇒. This brings up a submenu containing 10’s ⇒, 20’s ⇒, etc. Under
these submenus you will find the eigenfunctions with larger indices. PHAML
sorts the eigenvalues from smallest to largest, and orders the corresponding
eigenfunctions the same way.

component to use provides the selection of which component of a multi-
component solution to display. It contains entries of the form component 1,
component 2, etc. Like the eigenfunction selection, there are submenus for the
higher indices if there are more than 9 components. The menu also contains
two entries for displaying a composite of the components. If the components of
the solution are u1, u2, . . . , then L1 sum will display |u1| + |u2| + . . . , and L2
sum will display u2

1 + u2
2 + . . .

3.5.9 Miscellaneous features

This section addresses some menu items that are not big enough to warrant a
section of their own.

The subelement resolution submenu is useful when high order elements are
used. By default, a triangle is drawn as a piece of a plane defined by the three
vertices of the triangle. Color blending, contour lines, etc., are also limited by
this definition. This applies both to 3D surfaces and 2D drawings in the x-y
plane. This is fine for piecewise linear elements since the solution is a plane over
each triangle. But with higher order element, any detail on the subelement level
is lost. This menu entry defines how much subelement resolution to use. The
drawing is still done by drawing pieces of a plane, i.e. triangles, but multiple
triangles are drawn within a grid element. With subelement level 0, the element
is drawn as a single triangle (the default). With subelement level 1, the element
is drawn as 4 triangles, formed by connecting the midpoints of the element
edges. At subelement level 2, each of those 4 triangles are drawn as 4 triangles
by connecting the midpoints of their sides, resulting in 16 triangles in a grid
element. In general, subelement level ` results in drawing 4` triangles in each
element. The effect of using a high level of subelement resolution can be seen
in Figure 9.

47

Figure 9: Improvement of a surface visualization by using subelement resolution.

subelement resolution has entries for 0, 1, 2 and 3 levels of subelement resolu-
tion. Since the number of triangles drawn grows exponentially with the number
of subelement levels, using higher values of subelement resolution can be very
slow. However, if needed, values larger than 3 are obtainable with the submenu
entries increase, which adds 1, and decrease, which subtracts 1.

x, y and z axes can be added and removed from the plot with the toggle
axes entry. The axes are fairly primitive with tic marks and values only at the
ends and midpoint.

crop (debug window) provides a means of restricting how much of the domain
is used in the display. Since it requires input from standard input, the graphics
process must have an associated window. This is achieved by using spawn form
= DEBUG GRAPHICS or spawn form = DEBUG BOTH in the call to phaml create
(see Section 7.4.4). When this menu entry is selected, it will prompt for the
crop region to be entered as xmin, xmax, ymin, ymax.

The grid offset submenu helps to solve a potential problem with the rendering
of the graphics. The elements are drawn as triangles and the grid lines are drawn
as lines separately, but they occupy the same space. This can cause a problem
in determining which should show when the image is rendered. Even if they
are separated very slightly, there can be a problem because of machine roundoff
error. This submenu allows you to change how far the grid lines are offset from
the triangles. If you find that grid lines are disappearing, you should increase
the offset. If you find that the grid lines appear to be separated from the surface,
you should decrease the offset. The submenu entries let you increase or decrease
by 1 or 10 at a time.

48

3.5.10 Development aids

Some of the graphics options were created as aids in the development and debug-
ging of PHAML. These are probably not much use to the end user. They are the
element label, edge label, and vertex label, which label each entity with its index
in PHAML’s data structure, associated element which displays the edge-element
and vertex-element correspondence used to determine the owner of edges and
vertices, and space filling curve which displays the space filling curve associated
with the refinement tree partition method.

3.5.11 Postscript

The write postscript submenu lets you save the current visualization to an en-
capsulated postscript file. It writes vector graphics in the postscript language.
This means the saved image is high quality and scalable, but it creates very
large files. If you want smaller files you can use a screen capturing program and
save the image in a raster graphics format like JPEG.

write postscript has two options in the submenu: unsorted and sorted. The
sorting option sorts the entities of the image by distance from the viewer before
writing the postscript file. There isn’t really any reason to use the unsorted
option, and it will probably be removed in the future.

When write postscript is selected, it creates a file called render.eps. The
location of this file is compiler dependent, but it usually ends up in the directory
where the master program was started or in the user’s home directory. You may
have to modify this file slightly in two ways. First, rename it to something more
meaningful! Second, some printers need to have showpage added as the last
command in the file, but that confuses some viewers. If you try to print the file
and nothing happens, add this line.

3.6 Post-solution utilities

3.6.1 Store and Restore

There are times when it may be useful to save a PHAML solution and use
it in some subsequent program. For example, one might solve a problem on
a batch-only system and save the solution, and then later run a program on
an interactive system that reads the solution and displays it with PHAML’s
graphics capability. PHAML provides a routine that writes the entire contents of
a phaml solution type variable to a set of files (one file for the master and one
for each slave), and a routine that reads those files into a phaml solution type
variable. The files should be connected to a unit number using phaml popen
and phaml pclose as described in section 3.4.1.

phaml store takes two arguments: a phaml solution type variable and an
integer specifying the unit to write to. phaml restore also takes a
phaml solution type variable (which should first be created with phaml create,
but otherwise be empty) and a unit to read from. It also takes two optional logi-
cal arguments. do draw grid indicates whether or not you want to invoke graph-

49

ical output immediately after reading the file, and pause indicates whether or
not to pause after the graphics. A program that reads files with phaml restore
must have the same number of slaves as the program that created the files with
phaml store.

3.6.2 Query

PHAML provides for the recovery of many quantities of interest through subrou-
tine phaml query, which can be called after returning from phaml solve pde.
This includes information about the grid, such as number of elements, number
of vertices, minimum and maximum polynomial degree, etc. Most of them can
be for the whole grid or for the grid that each slave has. A second category
includes error estimates in various norms, and, if the true solution is provided,
the norms of the error. A third category provides interesting quantities related
to eigenvalue problems.

For a complete list of the quantities that can be recovered through
phaml query, see Section 7.4.11.

3.6.3 Solution evaluation

PHAML provides for evaluating the computed solution at a point in the do-
main through subroutine phaml evaluate (see Section 7.4.6). After return-
ing from phaml solve pde, you can pass the phaml solution type variable to
phaml evaluate to obtain the solution. You also pass two arrays, x and y, con-
taining the points at which to evaluate the solution. The solution is returned
in the array soln, which should have the same dimension as x and y. If you
are solving a system of equations or an eigenvalue problems, there are optional
arguments to specify which component or eigenfunction you want to evaluate.
If a point outside the domain is given, the solution is returned as 0.

There is also a subroutine to evaluate an “old” solution, which can be used
for time dependent and nonlinear problems. See Section 4.3 for information on
this routine.

3.6.4 Functionals

In this context, a functional of the solution is some form of integral of the
computed solution. Subroutine phaml integrate (see Section 7.4.8) computes∫∫

Ω

k(x, y) up
i (x, y) uq

j(x, y) dx dy.

ui and uj are two components of the solution of a system of equations, or
two eigenfunctions of an eigenvalue problem, or ui is a solution and uj is 1. p
and q are integer powers. k is a kernel function defined by the user in function
phaml integral kernel (Section 7.3.7). In addition to a point at which to
evaluate the kernel, the function takes an integer, kernel, which allows for the
definition of several kernel functions in the same subroutine.

50

4 Problem Extensions

4.1 Eigenvalue Problems

In addition to elliptic boundary value problems, PHAML can solve elliptic eigen-
value problems of the form

− ∂

∂x
(p(x, y)

∂u

∂x
) − ∂

∂y
(q(x, y)

∂u

∂y
) + r(x, y)u = λf(x, y)u in Ω (9)

u = 0 on ∂ΩD (10)

p(x, y)
∂u

∂x

∂y

∂s
− q(x, y)

∂u

∂y

∂x

∂s
+ c(x, y)u = 0 on ∂ΩN (11)

Note that the boundary conditions must be homogeneous. Usually the func-
tion f is identically 1. However there are some occasions where other f are
useful. For example, to put the Laplacian operator in polar coordinates into the
form of Equation 9, one may multiply the canonical form of the equation by x
(a.k.a. r in polar coordinates) which results in f = x.

You indicate that an eigenvalue problem is being solved by specifying eq type
= EIGENVALUE in subroutine phaml create. The solution returns eigenfunc-
tions, u, and the corresponding eigenvalues λ. More than one eigenpair can
be computed. The number of desired eigenpairs is specified through the argu-
ment num eval to subroutine phaml solve pde. Subroutines phaml evaluate,
phaml evaluate old, phaml integrate, phaml query, and phaml scale take
an optional integer argument, eigen, which specifies which eigenfunction to use.
Subroutine phaml query returns the entire set of eigenvalues in the
real(my real) array argument eigenvalues. Printed output prints all of the
eigenpairs.

By default PHAML computes the smallest eigenvalue(s). You can compute
eigenvalues in the interior of the spectrum by using the argument lambda0 to
phaml solve pde. PHAML will compute the eigenvalues that are closest to
lambda0, on both sides of it.

If u is a solution of Equation 9, then so is αu for any scalar number α. Thus
the solution must be scaled to meet some condition to be unique. PHAML pro-
vides three options for how to scale the eigenfunctions through the argument
scale evec to subroutine phaml solve pde. SCALE LINF requests that the `∞

norm of the eigenvector, x, of the discrete problem be 1. With linear elements,
this is the same as the L∞ norm of the eigenfunction u. SCALE L2 scales such
that the `2 norm of x is 1. SCALE M scales such that the M norm of the eigen-
vector,

√
xT Mx where M is the mass matrix, or equivalently the L2 norm of

the eigenfunction, is 1.
PHAML uses ARPACK to solve the discrete eigenproblem, so you must have

PHAML configured with the optional ARPACK software (see Section 2.1.7 and
2.2.1). There are three arguments to phaml solve pde that affect ARPACK’s

51

behavior: arpack ncv sets the number of Lanczos basis vectors, arpack maxit
sets the maximum number of IRLM iterations, and arpack tol sets the relative
accuracy of the eigenvalues. See the ARPACK User’s Guide [12] for a deeper
explanation of these arguments.

4.2 Coupled Systems or Multicomponent Solutions

PHAML provides for the solution of certain types of coupled systems of elliptic
PDEs, either boundary value problems or eigenvalue problems. These problems
are also referred to as multicomponent problems if you prefer to think of it as
a vector equation, rather than a system of equations, with a multicomponent
solution, rather than multiple solutions. For these problems, Equations 1 - 3
are the same except the functions p, q and c are n× n arrays and the functions
u, f and g are vectors of length n, where n is the number of equations in the
coupled system. An example of subroutine pdecoefs for a coupled system is
given in Figure 10 for the equations

−∇2u + v = f1

−∇2v + u = f2

The number of equations is specified by the argument system size to sub-
routine phaml create. Subroutines phaml evaluate, phaml evaluate old,
phaml integrate, phaml query, and phaml scale take an optional integer ar-
gument comp which specifies which component to use.

4.3 Parabolic, Nonlinear, Etc. Problems

PHAML can be used to solve parabolic (time dependent) and nonlinear PDEs,
but the user has to provide the iteration control in the main program. See
the example examples/parabolic for an example of solving a time depen-
dent parabolic problem using an implicit finite difference scheme in time, and
examples/nonlinear1 for solving a nonlinear PDE using a simple Picard iter-
ation. Other approaches to handling the time dimension or nonlinearity can be
implemented, but they must be single step methods, i.e., must only require one
previous solution in the iterative step.

The feature of PHAML that facilitates these problems is the storage of an
“old” solution. You create an old solution with subroutine
phaml copy soln to old (Section 7.4.3). This copies the current solution com-
ponent of the phaml solution type variable to another component called the
old solution. This would normally be done at the beginning or end of each it-
eration. To use the old solution, call phaml evaluate old (Section 7.4.7). You
can evaluate the solution and/or the first derivatives. This would normally be
called from subroutine pdecoefs.

A time dependent problem requires setting an initial condition to start the
solution. Similarly, a nonlinear problem requires an initial guess of the solution.
These initial functions are set by calling phaml solve pde with

52

subroutine pdecoefs(x,y,cxx,cxy,cyy,cx,cy,c,rs)
use phaml
real(my_real), intent(in) :: x,y
real(my_real), intent(out), dimension(:,:) :: cxx,cxy,cyy,cx,cy,c
real(my_real), intent(out), dimension(:) :: rs

cxx(1,1) = 1.0_my_real; cxx(1,2) = 0.0_my_real
cxx(2,1) = 0.0_my_real; cxx(2,2) = 1.0_my_real

cyy(1,1) = 1.0_my_real; cyy(1,2) = 0.0_my_real
cyy(2,1) = 0.0_my_real; cyy(2,2) = 1.0_my_real

c(1,1) = 0.0_my_real; c(1,2) = 1.0_my_real
c(2,1) = 1.0_my_real; c(2,2) = 0.0_my_real

rs(1) = -(2.0_my_real*exp(x-y) - (x+y)**4/8.0_my_real)
rs(2) = -(3.0_my_real*(x+y)**2 - exp(x-y))

cxy=0
cx=0
cy=0
end subroutine pdecoefs

Figure 10: pdecoefs for a coupled system.

53

task=SET INITIAL and an appropriate termination criterion. The solution will
be set to be the function in subroutine iconds (Section 7.3.5). It should then
be copied to the old solution before starting the iteration.

5 Examples

Several examples of using PHAML are provided in directory
phaml-x.x.x/examples. These can be used as tutorials to understand how
PHAML works, or as templates for starting the implementation of your ap-
plication. Depending on your set up, you might have to edit master.f90 (or
spmd.f90 if you are using the SPMD model) slightly before running them, to
change the termination criterion, number of processors, graphics choice, etc.
The examples include:

simple – a trivial program that should be the first one you try.

elliptic – contains several linear scalar elliptic boundary value problems
selected by a case statement.

rectangle – defines a rectangular domain with an N × M grid by writing a
Triangle .poly file.

L-domain – the classic L shaped domain with a singular solution commonly
used for testing adaptive refinement codes.

domains – contains several domains defined by Triangle .poly files.

curved – defines a domain with curved boundaries.

periodic – periodic boundary conditions.

eigenvalue – an elliptic eigenvalue problem.

parabolic – solves a time-dependent parabolic PDE by an implicit finite dif-
ference scheme in t.

nonlinear1 – solves a nonlinear equation by Picard iteration.

system – solves a coupled system of 2 elliptic PDEs.

all – illustrates the use of all of the phaml * routines.

There are also several programs under the testdir directory, but they do
not contain comments to help you understand them.

6 Release notes

This section is reserved for listing the changes with each new release of PHAML.
See also the files doc/HISTORY and doc/UPGRADING.

54

7 Reference Manual

7.1 Quick Start

This section provides a minimum of information about getting PHAML up
and running the example programs. For many people, this will be sufficient
to get started using PHAML with your application, as many applications may
be implemented by modifying one of the examples. If you encounter problems,
refer to the appropriate section of the User’s Guide for further details. Also read
the remainder of the User’s Guide for a better understanding of how PHAML
works and what options may be useful to you.

The four steps in getting started with PHAML are

1. obtaining the software,

2. compiling the PHAML library,

3. compiling an example, and

4. running the example.

For this brief tutorial, we will build and run the simple example as a mas-
ter/slave message passing MPI program with the master spawning the slave
processes, and without graphics.

7.1.1 Obtaining the software

PHAML can be obtained from the PHAML web page http://math.nist.gov/
phaml by following the Software link. It comes as a gzipped tar file for Unix-like
systems. (It has not yet been tested on MS Windows systems, but since it is
written in standard Fortran 90, the adventurous may find that it works on MS
Windows, too.) When unpacked, it will place everything in a new directory
called phaml-x.x.x, where x.x.x is the current version number.

PHAML requires the BLAS and LAPACK libraries. You will probably find
these are already installed on your computer, but if not, see Section 2.1.3.

For parallelism, you need an MPI library. You will probably find that LAM,
MPICH, or a commercial MPI library is already installed on your computer,
but if not see Section 2.1.4.

7.1.2 Compiling the PHAML library

The first step in compiling the PHAML library is to create the Makefile. This
is done with the shell script mkmkfile.sh in the top PHAML directory. Since
PHAML allows so many options in terms of what compilers and libraries to use,
it would be difficult to auto-locate these files. So, you must modify mkmkfile.sh
to specify some paths, command names, and defaults for your computer system.
Instructions for modifying it can be found within the file.

Now create the Makefile with

55

http://math.nist.gov/phaml
http://math.nist.gov/phaml

./mkmkfile.sh PARALLEL messpass spawn PARLIB mpi GRAPHICS none
You should replace mpi with mpich, mpich2, or lam if you use an MPICH or

LAM library. You may omit some of the arguments if your defaults are already
set to these values; defaults can be determined with mkmkfiles.sh help.

make should now compile the library and place it in the lib subdirectory.

7.1.3 Compiling an Example

Go to the directory examples/simple and type make. (The Makefiles for the
examples were also created by mkmkfile.sh.) This should create the executables
phaml and phaml slave.

7.1.4 Running the Example

The details of running an MPI program vary with the different MPI libraries.
You may need to check your MPI documentation to find the correct command(s).
It may also require starting some daemon before running the execution com-
mand.

Note that you should specify one process, because you are running the mas-
ter processes which will spawn the slave processes. The number of slaves is
specified in the main program, master.f90.

If you are using LAM, try
lamboot
mpirun -np 1 phaml
If you are using MPICH, try
mpirun -np 1 phaml
If you are using MPICH2, try
mpiexec -n 1 phaml

7.1.5 Now what?

If you have successfully run the first example, you are ready to install the
graphics and any other optional software you desire (Section 2.1), run the other
examples, and begin working on your own application!

7.2 Public Entities in PHAML

The statement use phaml in a program unit provides access to the public enti-
ties in PHAML. These consist of a derived type, variables for the user to use,
symbolic constants, and procedures. The procedures are described in Section
7.4. The other entities are described in this section.

7.2.1 phaml solution type

phaml solution type is a type that contains all the data used for solving the
PDE (grid, etc.). The type is public, but the contents are private. You can

56

declare one or more variables of this type and pass them to the PHAML proce-
dures.

7.2.2 my real

my real is a symbolic constant that determines the kind of real numbers used in
PHAML. This is defined in global.f90. You can change that definition there
to select the kind to use, either single or double precision. Other kinds of real,
if supported by your Fortran compiler, are not supported by PHAML because
of the reliance on BLAS and LAPACK routines, which only come in single and
double precision. Currently my real is set for default double precision. To
be sure that your program is using the same kind values, you should declare
your variables as real(kind=my real) and attach the kind to constants, e.g.
0.0 my real.

7.2.3 pde and my pde id

pde is a rank 1 allocatable array of type phaml solution type. If you are going
to use more than one pde and they must communicate with each other, then you
must use this array for your phaml solution variables. It must be allocated
before using phaml create, and should be deallocated when you are done with
it.

my pde id is an identifier for which pde a phaml solution is associated with,
usually the index into the array pde described above. It is usually used as the
case statement variable in the user provided routines that define the PDE and
boundary conditions.

See examples/system ss for an example of the use of pde and my pde id.
However, having multiple phaml solution type variables communicate with
each other is very slow, so use of this capability is discouraged.

7.2.4 symbolic constants

Except for my real, the symbolic constants are used as values for the arguments
of the procedures. In this document and in the PHAML source code they are
written in capital letters, but Fortran is not case sensitive so this is not necessary.
They are defined as they arise in the description of the PHAML procedures. You
can find a list of them by looking at the public statements at the beginning of
phaml.f90. If you have a problem with one of the names conflicting with an
entity in your code, you can use Fortran’s renaming capability to circumvent it,
for example

use phaml, MY EVAL NAME => EIGENVALUE

7.3 User Provided Routines

The specifics of the problem to be solved are defined through a set of external
subroutines that the user must provide. They must be external subroutines
(i.e., not module or internal subroutines) because these are called from within

57

PHAML and are compiled after the PHAML library has been built. They
should contain a use phaml statement to get access to my real and possibly
other entities from PHAML.

This section describes the purpose of each of these routines and defines
the interface of each. Also see pde.f90 in each subdirectory of the PHAML
examples directory for examples of these routines.

7.3.1 bconds

Subroutine bconds returns the boundary conditions at a given point. At each
point, the boundary conditions are of the form

u = g(x, y)

or
p(x, y)

∂u

∂x

∂y

∂s
− q(x, y)

∂u

∂y

∂x

∂s
+ c(x, y)u = g(x, y)

as described in Section 3.2.2.
subroutine bconds(x,y,bmark,itype,c,rs)

real(my real), intent(in) :: x,y – the point at which to evaluate the
boundary conditions.

integer, intent(in) :: bmark – the boundary marker assigned in the Tri-
angle data files.

integer, intent(out) :: itype(:) – the type of boundary condition at
this point, given by symbolic constants from module phaml. It must be
one of DIRICHLET (the first form above), NATURAL (the second form with c
identically 0.0), or MIXED (the second form with c nonzero). The dimension
of itype is system size. The ith value is the type of boundary condition
for the ith component.

real(my real), intent(out) :: c(:,:) – the function c in the boundary
condition. The dimension is system size by system size. The (i, j)th

entry is the coefficient of the jth component in the boundary condition for
the ith component.

real(my real), intent(out) :: rs(:) – the function g in the boundary
condition. The dimension is system size. The ith entry is the right side
of the boundary condition for the ith component.

7.3.2 boundary point

Subroutine boundary point defines the boundary of the domain, if it is given
by subroutines rather than triangle data files.

subroutine boundary point(ipiece,s,x,y)

58

integer, intent(in) :: ipiece – the piece of the boundary from which
to return a point.

real(my real), intent(in) :: s – the parameter for the point to be de-
termined.

real(my real), intent(out) :: x,y – the point (x(s), y(s)) on piece ipiece
of the boundary.

7.3.3 boundary npiece

If the boundary of the domain is defined by the boundary subroutines, function
boundary npiece returns the number of boundary pieces in the definition. If
the domain is defined by triangle data files, it returns 0 or a negative number.
If the domain contains holes, it returns the number of pieces in the requested
hole.

function boundary npiece(hole)

integer, intent(in) :: hole – the hole for which to return the number
of pieces, or 0 for the outer boundary. Holes are numbered consecutively
starting with 1.

integer :: boundary npiece – the number of boundary pieces in the re-
quested hole or in the outer boundary if hole is 0.

7.3.4 boundary param

Subroutine boundary param gives the range of parameter values for each bound-
ary piece.

subroutine boundary param(start,finish)

real(my real), intent(out) :: start(:), finish(:) – start(i) and
finish(i) are the beginning and ending parameter values for the ith

piece of the boundary, i=1,number of boundary pieces.

7.3.5 iconds

Subroutine iconds is used for setting the solution to a given function. For
example, it can used for initial conditions for a time dependent problem or the
initial guess for a nonlinear problem.

function iconds(x,y,comp,eigen

real(my real), intent(in) :: x,y – the point at which to evaluate the
function.

integer, intent(in) :: comp – for multicomponent solutions, which com-
ponent to return.

59

integer, intent(in) :: eigen – for eigenvalue problems in which more
than one eigenvalue is computed, which eigenfunction to return.

real(my real) :: iconds – the function value.

7.3.6 pdecoefs

Subroutine pdecoefs returns the values of the PDE coefficient functions and
right side. The PDE is given by

− ∂

∂x
(p(x, y)

∂u

∂x
) − ∂

∂y
(q(x, y)

∂u

∂y
) + r(x, y)u = f(x, y) in Ω (12)

as described in Section 3.2.1.
subroutine pdecoefs(x,y,cxx,cxy,cyy,cx,cy,c,rs)

real(my real), intent(in) :: x,y – the point at which to evaluate the
PDE.

real(my real), intent(out) :: cxx(:,:),cyy(:,:),c(:,:) – the func-
tions p, q and r respectively. The dimension is system size by system size.
The (i, j)th entry is the coefficient of the jth component in the PDE for
the ith component.

real(my real), intent(out) :: cxy(:,:),cx(:,:),cy(:,:) – currently
not used. They are included for a possible future extension. They should
be set to 0 to avoid possible problems if they are used later.

real(my real), intent(out) :: rs(:) – the function f . The dimension
is system size. The ith value is the right side of the PDE for the ith

component.

7.3.7 phaml integral kernel

Subroutine phaml integrate described in Sections 3.6.4 and 7.4.8 computes
functionals of the computed solution of the form∫∫

Ω

k(x, y) up
i (x, y) uq

j(x, y) dx dy

where k is a kernel function defined in phaml integral kernel. In addition to
a point at which to evaluate the kernel, the function takes an integer, kernel,
which allows for the definition of several kernel functions in the same subroutine.

function phaml integral kernel(kernel,x,y)

integer, intent(in) :: kernel – an integer passed through
phaml integrate to allow a choice of different kernels.

real(my real), intent(in) :: x,y – the point at which to evaluate the
kernel.

real(my real) :: phaml integral kernel – the kernel value, k(x, y).

60

7.3.8 trues

If the true solution of the PDE is known, you can provide it in function trues.
This is used for printing norms of the error and for graphical display of the error
and true solution. If you do not know the true solution, returning
huge(0.0 my real) will prevent printing and plotting of a bogus error.

function trues(x,y,comp,eigen)

real(my real), intent(in) :: x,y – the point at which to evaluate the
true solution

integer, intent(in) :: comp – for multicomponent solutions, which com-
ponent to return.

integer, intent(in) :: eigen – for eigenvalue problems in which more
than one eigenvalue is computed, which eigenfunction to return.

real(my real) :: trues – the return value.

7.3.9 truexs

If the true solution of the PDE is known, you can provide the x derivative of it
in function truexs. This is used for printing the energy norm of the error. If
trues does not return huge(0.0 my real) and you request the energy norm of
the error, then you must provide the x derivative of the true solution in truexs
or an incorrect value of the energy norm of the error will be printed.

function truexs(x,y,comp,eigen)

real(my real), intent(in) :: x,y – the point at which to evaluate the x
derivative of the true solution

integer, intent(in) :: comp – for multicomponent solutions, which com-
ponent to return.

integer, intent(in) :: eigen – for eigenvalue problems in which more
than one eigenvalue is computed, which eigenfunction to return.

real(my real) :: truexs – the return value.

7.3.10 trueys

If the true solution of the PDE is known, you can provide the y derivative of it
in function trueys. This is used for printing the energy norm of the error. If
trues does not return huge(0.0 my real) and you request the energy norm of
the error, then you must provide the y derivative of the true solution in trueys
or an incorrect value of the energy norm of the error will be printed.

function trueys(x,y,comp,eigen)

real(my real), intent(in) :: x,y – the point at which to evaluate the y
derivative of the true solution

61

integer, intent(in) :: comp – for multicomponent solutions, which com-
ponent to return.

integer, intent(in) :: eigen – for eigenvalue problems in which more
than one eigenvalue is computed, which eigenfunction to return.

real(my real) :: trueys – the return value.

7.3.11 update usermod

The application can include a module called phaml user mod to provide ac-
cess to global variables in the user provided subroutines. However, values as-
signed to these variables in the main program are only available in the master
process. Subroutine update usermod passes the current value of these vari-
ables from the master to the slaves. For an example use of this facility, see
examples/parabolic where it is used to pass the time step to the slaves. A
working version of this subroutine is shown in Figure 11, or can be copied
from examples/parabolic/pde.f90. In the example, the integer variable
ivar and the real(my real) variables rvar1 and rvar2 are declared in module
phaml user mod. If you do not use this facility, you can copy a dummy version
of the subroutine from examples/simple/pde.f90.

7.4 PHAML procedures

7.4.1 phaml compress

phaml compress compresses the phaml solution type data by moving all the
unused elements, edges and vertices after the used ones. If considerable dere-
finement has occurred, this can significantly reduce the size of files created by
phaml store.

subroutine phaml compress(phaml solution)

type(phaml solution type), intent(inout) :: phaml solution – the so-
lution to compress.

7.4.2 phaml connect

phaml connect connects two phaml solution type variables so they can com-
municate. If one will request that another evaluate its solution, then they must
be connected. See examples/system ss and Section 7.2.3. However, having
multiple phaml solution type variables communicate with each other is very
slow, so use of this capability is discouraged.

subroutine phaml connect(pde1, pde2)

integer, intent(in) :: pde1, pde2 – indices into the pde array in mod-
ule phaml.

62

subroutine update_usermod(phaml_solution)

!--
! This routine updates the module variables on the slave processes
! by sending them from the master process
!--

use phaml
use phaml_user_mod
!--
! Dummy arguments

type(phaml_solution_type), intent(in) :: phaml_solution
!--
! Local variables:

! Declare these arrays big enough to hold the variables to be sent

integer :: iparam(1)
real(my_real) :: rparam(2)
!--
! Begin executable code

! Copy the module variables into the arrays, putting integer
! variables into iparam and real variables into rparam.

iparam(1) = ivar
rparam(1) = rvar1
rparam(2) = rvar2

! Call the routine that performs the actual exchange. Don’t change
! this line.

call master_to_slaves(phaml_solution,iparam,rparam)

! Copy the arrays into the module variables, using the same
! correspondence between module variable and array index as
! was used above.

ivar = iparam(1)
rvar1 = rparam(1)
rvar2 = rparam(2)

end subroutine update_usermod

Figure 11: An example of subroutine update usermod.

63

7.4.3 phaml copy soln to old

phaml copy soln to old makes a copy of the solution in phaml solution which
can be evaluated by phaml evaluate old (Section 7.4.7). The main purpose of
this is to provide the “old” solution and derivatives for time stepping in time
dependent problems and iterating in nonlinear problems.

subroutine phaml copy soln to old(phaml solution)

type(phaml solution type), intent(inout) :: phaml solution – the
phaml solution in which to make a copy of the solution.

7.4.4 phaml create

phaml create creates a variable to contain a phaml solution, i.e., it initializes
the internals of a variable of type phaml solution type. It also spawns the
associated slave and graphics processes. This should be called with each variable
of type phaml solution type in your program.

All arguments except phaml solution are optional.

subroutine phaml create(phaml solution, nproc, draw grid who,
spawn form, debug command, display, graphics host, output unit,
error unit, output now, id, system size, eq type, max blen,
triangle files)

type (phaml solution type) phaml solution – the variable to initialize.

integer nproc – the number of processes working in parallel. The default is
1.

draw grid who – which processes should display grid graphics. The grid graph-
ics are not just the grid, but also the computed solution and many other
useful displays. Valid values are:

MASTER – the graphics process associated with the master process draws
a grid that is a consolidation of the slave’s grids.

SLAVES – each slave has an associated graphics process, which draws
the grid as known to that slave. Note that there will be a graphics
window for each slave.

EVERYONE – both MASTER and SLAVES.

NO ONE – no graphics are drawn.

The default is NO ONE.

spawn form – whether or not to provide debugging capability with spawned
processes. For MPI, an xterm running the slave under the debugger given
by debug command is brought up. For PVM the debugger is determined
by the PVM environment (see the file doc/HINTS). Valid values are:

64

NORMAL SPAWN – no debugging.

DEBUG SLAVE – spawn the slave processes under the debugger.

DEBUG GRAPHICS – spawn the graphics processes under the debugger.

DEBUG BOTH – spawn both slaves and graphics under the debugger.

The default is NORMAL SPAWN.

character(len=*) debug command – the command name of the debugger to
use in an xterm when spawn form is not NORMAL SPAWN and MPI is used.
Limited to 64 characters. The default is "gdb".

character(len=*) display – in some environments, the -display argument
is needed for xterm when spawn form is not NORMAL SPAWN. This value is
used for that argument. If it is "default" then the -display argument is
not used for xterm. Limited to 64 characters. The default is "default".

character(len=*) graphics host – the name of the host on which to spawn
the graphics processes. This is useful if you want to force the graphics
processes to run on the workstation whose display is in front of you, or
if you want graphics to run on a particular architecture. PVM will obey
this request. For MPI, this is a “hint” which may be obeyed or ignored
depending on the implementation of MPI. LAM, up to version 7.1.1 at
least, ignores the request.

integer output unit – the unit number for printed output. It should either
be a pre-connected unit (e.g. standard output) or be opened as FORMATTED
with a call to phaml popen immediately after call phaml create. The
default is 6.

integer error unit – the unit number for error messages. It should either
be a pre-connected unit (e.g. standard error) or be opened as FORMATTED
with a call to phaml popen immediately after call phaml create. The
default is 0.

integer output now – since output unit and error unit may not be avail-
able until after phaml create is complete, a unit must be provided for any
output (i.e. error messages) that occurs from subroutine phaml create.
This should be a pre-connected unit. The default is 6.

integer id – an identifier for the PDE, simply for use by the user in sub-
routines pdecoefs, bconds, etc. It is available as my pde id in module
phaml. See Section 7.2.3. The default is 0.

integer system size – number of equations in a coupled system of PDEs, or
equivalently, number of components in a multicomponent solution. The
default is 1.

integer eq type – type of equation to create. Valid values are:

65

ELLIPTIC – solve an elliptic boundary value PDE.
EIGENVALUE – solve an elliptic eigenvalue PDE.

The default is ELLIPTIC.

real(my real) max blen – maximum length of a boundary segment if the
domain is defined by the boundary subroutines.

The default is ∞, defined to be huge(0.0 my real).

character(len=*) triangle files – the root name of the .node, .ele,
.neigh, .poly and .edge triangle data files. If the domain is defined
by triangle data files and the file names include Triangle’s iteration num-
ber (usually .1), include the iteration number. If the domain is defined by
the boundary subroutines, this is used as the root of the created triangle
data files.

The default is "domain".

logical update umod – run update usermod as soon as the communication
has been initialized. This is needed if phaml user mod has any parameters
that affect the definition of the domain, or need to be set before the first
solution on the initial grid.

The default is .false.

7.4.5 phaml destroy

phaml destroy destroys a variable of type phaml solution type, i.e., frees the
memory contained in it. It also terminates the slave and graphics processes.
If you have multiple phaml solution type variables that are not needed si-
multaneously, you should destroy those no longer needed before creating those
not yet used, to reduce the possibility of running out of memory. Also, if a
phaml solution type variable is used more than once and is to be recreated to
give it a fresh start, it should be destroyed before being created again to avoid
a memory leak.

subroutine phaml destroy(phaml solution, finalize mpi)

type (phaml solution type) phaml solution – the variable to destroy

logical finalize mpi – if .false., do not call mpi finalize from the mas-
ter. It should be .true. if and only if this is the last call to phaml destroy.

The default is .true.

7.4.6 phaml evaluate

phaml evaluate evaluates the computed solution at the given points.

subroutine phaml evaluate(phaml solution, x, y, soln, comp,
eigen)

66

type(phaml solution type), intent(in) :: phaml solution – the solu-
tion to evaluate.

real(my real), intent(in) :: x(:), y(:) – array of x and y coordinates
at which to evaluate the solution.

real(my real), intent(out) :: soln(:) – returned as the computed so-
lution at the given points. Must have size(soln) == size(x).

integer, intent(in), optional :: comp – for multicomponent solutions,
which component to evaluate. The default is 1.

integer, intent(in), optional :: eigen – for eigenvalue problems, which
eigenfunction to evaluate. The default is 1.

7.4.7 phaml evaluate old

phaml evaluate old evaluates the “old” solution and/or derivatives at the
given point(s). Unlike all the other phaml subroutines, it should not be called
from the main program. It is intended to be called from the user routines that
define the problem (pdecoefs, etc.) to provide the “old” solution and deriva-
tives for time stepping in time dependent problems and iterating in nonlinear
problems.

subroutine phaml evaluate old(x, y, u, ux, uy, comp, eigen)

real(my real), intent(in) :: x, y – x and y coordinates of the point at
which to evaluate the solution.

real(my real), intent(out), optional :: u, ux, uy – returned as the
old solution, x derivative and y derivative at the given point. Any combi-
nation of the three may be present.

integer, intent(in), optional :: comp – for multicomponent solutions,
which component to evaluate. The default is 1.

integer, intent(in), optional :: eigen – for eigenvalue problems, which
eigenfunction to evaluate. The default is 1.

7.4.8 phaml integrate

phaml integrate returns a functional of the computed solution, i.e. an integral
of a computed solution or product of two computed solutions or powers of
computed solutions, weighted by a kernel function. It computes∫∫

Ω

k(x, y) up
comp1,eigen1(x, y) uq

comp2,eigen2(x, y) dx dy

67

where k is a kernel function defined in phaml integral kernel (see Section
7.3.7).

function phaml integrate(phaml solution, kernel, comp1, eigen1,
comp2, eigen2, p, q)

type(phaml solution type), intent(in) :: phaml solution – the solu-
tion to integrate.

integer, intent(in) :: kernel – allows you to select among different ker-
nel functions. It is passed to phaml integral kernel where it can be
used, for example, in a case statement to determine the kernel to use.

integer, intent(in), optional :: comp1, eigen1, comp2, eigen2 –
which component(s) of a multicomponent solution and which eigenfunc-
tion(s) of an eigenvalue problem to use. All of them default to 1. If comp1
is omitted then comp2 must also be omitted, and likewise for eigen1 and
eigen2. If comp2 and eigen2 are both omitted, then ucomp2,eigen2 is
omitted from the integral.

integer, intent(in), optional :: p, q – the powers to which to raise
the computed solutions in the integral. The default is 1.

7.4.9 phaml pclose

phaml pclose closes unit number unit on all processors in phaml solution.
See also phaml popen in Section 7.4.10.

subroutine phaml pclose(phaml solution, unit)

type (phaml solution type), intent(in) :: phaml solution – the so-
lution for which the files are being closed.

integer, intent(in) :: unit – the unit number to close.

7.4.10 phaml popen

phaml popen opens unit number unit on all processors in phaml solution. If
file is of the form “root.suffix” then the actual filenames are rootXXXX.suffix
for processor number XXXX, where the number of digits in XXXX is the minimum
needed for the number of processors in phaml solution. The master processor
is number 0. If there is no “.” in file, then there is no suffix and XXXX is
appended to the filename. The filename is limited to 128 characters and the
number of processors is limited to 9999. If the filename does not contain the
full path, the location of the file is compiler dependent. Good places to look for
it are the current working directory and the user’s home directory.

subroutine phaml popen(phaml solution, unit, file, form)

68

type (phaml solution type), intent(in) :: phaml solution – the so-
lution for which the files are being opened.

integer, intent(in) :: unit – unit number to open.

character(len=*), intent(in) :: file – base file name for the files.

character(len=*), intent(in), optional :: form – must take the value
"FORMATTED" or "UNFORMATTED" to determine the type of file to open.
Default is "FORMATTED".

7.4.11 phaml query

phaml query returns values of interest about the grid and solution. All argu-
ments except phaml solution, comp and eigen are optional and intent(out).
Include those you wish to receive as keyword arguments. phaml solution is
mandatory and intent(in). comp and eigen are optional and intent(in).

subroutine phaml query(phaml solution, nvert, nvert proc,
nvert own, nelem, nelem proc, nelem own, neq, neq proc, neq own,
nlev, min degree, max degree, linf error, energy error, l2 error,
max h error indicator, max p error indicator, linf h error estimate,
energy h error estimate, l2 h error estimate, linf p error estimate,
energy p error estimate, l2 p error estimate, linf solution,
l2 solution, eigenvalues, max linsys resid, ave linsys resid,
eigen l2 resid, arpack iter, arpack nconv, arpack numop,
arpack numopb, arpack numreo, arpack info, comp, eigen)

type(phaml solution type) :: phaml solution – the solution to query

integer :: nvert – the number of vertices in the grid

integer, dimension(nproc) :: nvert proc – the number of vertices in the
grid of each processor

integer, dimension(nproc) :: nvert own – the number of vertices owned
by each processor

integer :: nelem – the number of elements in the grid

integer, dimension(nproc) :: nelem proc – the number of elements in
the grid of each processor

integer, dimension(nproc) :: nelem own – the number of elements owned
by each processor

integer :: neq – the number of equations in the linear system

integer, dimension(nproc) :: neq proc – the number of equations in the
linear system of each processor

69

integer, dimension(nproc) :: neq own – the number of equations owned
by each processor

integer :: nlev – the number of levels of refinement

integer :: min degree – the smallest polynomial degree of an element

integer :: max degree – the largest polynomial degree of an element

real(my real) :: linf error – the L∞ norm of the error (at the vertices
and quadrature points of a sixth order quadrature rule), if the true solution
is known

real(my real) :: energy error – the energy norm of the error (approx-
imated by a sixth order quadrature rule), if the true solution and its
derivatives are known

real(my real) :: l2 error – the L2 norm of the error (approximated by a
sixth order quadrature rule), if the true solution is known

real(my real) :: max h error indicator – the largest h error indicator

real(my real) :: max p error indicator – the largest p error indicator

real(my real) :: linf h error estimate – an estimate of the L∞ norm
of the error based on h error indicators

real(my real) :: energy h error estimate – an estimate of the energy
norm of the error based on h error indicators

real(my real) :: l2 h error estimate – an estimate of the L2 norm of
the error based on h error indicators

real(my real) :: linf p error estimate – an estimate of the L∞ norm
of the error based on p error indicators

real(my real) :: energy p error estimate – an estimate of the energy
norm of the error based on p error indicators

real(my real) :: l2 p error estimate – an estimate of the L2 norm of
the error based on p error indicators

real(my real) :: linf solution – the discrete `∞ norm of the solution
vector

real(my real) :: l2 solution – the discrete `2 norm of the solution vector

real(my real) :: energy solution – the discrete energy norm of the solu-
tion vector

real(my real) :: linf u – the continuous L∞ norm of the solution, ap-
proximated using the vertices and the quadrature points of a sixth order
quadrature rule

70

real(my real) :: l2 u – the continuous L2 norm of the solution, approxi-
mated with a sixth order quadrature rule

real(my real) :: energy u – the continuous energy norm of the solution,
approximated with a sixth order quadrature rule

real(my real), dimension(num eval) :: eigenvalues – the computed
eigenvalues, for eigenvalue problems

real(my real) :: max linsys resid – for eigenvalue problems, the largest
`2 norm of the residual of the linear systems solved (scaled by the norm
of the right hand side)

real(my real) :: ave linsys resid – for eigenvalue problems, the average
of the `2 norm of the residuals of the linear systems solved (scaled by the
norm of the right hand side)

real(my real), dimension(num eval) :: eigen l2 resid – the `2 norm
of the residual of the eigensystem, for each eigenvalue ‖Ax−λMx‖/‖λMx‖

integer :: arpack iter – from ARPACK, number of iterations used

integer :: arpack nconv – from ARPACK, number of converged Ritz val-
ues

integer :: arpack numop – from ARPACK, number of OP*x operations

integer :: arpack numopb – from ARPACK, number of B*x operations

integer :: arpack numreo – from ARPACK, number of reorthogonaliza-
tions

integer :: arpack info – from ARPACK, info (error flag)

integer :: comp – for multicomponent solutions, which component to re-
port. Energy norms cover all components in a single norm. L∞ and L2

norms cover each component in individual norms. The default is 1.

integer :: eigen – for eigenvalue problems, which eigenfunction to report.
The default is 1.

7.4.12 phaml restore

phaml restore restores information for phaml solution from files created by
subroutine phaml store (see Section 7.4.15.

subroutine phaml restore(phaml solution, unit, do draw grid,
pause)

71

type (phaml solution type), intent(inout) :: phaml solution – the
solution into which the data will be read. If phaml solution was pre-
viously used, it should be destroyed first with phaml destroy (see Section
7.4.5) to avoid a memory leak. Whether or not it was previously used, it
must be created with phaml create (see Section 7.4.4) before passing it
to phaml restore.

integer, intent(in) :: unit – the unit number to read from, which should
have been opened with phaml popen using the same form as was used when
phaml store created the files.

logical, intent(in), optional :: do draw grid – whether or not to draw
the solution immediately after reading it.

logical, intent(in), optional :: pause – if do draw grid is true,
whether or not to pause after drawing the grid.

7.4.13 phaml scale

phaml scale scales the computed solution by multiplying by factor.

subroutine phaml scale(phaml solution, factor, comp, eigen)

type(phaml solution type), intent(inout) :: phaml solution – the so-
lution to scale.

real(my real), intent(in) :: factor – the factor by which to multiply.

integer, intent(in), optional :: comp – for multicomponent solutions,
which component to scale. The default is 1.

integer, intent(in), optional :: eigen – for eigenvalue problems,
which eigenfunction to scale. The default is 1.

7.4.14 phaml solve pde

phaml solve pde solves the PDE. All arguments are optional, except
phaml solution, so you only need to provide those for which you do not want to
take the default. All arguments are intent(in) except phaml solution which
is intent(inout) and iterm which is intent(out). It is recommended that the
call use keyword arguments for all arguments except possibly phaml solution.

subroutine phaml solve pde(phaml solution, iterm, max elem,
max vert, max eq, max lev, max deg, max refsolveloop,
term h energy err, term p energy err, term h Linf err, term p Linf err,
term h L2 err, term p L2 err, task, print grid when, print grid who,
print error when, print error who, print error what, print errest what,
print linsys when, print linsys who, print time when, print time who,
print eval when, print eval who, print header who, print trailer who,

72

print warnings, clocks, draw grid when, pause after draw,
pause after phases, pause at start, pause at end, sequential vert,
inc factor, error estimator, reftype, refterm, reftol, derefine,
partition method, prebalance, postbalance, petsc matrix free, solver,
preconditioner, mg cycles, mg tol, mg prerelax, mg postrelax,
mg prerelax ho, mg postrelax ho, dd iterations, ignore quad err,
num eval, lambda0, scale evec, arpack ncv, arpack maxit, arpack tol,
degree, inc quad order, hypre BoomerAMG MaxLevels,
hypre BoomerAMG MaxIter, hypre BoomerAMG Tol,
hypre BoomerAMG StrongThreshold, hypre BoomerAMG MaxRowSum,
hypre BoomerAMG CoarsenType, hypre BoomerAMG MeasureType,
hypre BoomerAMG CycleType, hypre BoomerAMG NumGridSweeps,
hypre BoomerAMG GridRelaxType, hypre BoomerAMG GridRelaxPoints,
hypre BoomerAMG RelaxWeight, hypre BoomerAMG IOutDat,
hypre BoomerAMG DebugFlag, hypre ParaSails thresh,
hypre ParaSails nlevels, hypre ParaSails filter, hypre ParaSails sym,
hypre ParaSails loadbal, hypre ParaSails reuse,
hypre ParaSails logging, hypre PCG Tol, hypre PCG MaxIter,
hypre PCG TwoNorm, hypre PCG RelChange, hypre PCG Logging,
hypre GMRES KDim, hypre GMRES Tol, hypre GMRES MaxIter,
hypre GMRES Logging, petsc richardson damping factor,
petsc chebychev emin, petsc chebychev emax, petsc gmres max steps,
petsc rtol, petsc atol, petsc dtol, petsc maxits, petsc ilu levels,
petsc icc levels, petsc ilu dt, petsc ilu dtcol, petsc ilu maxrowcount,
petsc sor omega, petsc sor its, petsc sor lits,
petsc eisenstat nodiagscaling, petsc eisenstat omega,
petsc asm overlap, coarse size, coarse method)

type (phaml solution type) phaml solution – the variable that contains
the main data structures. It must be created by subroutine phaml create
before passing it to phaml solve pde.

integer iterm – termination code. If positive, a termination criterion was
met. If negative, an error occurred. For the current meaning of the codes,
see global.f90 and look for the string termination.

integer max elem – the maximum number of elements to use (termination
criterion).

The default is ∞, defined to be huge(0).

integer max vert – maximum number of vertices to use (termination crite-
rion).

The default is ∞, defined to be huge(0).

integer max eq – maximum number of equations in the linear system (a.k.a.
degrees of freedom) to use (termination criterion).

The default is ∞, defined to be huge(0).

73

integer max lev – the maximum number of h refinement levels to use. If an
element is flagged for h refinement and the number of levels would exceed
max lev, then the element is quietly not refined. The number of levels is
limited by the size of the hash keys, which is set at the time the PHAML
library is compiled (see Section 2.2.1). For 32 bit integers it cannot exceed
30 for PHAML HASHSIZE=1 and 60 for PHAML HASHSIZE=2. If refinement
would exceed this limit and max lev is larger than the limit, the element
is quietly not refined.

The default is ∞, defined to be huge(0).

integer max deg – the maximum polynomial degree for the approximation
space. If an element is flagged for p refinement and the degree would
exceed max deg, then the element is quietly not refined.

The default is 10, which corresponds to the maximum degree for which
the currently implemented quadrature rules will give the exact solution if
the solution is a polynomial of degree max deg.

integer max refsolveloop – number of times to go through the refine/solve
loop (termination criteria).

The default is ∞, defined to be huge(0).

real(my real) term h energy err – terminate when the h energy error esti-
mate is less than this value (termination criteria).

The default is 0.0.

real(my real) term p energy err – terminate when the p energy error esti-
mate is less than this value (termination criteria).

The default is 0.0.

real(my real) term h Linf err – terminate when the h L∞ error estimate
is less than this value (termination criteria).

The default is 0.0.

real(my real) term p Linf err – terminate when the p L∞ error estimate
is less than this value (termination criteria).

The default is 0.0.

real(my real) term h L2 err – terminate when the h L2 error estimate is
less than this value (termination criteria).

The default is 0.0.

real(my real) term p L2 err – terminate when the p L2 error estimate is
less than this value (termination criteria).

The default is 0.0.

integer task – what task to perform. Valid values are:

74

BALANCE REFINE SOLVE – go through a loop repeatedly doing load bal-
ance, refinement and solution phases.

SET INITIAL – loop through the phases, but for the solution phase use
interpolation of the function in iconds.

BALANCE ONLY – just do one load balancing phase.

REFINE ONLY – just do one refinement phase.

SOLVE ONLY – just do one solution phase.

The default is BALANCE REFINE SOLVE.

integer print grid when – how often to produce a printed summary of the
grid (number of vertices and elements, etc.). Valid values are:

NEVER – don’t print.

PHASES – after each refinement phase.

FINAL – only at the end.

FREQUENTLY – possibly more often than PHASES (used for debugging).

The default is NEVER.

integer print grid who – which processes should print the summary of the
grid. Valid values are:

NO ONE – don’t print.

SLAVES – slave processes print a summary of the grid as they know it.

MASTER – master process prints the composite grid.

EVERYONE – both SLAVES and MASTER.

MASTER ALL – master prints the individual grids of each slave process.

The default is NO ONE.

integer print linsys when – how often to produce a printed summary of
the linear system (number of equations, sparsity, etc.). Valid values are:

NEVER – don’t print.

PHASES – after each linear system solution phase.

FREQUENTLY – possibly more often than PHASES (used for debugging).

The default is NEVER.

integer print linsys who – which processes should print the summary of
the linear system. Valid values are:

NO ONE – don’t print.

SLAVES – slave processes print a summary of the system as they know it.

75

MASTER – master process prints the composite linear system.

EVERYONE – both SLAVES and MASTER.

MASTER ALL – master prints the individual systems of each slave process.

The default is NO ONE.

integer print error when – how often to print the norms of the error (de-
fined to be the difference between the computed solution and the function
defined in function true) and error estimates. What norms of the error
and error estimates are printed is determined by print error what and
print errest what. It also prints the factor by which they have been
reduced since the last time they were printed, and the effectivity index of
the error estimate (ratio of the error estimate to the error) if both the er-
ror and error estimate are printed. If true returns huge(0.0 my real) to
indicate that the true solution is not known, then the error is not printed.
If truex or truey return huge(0.0 my real) and true does not, then the
energy norm of the error (if requested) is printed as huge(0.0 my real).
Valid values are:

NEVER – don’t print.

PHASES – after each solution phase.

FINAL – only at the end.

FREQUENTLY – possibly more often than PHASES (used for debugging).
With the hierarchical basis multigrid solver and the PETSc solvers,
this causes an estimate of the `2 norm of the residual to be printed
after each iteration. See KSPDefaultMonitor in the PETSc docu-
mentation.

TOO MUCH – possibly more often than FREQUENTLY. Also this sets the so-
lution to 0.0 before the solution phase as well as printing the residual
after each iteration of some solvers as with FREQUENTLY.

The default is NEVER.

integer print error who – which processes should print the error. Individual
processor energy norms of the error cannot be computed, so the energy
norm of the error is printed only by the master. Valid values are:

NO ONE – don’t print.

SLAVES – slave processes print the error over the grid as they know it.

MASTER – master process prints the error over the composite grid.

EVERYONE – both SLAVES and MASTER.

MASTER ALL – master prints the individual errors of each slave process.

The default is NO ONE.

76

integer print error what – what norms of the error to print, selected from
energy, L∞, and L2. The L∞ norm of the error is an approximation given
by the maximum error at the vertices and the quadrature points of a sixth
order quadrature rule. The L2 norm and energy norm are approximated
using a sixth order quadrature rule over the triangles of the grid. Valid
values are:

NEVER – don’t print any.

ENERGY ERR – energy norm.

LINF ERR – L∞ norm.

L2 ERR – L2 norm.

ENERGY LINF ERR – energy and L∞ norms.

ENERGY L2 ERR – energy and L2 norms.

LINF L2 ERR – L∞ and L2 norms.

ENERGY LINF L2 ERR – all three norms.

The default is NEVER.

integer print errest what – what norms of the error estimate to print, se-
lected from energy, L∞, and L2. Valid values are:

NEVER – don’t print any.

ENERGY HERREST – energy norm based on error indicators for h refine-
ment.

LINF HERREST – L∞ norm based on error indicators for h refinement.

L2 HERREST – L2 norm based on error indicators for h refinement.

ENERGY LINF HERREST – energy and L∞ norms based on error indicators
for h refinement.

ENERGY L2 HERREST – energy and L2 norms based on error indicators for
h refinement.

LINF L2 HERREST – L∞ and L2 norms based on error indicators for h
refinement.

ENERGY LINF L2 HERREST – all three norms based on error indicators for
h refinement.

Also the same forms with PERREST for norms based on error indicators
for p refinement, and the same forms with HPERREST for both the norms
based on error indicators for h refinement and for p refinement.

The default is NEVER.

integer print time when – how often to print the amount of time used by
the program. Valid values are:

NEVER – don’t print.

77

PHASES – after each refinement/solve loop.

FINAL – only at the end.

FREQUENTLY – possibly more often than PHASES (used for debugging).

The default is NEVER.

integer print time who – which processes should print the time. Valid values
are:

NO ONE – don’t print.

SLAVES – slave processes print their own times.

MASTER – master process prints maximum time over all slaves.

EVERYONE – both SLAVES and MASTER.

MASTER ALL – master prints the individual times of each slave process.

The default is NO ONE.

integer print eval when – for eigenvalue problems, how often to print the
eigenvalues. Valid values are:

NEVER – don’t print.

PHASES – after each refinement/solve loop.

FINAL – only at the end.

The default is NEVER.

integer print eval who – for eigenvalue problems, which processes should
print the eigenvalues. Valid values are:

NO ONE – don’t print.

SLAVES – slaves print the eigenvalues.

MASTER – master process prints the eigenvalues.

EVERYONE – both SLAVES and MASTER.

The default is NO ONE.

integer print header who – which processes should print a header message
and the values of the parameters when the subroutine starts. Valid values
are:

NO ONE – don’t print.

SLAVES – slaves print the header.

MASTER – master prints the header.

EVERYONE – both SLAVES and MASTER.

The default is MASTER.

78

integer print trailer who – which processes should print a trailer message
when the subroutine completes. Valid values are:

NO ONE – don’t print.

SLAVES – slaves print the trailer.

MASTER – master prints the trailer.

EVERYONE – both SLAVES and MASTER.

The default is MASTER.

logical print warnings – if .false., warning messages are not printed.

The default is .false.

integer clocks – which clock(s) (cpu and/or wall) to use for timing. Valid
values are:

CLOCK C – cpu clock.

CLOCK W – wall clock.

CLOCK CW – both cpu and wall clock.

The default is CLOCK W.

integer draw grid when – how often to update the graphics. Valid values
are:

NEVER – don’t draw.

PHASES – after each refinement and solve phase.

FINAL – only at the end.

FREQUENTLY – possibly more often than PHASES (used for debugging).

The default is NEVER.

logical pause after draw – if .true., the program will prompt for keyboard
input after updating the graphics.

The default is .false.

logical pause after phases – if .true., the program will prompt for key-
board input after each refinement/solve loop.

The default is .false.

logical pause at start – if .true., the program will prompt for keyboard
input before starting subroutine phaml solve pde.

The default is .false.

logical pause at end – if .true., the program will prompt for keyboard
input before returning from subroutine phaml solve pde.

The default is .false.

79

integer degree – sets the initial degree of the polynomials in the finite ele-
ment space. If no p refinement is performed, it is the fixed degree of the
space.

The default is to use the existing degree in each element (designated by
0). In phaml create, all elements are initialized to have degree 1.

integer inc quad order – increment the order of the quadrature rules by this
amount.

The default is 0.

integer sequential vert – number of vertices in the grid before it starts
running in parallel.

The default is 100.

real(my real) inc factor – the factor by which to increase the size of the
grid during one refinement phase.

The default is 2.0.

integer error estimator – select what to use for an error estimate to guide
adaptive refinement. Valid values are:

LOCAL PROBLEM – computes h and p error indicators and estimates by
solving a local Dirichlet (h) and Neumann (p) residual problem.

HIERARCHICAL COEFFICIENT – use the coefficient of the hierarchical basis
at the newest vertex of the element. This only provides an estimate
for h refinement of linear elements, and cannot be used with p re-
finement, hp refinement, or degree > 1. It is significantly faster than
LOCAL PROBLEM, but of lower quality.

TRUE DIFF – use the difference between the true solution at the newest
vertex of the element and surrounding vertices of the parent element.
Can only be used if the true solution is known and supplied, and only
for h refinement of linear elements.

INITIAL CONDITION – an error estimate based on interpolation of the
function in subroutine iconds (Section 7.3.5).

The default is INITIAL CONDITION if task is SET INITIAL, and
LOCAL PROBLEM otherwise.

integer reftype – type of refinement to perform. Valid values are:

H UNIFORM – uniform h refinement.

H ADAPTIVE – adaptive h refinement.

P UNIFORM – uniform p refinement.

P ADAPTIVE – adaptive p refinement.

HP ADAPTIVE – adaptive h and p refinement.

80

The default is H ADAPTIVE.

integer refterm – termination criteria for a refinement phase (DOUBLE or
HALVE really mean to multiply or divide by inc factor). Valid values
are:

DOUBLE NVERT – double the number of vertices.

DOUBLE NVERT SMOOTH – double the number of vertices, and then refine all
remaining elements in the same error estimate bin (helps to maintain
symmetries in the grid).

DOUBLE NELEM – double the number of elements.

DOUBLE NELEM SMOOTH – double the number of elements, and then refine
all remaining elements in the same error estimate bin.

DOUBLE NEQ – double the number of equations.

DOUBLE NEQ SMOOTH – double the number of equations, and then refine
all remaining elements in the same error estimate bin.

HALVE ERREST – reduce the maximum error indicator by half.

KEEP NVERT – keep the same number of vertices or reduce number to
max vert, and adjust the grid through derefinement and refinement.

KEEP NVERT SMOOTH – keep the same number of vertices or reduce number
to max vert, but then refine all remaining elements in the same error
estimate bin.

KEEP NELEM – keep the same number of elements or reduce number to
max elem.

KEEP NELEM SMOOTH – keep the same number of elements or reduce num-
ber to max elem, but then refine all remaining elements in the same
error estimate bin.

KEEP NEQ – keep the same number of equations or reduce number to
max eq.

KEEP NEQ SMOOTH – keep the same number of equations or reduce number
to max eq, but then refine all remaining elements in the same error
estimate bin.

KEEP ERREST – keep the same maximum error indicator. Currently not
supported.

ONE REF – refine all elements with an error indicator larger than
reftol/

√
n where n is the number of equations (degrees of freedom),

but refine each element only once (just h or p, and don’t refine chil-
dren).

The default is DOUBLE NEQ SMOOTH.

81

real(my real) reftol – tolerance for refining elements if refterm is ONE REF.
If refterm is ONE REF, then at least one of reftol, term h energy err,
or term p energy err must be given.

The default is max(term p energy err,term h energy err)/2.

logical derefine – if .true., perform derefinement as well as refinement
during adaptive refinement.

The default is .true.

integer partition method – what method to use for partitioning the grid.
Valid values are:

RTK – the k-way refinement tree method implemented in PHAML.

ZOLTAN RCB – recursive coordinate bisection, from Zoltan.

ZOLTAN OCT – RPI’s Octree method, from Zoltan.

ZOLTAN METIS – the local diffusion method from ParMETIS via Zoltan.

ZOLTAN REFTREE – the refinement tree method, from Zoltan.

ZOLTAN RIB – recursive inertial bisection, from Zoltan.

ZOLTAN HSFC – Hilbert space filling curve, from Zoltan.

The default is RTK.

integer prebalance – what to balance when partitioning the grid before
refinement. Valid values are:

BALANCE NONE – do not partition the grid before refinement.

BALANCE ELEMENTS – equal number of elements in each partition.

BALANCE VERTICES – equal number of vertices in each partition.

BALANCE EQUATIONS – equal number of equations in each partition.

The default is BALANCE ELEMENTS.

integer postbalance – what to balance when partitioning the grid after re-
finement. Valid values are:

BALANCE NONE – do not partition the grid after refinement.

BALANCE ELEMENTS – equal number of elements in each partition.

BALANCE VERTICES – equal number of vertices in each partition.

BALANCE EQUATIONS – equal number of equations in each partition.

The default is BALANCE NONE.

integer solver – what method to use as the solver. Valid values are:

MG SOLVER – the hierarchical basis multigrid method implemented in
PHAML.

82

PETSC RICHARDSON SOLVER – Richardson solver from PETSc.

PETSC CHEBYCHEV SOLVER – Chebychev solver from PETSc.

PETSC CG SOLVER – Conjugate Gradients from PETSc.

PETSC GMRES SOLVER – Generalized Minimal Residual (GMRES) from
PETSc.

PETSC TCQMR SOLVER – Transpose-Free Quasi-Minimal Residual (QMR)
from PETSc.

PETSC BCGS SOLVER – BiConjugate Gradients Stabilized (BiCGSTAB)
from PETSc.

PETSC CGS SOLVER – Conjugate Gradient Squared from PETSc.

PETSC TFQMR SOLVER – Transpose-Free Quasi-Minimal Residual (QMR)
from PETSc.

PETSC CR SOLVER – Conjugate Residual from PETSc.

PETSC LSQR SOLVER – Least Squares from PETSc.

PETSC BICG SOLVER – BiConjugate Gradients from PETSc.

HYPRE BOOMERAMG SOLVER – BoomerAMG algebraic multigrid from hypre.

HYPRE PCG SOLVER – Preconditioned Conjugate Gradients from hypre.

HYPRE GMRES SOLVER – GMRES from hypre.

MUMPS SPD SOLVER – Symmetric positive definite solver from MUMPS (a
parallel sparse direct solver). Only double precision is supported, i.e.
my real=kind(0.0d0) in global.f90.

MUMPS GEN SOLVER – General symmetric solver from MUMPS, for when
the matrix might not be positive definite. Only double precision is
supported, i.e. my real=kind(0.0d0) in global.f90.

SUPERLU SOLVER – parallel sparse direct solver SuperLU.

LAPACK INDEFINITE SOLVER – the indefinite solver from LAPACK. This
is available for certain debugging and testing operations, and can only
be used for very small problem sizes and only with one processor.

LAPACK SPD SOLVER – the LAPACK solver for symmetric positive definite
band matrices. This is available for certain debugging and testing
operations, and can only be used for very small problem sizes and
only with one processor.

Note: when the number of vertices is less than sequential vert, the hypre
and SuperLU solvers are replaced by a LAPACK solver for the whole
matrix on each processor.)

The default is MG SOLVER.

integer preconditioner – what method to use as a preconditioner for the
Krylov methods. Valid values are:

83

NO PRECONDITION – no preconditioning.

MG PRECONDITION – a hierarchical basis multigrid V-cycle as precondi-
tioner.

FMG PRECONDITION – an F-cycle of the MG preconditioner (full mg).

FUDOP DD PRECONDITION – a domain decomposition preconditioner with
FuDoP.

COARSE GRID PRECONDITION – exact solver on a coarse grid as precondi-
tioner.

PETSC JACOBI PRECONDITION – Jacobi preconditioner from PETSc.

PETSC BJACOBI PRECONDITION – Block Jacobi preconditioner from PETSc.

PETSC SOR PRECONDITION – SOR (and SSOR) preconditioner from PETSc.

PETSC EISENSTAT PRECONDITION – SOR with Eisenstat trick from PETSc.

PETSC ICC PRECONDITION – Incomplete Cholesky preconditioner from
PETSc.

PETSC ILU PRECONDITION – Incomplete LU preconditioner from PETSc.

PETSC ASM PRECONDITION – Additive Schwarz preconditioner from PETSc.

HYPRE DS PRECONDITION – Diagonal scaling preconditioner from hypre.

HYPRE BOOMERAMG PRECONDITION – BoomerAMG algebraic multigrid from
hypre.

HYPRE PARASAILS PRECONDITION – ParaSails sparse approximate inverse
from hypre.

Note: For solver=HYPRE PCG SOLVER, the preconditioner must be one of
NO PRECONDITION, HYPRE DS PRECONDITION, or
HYPRE BOOMERAMG PRECONDITION. For solver=HYPRE GMRES SOLVER, the
preconditioner must be one of NO PRECONDITION, HYPRE DS PRECONDITION,
HYPRE BOOMERAMG PRECONDITION, or HYPRE PARASAILS PRECONDITION. The
hypre preconditioners can only be used with the hypre PCG and GMRES
solvers.

The default is:

NO PRECONDITION – when not applicable

HYPRE BOOMERAMG PRECONDITION – for the hypre solvers

MG PRECONDITION – otherwise

integer coarse size – for the coarse grid preconditioner, maximum size of
the coarsened grid.

The default is 5000.

integer coarse method – for the coarse grid preconditioner, the method to
use to solve the coarse grid problem. Permitted values are

84

LAPACK INDEFINITE SOLVER – the indefinite solver from LAPACK.

MUMPS GEN SOLVER – general symmetric solver from MUMPS.

SUPERLU SOLVER – parallel sparse direct solver SuperLU.

The default is LAPACK INDEFINITE SOLVER.

integer mg cycles – number of multigrid V-cycles to use in one solution
phase, or as a preconditioner, or number of V-cycles on each level during
the F-cycle preconditioner.

If mg tol is MG NO TOL, the default is 1; otherwise it is infinite.

real(my real) mg tol – perform multigrid cycles until the `2 norm of the
scaled linear system residual is less than mg tol (up to a maximum of
mg cycles cycles). In addition to positive real numbers, it can have the
following values:

MG NO TOL – do not use the tolerance test for ending the multigrid cycles,
use a fixed number of cycles given by mg cycles instead.

MG ERREST TOL – reduce the residual to some fraction of the error esti-
mate.

The default is MG ERREST TOL.

integer mg prerelax – number of half red-black relaxation sweeps to make
before coarse grid correction in the h-hierarchical linear bases.

The default is 1.

integer mg postrelax – number of half red-black relaxation sweeps to make
after coarse grid correction in the h-hierarchical linear bases.

The default is 2.

integer mg prerelax ho – number of half red-black relaxation sweeps to make
before coarse grid correction in the p-hierarchical high order bases. In
addition to nonnegative integers, it can have the following values:

MG RELAX HO MAXDEG – number of full red-black relaxations sweeps equals
the maximum degree of any element.

The default is MG RELAX HO MAXDEG.

integer mg postrelax ho – number of half red-black relaxation sweeps to
make after coarse grid correction in the p-hierarchical high order bases.
In addition to nonnegative integers, it can have the following values:

MG RELAX HO MAXDEG – number of full red-black relaxations sweeps equals
the maximum degree of any element.

The default is MG RELAX HO MAXDEG.

85

integer dd iterations – number of iterations to use for the FuDoP domain
decomposition preconditioner.

The default is 1.

logical petsc matrix free – if the solver is one of the PETSc methods and
this parameter is .true., memory is saved by using a matrix-free approach
that does not copy the matrix to a PETSc data structure. If .true., then
you cannot use the PETSc preconditioners.

The default is .false.

logical ignore quad err – if .true., when setting up the linear system,
ignore the quadrature errors in the large triangles outside the owned re-
gion. This is acceptable (and reduces computation and communication)
when the PDE coefficients and right hand side are constant (for example,
Laplace’s equation), but will reduce the convergence of the discretization
error otherwise.

The default is .false.

integer num eval – For eigenvalue problems, the number of eigenvalues to
find.

The default is 1.

real(my real) lambda0 – For eigenvalue problems, find the eigenvalues clos-
est to lambda0.

The default is −∞ defined as -huge(0.0 my real), i.e., find the smallest
eigenvalues.

integer scale evec – For eigenvalue problems, the eigenvectors can be mul-
tiplied (scaled) by an arbitrary constant. These are the choices for scaling:

SCALE LINF – scale so the (discrete) `∞ norm is 1. For linear elements,
this is also the L∞ norm.

SCALE L2 – scale so the (discrete) `2 norm is 1.

SCALE M – scale so the M norm,
√

xT Mx, is 1, where M is the mass
matrix. The M norm is also the (continuous) L2 norm.

The default is SCALE LINF.

The following parameters are passed to ARPACK. See the ARPACK docu-
mentation for more information on them.

integer arpack ncv – number of Lanczos basis vectors to use

The default is 20.

integer arpack maxit – maximum number of IRLM iterations

The default is 100.

86

real(my real) arpack tol – relative accuracy to which eigenvalues are com-
puted

The default is 10−10.

The following parameters are passed to subroutines in hypre. See the docu-
mentation for hypre for explanations and default values.

integer hypre BoomerAMG MaxLevels
integer hypre BoomerAMG MaxIter
real(my real) hypre BoomerAMG Tol
real(my real) hypre BoomerAMG StrongThreshold
real(my real) hypre BoomerAMG MaxRowSum
integer hypre BoomerAMG CoarsenType
integer hypre BoomerAMG MeasureType
integer hypre BoomerAMG CycleType
integer hypre BoomerAMG NumGridSweeps(:)
integer hypre BoomerAMG GridRelaxType(:)
integer hypre BoomerAMG GridRelaxPoints(:,:)
real(my real) hypre BoomerAMG RelaxWeight(:)
integer hypre BoomerAMG IOutDat (not available after hypre 1.6.0)
integer hypre BoomerAMG DebugFlag
real(my real) hypre ParaSails thresh
integer hypre ParaSails nlevels
real(my real) hypre ParaSails filter
integer hypre ParaSails sym
real(my real) hypre ParaSails loadbal
integer hypre ParaSails reuse
integer hypre ParaSails logging
real(my real) hypre PCG Tol
integer hypre PCG MaxIter
integer hypre PCG TwoNorm
integer hypre PCG RelChange
integer hypre PCG Logging
integer hypre GMRES KDim
real(my real) hypre GMRES Tol
integer hypre GMRES MaxIter
integer hypre GMRES Logging

The following parameters are passed to subroutines in PETSc. See the
documentation for PETSc for explanations and default values.

87

real(my real) petsc richardson damping factor
real(my real) petsc chebychev emin
real(my real) petsc chebychev emax
integer petsc gmres max steps
real(my real) petsc rtol
real(my real) petsc atol
real(my real) petsc dtol
integer petsc maxits
integer petsc ilu levels
integer petsc icc levels
real(my real) petsc ilu dt
real(my real) petsc ilu dtcol
integer petsc ilu maxrowcount
real(my real) petsc sor omega
integer petsc sor its
integer petsc sor lits
logical petsc eisenstat nodiagscaling
real(my real) petsc eisenstat omega
integer petsc asm overlap

7.4.15 phaml store

phaml store stores information from phaml solution into files for later use.

subroutine phaml store(phaml solution, unit)

type (phaml solution type), intent(in) :: phaml solution – the so-
lution to store.

integer, intent(in) :: unit – the unit number to write to, which should
have been opened as either FORMATTED or UNFORMATTED with sub-
routine phaml popen. UNFORMATTED is likely to be faster and create
smaller data files. FORMATTED may be required if you will be restoring
with a different compiler or architecture, and might not reproduce floating
point numbers exactly.

References

[1] M. Ainsworth and J.T. Oden, A Posteriori Error Analysis in Finite Element
Analysis, Wiley Interscience Publishers, New York, 2000.

[2] P. R. Amestoy, I. S. Duff and J.-Y. L’Excellent (1998), Multifrontal parallel
distributed symmetric and unsymmetric solvers, in Comput. Methods in
Appl. Mech. Eng., 184, 501-520 (2000).

[3] P. R. Amestoy, I. S. Duff, J. Koster and J.-Y. L’Excellent, A fully asyn-
chronous multifrontal solver using distributed dynamic scheduling, SIAM
Journal of Matrix Analysis and Applications, Vol 23, No 1, pp 15-41 (2001).

88

[4] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK
User’s Guide, Third Edition, SIAM, Philadelphia, PA, USA, 1999.

[5] Satish Balay, Victor Eijkhout, William D. Gropp, Lois Curfman McInnes
and Barry F. Smith, Efficient Management of Parallelism in Object Ori-
ented Numerical Software Libraries, in Modern Software Tools in Scientific
Computing, E. Arge, A. M. Bruaset and H. P. Langtangen, eds., 163–202,
Birkhäuser Press, 1997.

[6] Satish Balay, Kris Buschelman, Victor Eijkhout, William D. Gropp, Dinesh
Kaushik, Matthew G. Knepley, Lois Curfman McInnes, Barry F. Smith and
Hong Zhang, PETSc Users Manual, ANL-95/11 - Revision 2.1.5, Argonne
National Laboratory, 2004.

[7] P. Carnevali, R. B. Morris, Y. Tsuji and G. Taylor, New Basis Functions
and Computational Procedures for the p-Version Finite Element Analysis,
Int. J. Num. Meth. Engng., 36, (1993), pp. 3759-3779.

[8] K. Devine, B. Hendrickson, E. Boman, M. St. John, C. Vaughan and W.
F. Mitchell, Zoltan: A dynamic load-balancing library for parallel appli-
cations, User’s Guide, Sandia Technical Report SAND99-1377, Sandia Na-
tional Laboratories, Albuquerque, NM, 2000.

[9] Karen Devine, Erik Boman, Robert Heaphy, Bruce Hendrickson, Courtenay
Vaughan, Zoltan Data Management Services for Parallel Dynamic Appli-
cations, Computing in Science and Engineering, 2002, 4, 2, 90–97.

[10] R.D. Falgout and U.M. Yang, hypre: a Library of High Performance Pre-
conditioners, in Computational Science - ICCS 2002 Part III, P.M.A. Sloot,
C.J.K. Tan. J.J. Dongarra, and A.G. Hoekstra, eds., vol. 2331 of Lecture
Notes in Computer Science, Springer-Verlag, 2002, pp. 632-641.

[11] R.D. Falgout, J.E. Jones, and U.M. Yang, The Design and Implementation
of hypre, a Library of Parallel High Performance Preconditioners, in Nu-
merical Solution of Partial Differential Equations on Parallel Computers,
A.M. Bruaset, P. Bjrstad, and A. Tveito, eds., Lecture Notes in Computa-
tional Science and Engineering, Springer-Verlag, 51 (2006), pp. 267-294.

[12] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users’ Guide: Solu-
tion of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi
Methods, SIAM.

[13] Xiaoye S. Li and James W. Demmel, SuperLU DIST: A Scalable
Distributed-Memory Sparse Direct Solver for Unsymmetric Linear Systems,
ACM Trans. Mathematical Software, 2003, 29, 2, 110–140.

[14] W.F. Mitchell, Adaptive refinement for arbitrary finite element spaces with
hierarchical bases, J. Comp. Appl. Math. 36 (1991), pp. 65–78.

89

[15] W.F. Mitchell, Optimal multilevel iterative methods for adaptive grids,
SIAM J. Sci. Statist. Comput. 13 (1992), pp. 146–167.

[16] W.F. Mitchell, The Full Domain Partition Approach to Parallel Adaptive
Refinement, in Grid Generation and Adaptive Algorithms, IMA Volumes in
Mathematics and its Applications, 113, Springer-Verlag, 1998, pp. 151–162.

[17] W.F. Mitchell, A Parallel Multigrid Method Using the Full Domain Parti-
tion, Electronic Transactions on Numerical Analysis, 6, 224–233 (1998).

[18] W.F. Mitchell, Multigrid Methods for the hp Version of the Finite Element
Method, 8th U.S. National Congress on Computational Mechanics, July
2005.

[19] W.F. Mitchell, A Refinement-tree Based Partitioning Method for Dynamic
Load Balancing with Adaptively Refined Grids, J. Par. Dist. Comput., to
appear.

[20] W.F. Mitchell, Initial Grid Generation for Newest Node Bisection Refine-
ment of Triangles, in process.

[21] J.R. Rice, Algorithm 625: A Two Dimensional Domain Processor, ACM
Trans. Math. Software, 10, (1984), 443–452.

[22] Jonathan Richard Shewchuk, Triangle: Engineering a 2D Quality Mesh
Generator and Delaunay Triangulator, in “Applied Computational Geom-
etry: Towards Geometric Engineering” (Ming C. Lin and Dinesh Manocha,
editors), volume 1148 of Lecture Notes in Computer Science, pages 203-222,
Springer-Verlag, Berlin, May 1996.

[23] Jonathan Richard Shewchuk, Triangle: A Two-Dimensional Quality Mesh
Generator and Delaunay Triangulator, http://www.cs.cmu.edu/~quake/
triangle.html

[24] G. Strang and G. Fix, An Analysis of the Finite Element Method, Prentice-
Hall, Englewood Cliffs, NJ, 1973.

[25] B. Szabo and I. Babuška, Introduction to Finite Element Analysis, John
Wiley and Sons, New York, 1989.

90

http://www.cs.cmu.edu/~quake/triangle.html
http://www.cs.cmu.edu/~quake/triangle.html

	Introduction
	Software
	Obtaining Software
	PHAML
	Fortran 90 and C Compilers
	BLAS and LAPACK
	PVM and MPI
	OpenGL (or Mesa), GLUT and f90gl
	Triangle
	ARPACK
	hypre
	MUMPS
	PETSc
	SuperLU
	Zoltan

	Compiling PHAML
	Creating the Makefiles
	Compiling the Library

	Testing the Library
	Compiling and Running the Examples

	Scalar Linear Elliptic Boundary Value Problems
	Main program
	Parallelism
	Program structure

	Defining the problem
	Defining the PDE
	Defining the boundary conditions
	Defining the domain and initial grid
	The true solution

	Solution method
	Discretization
	Refinement
	Error indicator
	Linear system solver
	Load balancing
	Termination

	I/O
	I/O files
	Printed I/O
	Pausing

	Graphics
	Overview
	Example visualizations
	View modifier
	Colors
	Functions
	Lights
	Contour plots
	Multiple solutions
	Miscellaneous features
	Development aids
	Postscript

	Post-solution utilities
	Store and Restore
	Query
	Solution evaluation
	Functionals

	Problem Extensions
	Eigenvalue Problems
	Coupled Systems or Multicomponent Solutions
	Parabolic, Nonlinear, Etc. Problems

	Examples
	Release notes
	Reference Manual
	Quick Start
	Obtaining the software
	Compiling the PHAML library
	Compiling an Example
	Running the Example
	Now what?

	Public Entities in PHAML
	phaml_solution_type
	my_real
	pde and my_pde_id
	symbolic constants

	User Provided Routines
	bconds
	boundary_point
	boundary_npiece
	boundary_param
	iconds
	pdecoefs
	phaml_integral_kernel
	trues
	truexs
	trueys
	update_usermod

	PHAML procedures
	phaml_compress
	phaml_connect
	phaml_copy_soln_to_old
	phaml_create
	phaml_destroy
	phaml_evaluate
	phaml_evaluate_old
	phaml_integrate
	phaml_pclose
	phaml_popen
	phaml_query
	phaml_restore
	phaml_scale
	phaml_solve_pde
	phaml_store

