Full-Scale Evaluation of Carbon Injection for Mercury Control at a Unit Firing High Sulfur Coal

Sharon Sjostrom ADA-ES, Inc.

DOE NETL Mercury Control Technology Conference December 11, 2006

Project Focus Areas

- Evaluate effectiveness of sorbent injection for mercury control in unproven environments
 - Low halogen flue gas (PRB, SDA)
 - Mid-sized ESPs
 - High sulfur flue gas

Goal: Reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than DOE basis (\$60,000/lb Hg removed)

DOE Cooperative Agreement DE-FC26-03NT41986 DOE/NETL Project Manager: Andrew O'Palko

Five Sites Included in DOE Program

Test Site	Coal	Pollution Control
DTE Energy Monroe	PRB/Bit Blend	SCR Cold Side ESP
Sunflower Electric Holcomb	PRB PRB/Bit Blend	SDA + FF
Ameren UE Meramec	PRB	Cold Side ESP
Missouri Basin PP Laramie River	PRB PRB/Bit Blend	SDA + ESP
AEP Conesville	Bituminous	Cold Side ESP WFGD

Small ESP and High Sulfur Co-funders

AmerenUE* American Electric Power* DTE Energy* Dynegy Generation MidAmerican Ontario Power Generation Southern Company TVA ADA-ES ALSTOM Arch Coal EPCOR EPRI Babcock & Wilcox NORIT Americas

* Host Sites

AEP Conesville Unit 6

Conesville Power Plant Unit 6

- 400 MW T-Fired boiler, ESP, WFGD
- Fires high sulfur (3 to 4%) coal
 - Low native removal in ESP
 - Challenging flue gas for sorbents
 - Previous fixed bed testing indicated adsorption capacity for standard activated carbon reduced by 60% as a result of SO₃ FGC at PRB site (SO₃ much lower than at Conesville)
- Moderate (~ 700 1200 ppm) chlorine in coal
 Fraction of oxidized mercury ~ 50 to 70%

Baseline Mercury Trends: ESP

Mercury CEMS: Thermo Mercury Freedom System[™]

Impact of SO₃ Injection on Hg Removal

Impact of SO₃ Injection on Hg Removal

Effect of SO₃ on Sorbent Capacity: Fixed-bed results

Conesville ESP: Temperature Stratification

Gas Flow

Model Results (10 lb/MMacf)

Predicted Hg Removal

DARCO Hg (n=1) 22.3 Lower Reactivity (n=0.5) 9.1

Smaller Particle Size35.8

Actual Results: DARCO Hg: 8.1% removal at 9.5 lb/MMacf Fine PAC: 11% removal at 8 lb/MMacf

Model uses Freundlich Isotherm $W^* = [1/K](C^*)^{1/n}$

Finding the Right Sorbent for Conesville

- Evaluate various sorbents
 - Fixed-bed screening
 - >50 sorbents from 15 suppliers Activated Carbon
 Enhanced Activated Carbon
 Mineral
 - Alkaline
 - Full-scale injection tests
 - 20 sorbents from 5 suppliers

Sorbent Suppliers Included in Screening Tests

- ADA-ES
- Advanced Fuel Research
- AEP
- Calgon
- California Earth Minerals
- Donau
- EERC
- Engelhard
- Frontier Geosciences
- NEST
- Norit
- Sorbtech
- TDA Research
- Zinkan

Mercury Removal Comparison

Enhancements with Treated PAC

Enhancements with Fine PAC

Full-Scale Parametric Results (~ 2 hr)

-ES

Lance Design and Sorbent Distribution

Powdered Activated Carbon Injection

Conesville Lance Design

Mercury Stratification Measurements

Multi-Nozzle Lances

Ash Hg Stratification Measurements

Multi-Nozzle Lances

LOI Stratification Measurements

Multi-Nozzle Lances

Carbon Mass Distribution

Example only. Data not available for Conesville lance design

Mercury Reduction Trends with ACI on FF's and ESPs

ADA-ES

Conclusions from Conesville

- No baseline removal across ESP
 - 50 to 70% Oxidized Hg at ESP inlet
 ~ 75% Oxidized Hg removed in WFGD
- Maximum mercury removal across ESP with PAC << target of 50%
- SO₃ (and other species ??) significantly reduced effectiveness of PAC at Conesville
- No noticeable improvement using brominated carbon or fine carbon
- Some improvements achieved with alkali/PAC blends
- Hg CEMs performed well in this challenging flue gas

Ongoing Testing

- Ameren's Labadie Power Plant
 - PRB coal
 - -ESP
 - $-SO_3 FGC$
- Plans
 - Evaluate several sorbents
 - Vary SO₃ concentration
 - Inject upstream and downstream of APH

Questions?

Sharon Sjostrom ADA-ES, Inc. (303) 734-1727 sharons@adaes.com

