CFD Modeling for Mercury Control Technology

Jens Madsen Ansys / Fluent Inc. 3647 Collins Ferry Rd. Morgantown, West Virginia

DOE/NETL's Mercury Control Technology Conference,

Pittsburgh, December 11-13. 2006

Background and Motivation

- There are 1,100+ coal-fired units in the United States
- These account for ~40% of manmade mercury emissions
- A typical 300 MW power plant will require between \$1 and \$2 million of sorbent per year
- CFD enables optimization of capture processes and may substantially reduce the cost of CAMR compliance
- Have provided flow modeling support for DOE/NETL field test sites over the past three years

Modeling Mercury Transport and Capture

Distinct mass transfer processes

- These occur on multiple scales
- Any single process could limit the overall capture of mercury

- 1. Injection and dispersion of solids
- 2. Duct-scale transport of gaseous mercury species (convection/diffusion)
- 3. Mass transfer from gas phase to external sorbent surface (film transport)
- 4. Pore diffusion through sorbent's interior
- 5. Surface adsorption on internal sites

Modeling Mercury Transport and Capture (2)

Brayton Point Trajectories of injected sorbent, colored by residence time

Gas phase conditions

- Velocity
- Temperature
- Mercury concentrations [µg/m³] (Elemental/oxidized species)
- (Pressure, turbulence params.)

Solid phase (sorbent) conditions

- Dispersion
- Residence time
- Where the capture takes place

CFD allows fast what-if studies

- Optimize injection systems
- Significant savings over "build and test"

Brayton Point Dispersion Patterns

Coverage with >10% of average sorbent conc.

Meramec Dispersion Patterns

Pittsburgh, December 2006

Sorbent Coverage at Brayton Point vs. Meramec

12ft after injection

15ft after injection

Downstream Distance from Injection	Brayton Point Coverage Fraction		Meramec Coverage Fraction		Downstream Distance from
	>100% avg.	>10% avg.	>100% avg.	>10% avg.	Injection
1ft	0.069	0.221	0.049	0.056	1ft
12ft	0.224	0.840	0.125	0.187	15ft
30ft	0.307	0.944	0.164	0.296	30ft

Validation of Discrete Particle Model

• Can these predictions of sorbent dispersion be trusted?

- Dispersion data not available for real power plants
- Circumstantial evidence exist in the form of dispersion results that match capture stratification patterns at Monroe field test site
- A more thorough model validation required

Model validation based on well-documented experiments *

- Dispersion of particle jet in isotropic turbulence
- Turbulence is generated in experiment using a screen
- Turbulence intensity and decay hereof also measured

***** W.H. Snyder and J.L. Lumley : "Some measurements of particle velocity autocorrelation functions in a turbulent flow", Journal of Fluid Mechanics, 1971, vol. 48 (No.1), pp 41-71.

Validation of Discrete Particle Model (2)

Comparison of Turbulent Kinetic Energy Decay

- Decay of turbulence is relatively slow in Snyder & Lumley experiments
 - Fluent with standard $k\epsilon$ -model compares well with experiments
 - Turbulent decay matched by decreasing dissipation of turbulence in $k\epsilon\text{-model}$

Validation of Discrete Particle Model (3)

- In this case CFD under-predicts the particle dispersion (by 5 ... 30%)
- Second validation case involving sheared jets under investigation
 - This case should closer mimic flow conditions in a utility duct

DTE Energy's Monroe Plant – ACI testing

- Monroe plant has a very wide rectangular duct (51.5ft)
- Major stratification problems (temperature/sorbent/capture)
- Five multi-nozzle injection lances provide only partial coverage
- Stratification causes packages of gas to pass untreated by ACI
- Overall CFD predictions agree with outlet mercury sampling and analysis of hopper ash mercury content

Southern Co.'s Yates (Unit 1) – ACI Field Test Support

• Maximum capture rates achieved during field tests: 55...60%

- Removal plateaus at high feed rates
- Similar results with three different sorbents (Darco-Hg, HOK, NH Carbon)
- Could this be a question of poor sorbent dispersion?

Injection Lance Design

• Determine sorbent split for multi-nozzle injection lances

- Flow modeling of lance interior

- Ten size bins (d_p= 1 ...100 μ m)
- Trajectory flow rates weighted by size distribution

Injection Lance Design (2)

• Multi-nozzle lances offer a false sense of security

- Sorbent split can be very uneven (here 81% exits lower set of nozzles)
- Performance very similar to that of a much simpler single-nozzle lance
- Staggered lance arrangements is a preferable approach to achieving good coverage from top-to-bottom of duct

Capture Modeling – Simplifications and Inputs

• Few existing models of mercury capture

- -Typical simplifications include:
 - plug gas flow (1D models)
 - uniform sorbent dispersion
 - No velocity slip between particles and flue gas

• CFD-based model without these simplifications

- -Based on first principles (conservation laws)
- -Considers adsorption of Hg(o) and HgCl₂

Mercury capture model inputs

- -Duct geometry including injection gear
- -Flue gas mass flow rates
- -Inlet temperatures (constant or profiles)
- -Sorbent particle size distribution
- -Sorbent feed rates
- -Mercury inlet concentration [μ g/m³]
- -Oxidation fraction

- 1. Injection and dispersion of solids
- 2. Duct-scale transport of gaseous mercury species (convection/diffusion)
- 3. Mass transfer from gas phase to external sorbent surface (film transport)
- 4. Pore diffusion through sorbent's interior
- 5. Surface adsorption on internal sites

Capture Modeling – Example

Capture Modeling – Sorbent Interior

- Mercury species transport by porous diffusion
 - Less diffusive mode limiting (Molecular or Knudsen Diffusion)

Capture Modeling – Surface Adsorption

- Mercury adsorption rates computed using Langmuir isotherms
 - Separate isotherm expression for each mercury species
 - Capture by UBC may be accounted for by separate particle stream with own isotherm
- Langmuir: net adsorption rate = forward rate (k₁) minus desorption rate (k₂)

$$\Re = \mathbf{k}_{1}\omega_{\max}[1-\theta]\mathbf{c}_{Hg} - \mathbf{k}_{2}\omega_{\max}\theta$$

- Here θ is the sorbent utilization (ω / ω_{max}), ie. fraction of occupied sites
- ω_{max} is the maximum number of available sites (sorbent capacity)
- Isotherm parameters (ω_{max} , k₁, and b = k₁/k₂) are temperature-dependent
 - Getting proper isotherm data for a sorbent is challenging
 - When determined from packed bed breakthrough curves, adsorption process is essentially lumped with film transfer and pore diffusion

Conclusions and Future Work

• CFD enables cost-effective optimization of injection grids for ACI

- Directly addresses the major cost component of this technology (sorbent cost)

Capture model shortcomings to overcome

- Lack of accurate adsorption rates hurts predictions of capture efficiency
- Effects of flue gas chemistry (eg. Cl and SO₃) not accounted for
 - Mercury Speciation is frozen (prescribed at inlet)
 - Heterogeneous reaction kinetics appears to be crucial
 - Other adsorbates competing for activated sites
- Identify strongly reduced reaction mechanism for mercury speciation and adsorption
 - NETL partnership with Clean Coal Center at University of Utah
- Continued Field Test Modeling Support
 - Currently building model for We Energies' Presque Isle TOXECON
 - Phase III DOE/NETL field test site(s)

