Mercury Control by EPRI MerCAP[™] Process

NETL Mercury Control Technology Conference December 13, 2006

Tom Machalek, URS Corporation

Presentation Outline

Project Background

- Project objectives

Host Site 2

- **Description**
- Planned tests
- Project status
- Initial results
- Future plans

Host Site 1

- Background
- Discussion of recent work and final results
- Conclusions

Project Background

Financial Assistance Program DE-FC26-03NT41993

Two Test Sites

- Georgia Power Plant Yates Unit 1
- Great River Energy Stanton Station Unit 10

Project Team

Pierina Noceti (COR) Bill Aljoe SOUTHERN COMPANY Energy to Serve Your World®

Juliana Kyle Ken McBee Mark Berry

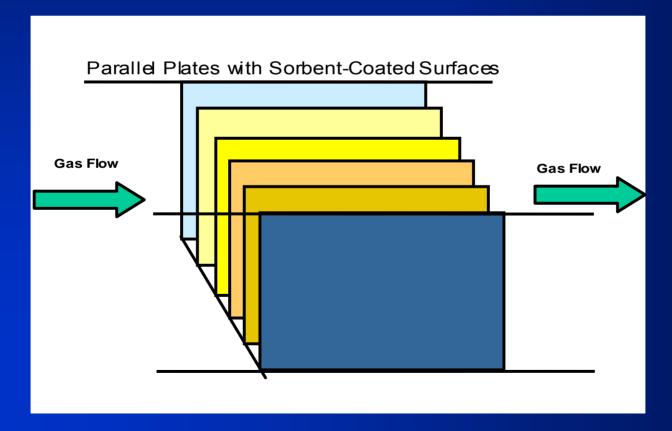
EP2 Ramsay Chang

Steve Smokey Mark Strohfus **URS** Carl Richardson

Tom Machalek

Apogee Scientific

Tim Ebner Kevin Fisher Rick Slye Trevor Ley

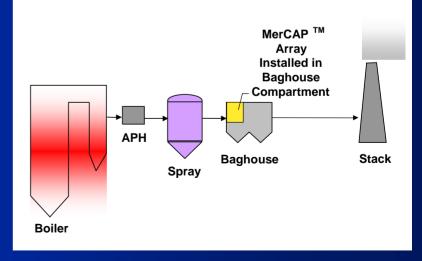


Sharon Sjostrom

Project Background

Fixed sorbent structures to adsorb mercury

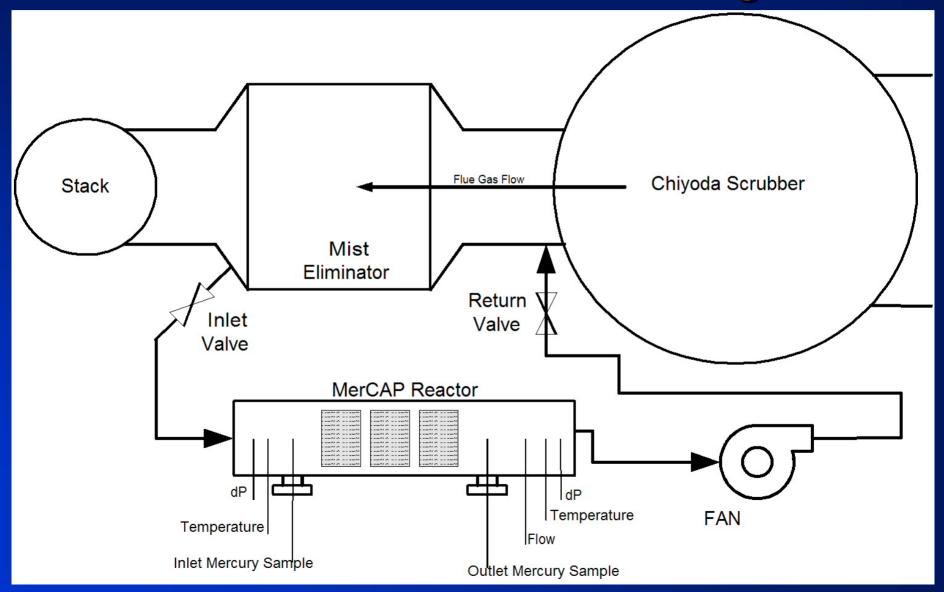
- Gold substrates


Project Background

- Concept tested using small-scale probes since 1999
- Full scale tests at two sites downstream of scrubbers
 - Plant Yates Unit 1 (on-going)
 - 1 MWe slipstream fitted with gold plates
 - Wet Scrubber (Chiyoda CT-121 jet bubbling reactor)
 - Stanton Unit 10 (completed)
 - Full-scale baghouse compartment retrofitted with gold plates
 - Dry Scrubber

Project Objectives

Evaluate MerCAP[™] technology downstream of wet and dry scrubbers


- Removal performance & variability
 - Optimal process conditions
- Regeneration
 - Thermal
 - Chemical
- Economic viability

Georgia Power Plant Yates Unit 1

Boiler	
Туре	CE Tangential Fired
Nameplate (MW)	100
Coal	
Туре	Eastern Bituminous
Sulfur (wt %, day)	1.0
Mercury (mg/kg, dry)	0.10
Chloride (mg/kg, dry)	300-1400
ESP	
Туре	Cold-Side
SCRUBBER	
Туре	Chiyoda CT-121
Scrubber Outlet Temp. (°F)	130
NO _x Controls	Low NOx Burners
SO ₂ Controls	Chiyoda CT-121 wet scrubber

Plant Yates Unit 1 MerCAP[™] Configuration

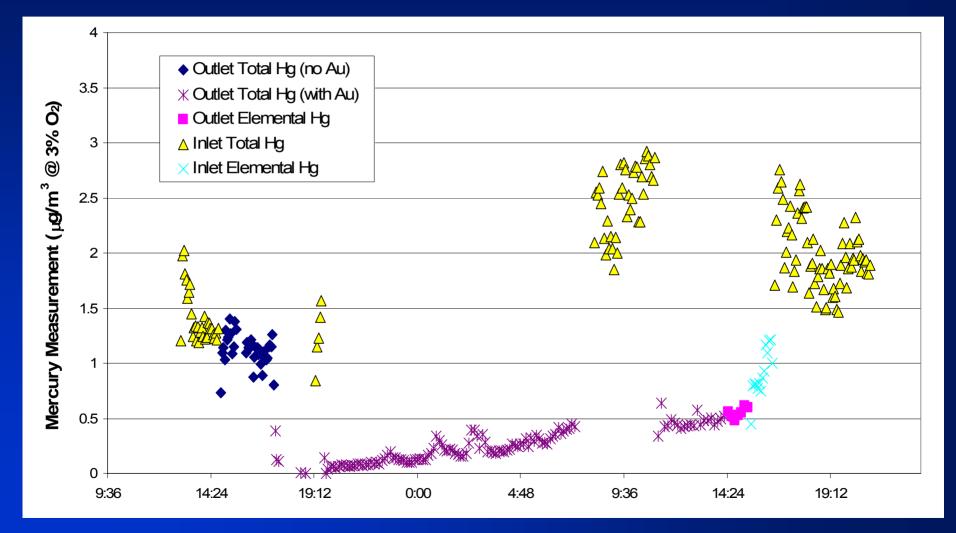
MerCAP[™] Installed at Plant Yates Unit 1

MerCAP[™] Reactor

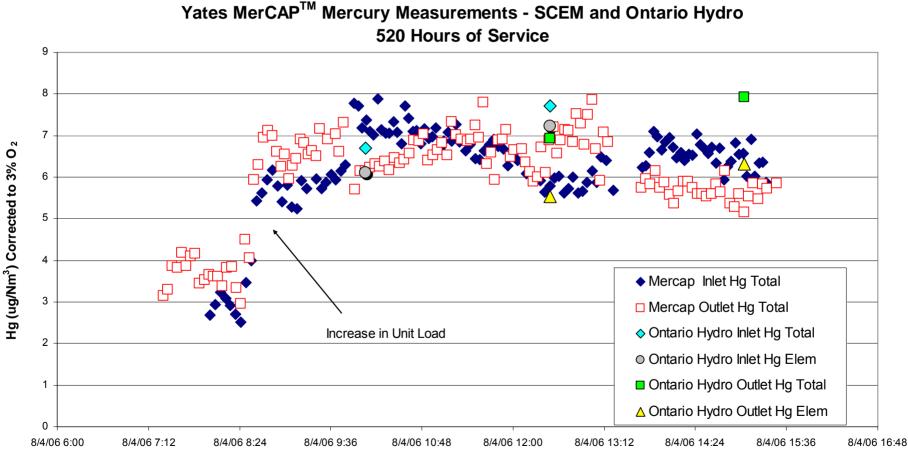
Planned Tests

Baseline Monitoring

- Determine Effects (if any) of reactor housing on mercury

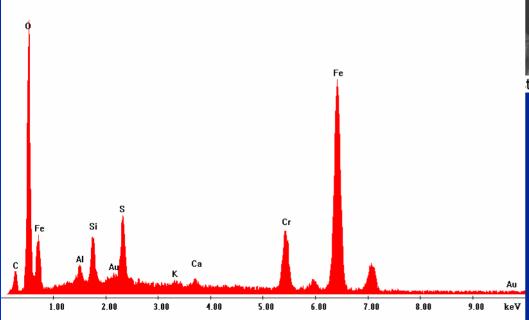

Monitoring with gold substrates

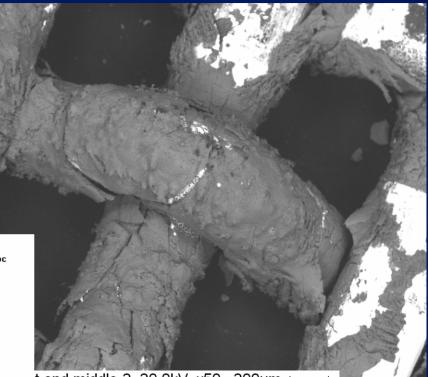
- Initial testing after installation
- 6 months continuous operation
- Mercury measurements approximately every 40 days
- Substrate Regeneration
 - Thermal
 - Chemical (acid rinse)


Project Status – Plant Yates

- Baseline Monitoring
 - No effect of reactor housing on mercury
- Initial Mercury Measurements
 - Showed high mercury removal possible
- Fan Failure
 - Acidic Flue Gas backed up through system
 - Corroded substrates
- System re-routed to avoid high pressure drop
 - Substrates replaced and restarted July 2006
- 6 months continuous operation w/new substrates
 - Planned Parametric tests
 - Wash frequency
 - Flue gas flow rate / mass transfer

Initial Results (Original Substrates)

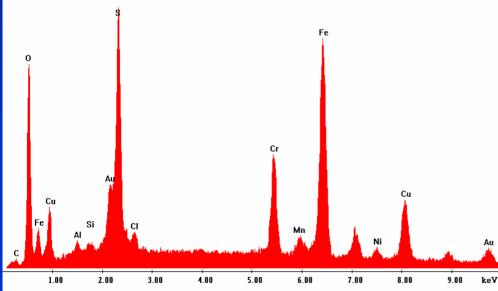

Results (New Substrates)



SEM Analysis with EDS

C:\MME Projects\2006 SEM#\S06-008 URS\section 2 west end middle-2.spc

Label A: section 2 west end middle-2




t end middle-2 20.0kV x50 200µm ⊢

SEM Analysis with EDS

Label A: section 3 spot

C:\MME Projects\2006 SEM#\S06-008 URS\section 3 spot.spc

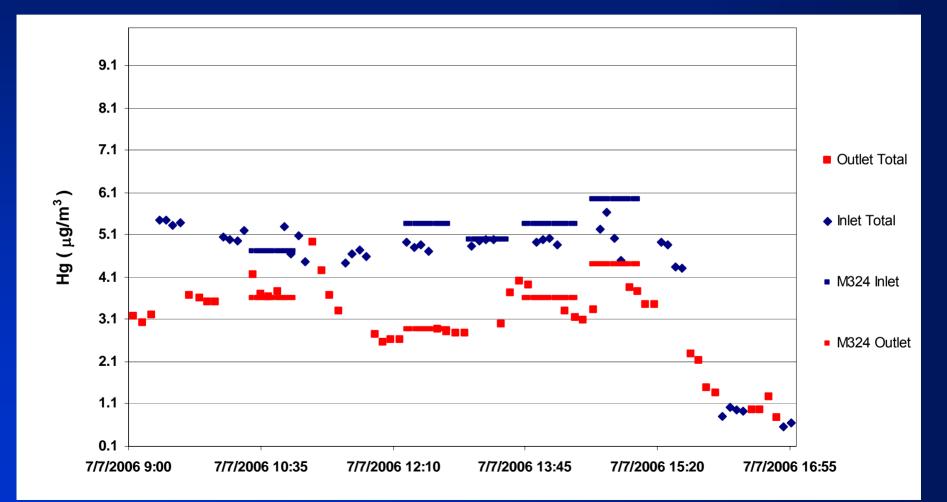
Results (New Substrates)

	Flow Rate	Gold Length	Inlet Hg	Outlet Hg		Normalized Removal	
Date	(acfm)	(inches)	(μ <mark>g/Nm³ @3%O₂)</mark>	(μ <mark>g/Nm³ @3%O₂)</mark>	% Hg Removal	%/gold plate/acfm*10^6	
7/13/2006	3600	36	3.61	3.08	15%	0.17	
7/13/2006	2700	36	3.51	3.07	13%	0.19	
7/14/2006	2700	36	4.23	3.88	8%	0.13	
7/14/2006	1900	36	3.98	3.58	10%	0.22	
7/14/2006	1300	36	3.98	3.61	9%	0.29	
7/15/2006	1300	36	2.03	1.96	3%	0.11	
7/15/2006	2700	36	4.23	4.11	3%	0.05	
8/4/2006	2700	36	6.19	6.06	2%	0.03	
8/18/2006	1300	12	3.53	3.30	6%	0.20	
9/23/2006	2550	12	4.76	4.33	9%	0.15	
9/24/2006	2700	12	2.53	2.26	11%	0.17	
9/25/2006	2700	12	4.73	4.03	15%	0.23	

Summary – Plant Yates

- Initial Results indicate high level of mercury removal is possible
- Acidic conditions in flue gas corrode gold and stainless steel substrates
- Material build-up on gold surface inhibits mercury adsorption
 - Compounds include rust, gypsum fines, other sulfur oxides
 - Effect of flue gas flow rate not evident when plates are fouled
 - Wash system demonstrated improvement in mercury removal in short section of gold
- Ontario Hydro confirmed results seen with SCEMs

GRE Stanton Station – FF/SDA Installation Background


- First Phase SDA/FF Equipped Unit
- Host Unit Great River Energy's Stanton Station Unit 10
- First substrates installed in August of 2003 in Clean Air Plennum of Baghouse Compartment 6
- Initial removal high (~70-90%), removal stabilized near 35 40%
- Results on North Dakota Lignite operation showed 3 months of service at 35 40% removal
- Results on PRB operation showed varied removal depending on gas temperature and lime/slurry feed to SDA
- Array removed from host unit in July of this year
- Over 22 months continuous gas treatment service time
- Additional evaluations and tests funded by Great River Energy and EPRI

- Geometry parametric testing
- Several geometry variations investigated including:
 - Varied length
 - Varied plate spacing
 - Varied orientation in flow
- Results indicate that removal does not directly correlate to active length
- Mass-Transfer not limiting
- Mechanism under investigation

Date	Description of Geometry/Duct	Removal (%)	Duct Temp (F)	Lime Feed (GPM)	Comments	
4/25/2006	Duct 1 - 10' Active Length 1-inch Plate Spacing	39.2		21	2-day Average	
	Duct 2 - Empty	0	202.8			
	Duct 3 - 40 Plates Perpendicular to Flow	4.7	202.0			
	Duct 4 - 8' Active Length, Alternate Material	9.7				
	Duct 1 - 10' Active Length 1-inch Plate Spacing	36.2		21.5	10-day Average	
5/5/2006	Duct 2 - 8' Active Length, Alternate Material	0	209.2			
5/5/2006	Duct 3 - 5 Plates Perpendicular to Flow	7.4	209.2			
	Duct 4 - 4' Active Length 1-inch Plate Spacing	26.5				
7/7/2006	Duct 1 - 10' Active Length 1-inch Acid Washed	54.6		N/A		
	Duct 2 - 2' Active Length 1/2-inch Plate Spacing	56.5	218.6		1-Day Average	
	Duct 3 - 2' Active Length 1-inch Plate Spacing	25.8	210.0			
	Duct 4 - 4' Active Length 1-inch Plate Spacing	30.6				

- 22nd Month of service time
- Method 324 Measurements conducted to verify Hg CEM results
- Removal remains variable depending on gas temperature and lime/slurry feed-rate
- 40 50% removal observed after nearly 2 years of continuous treatment service

					Trap					
			Inlet Hg	Outlet Hg	Removal		% Diff	CEM	% Diff	CEM
Start Time	End Time	Trap ID	(Trap)	(Trap)	(%)	CEM Inlet	(inlet)	Outlet	(outlet)	Remvoal
7/7/2006 10:29	7/7/2006 10:59	2	4.72	3.59	24.01	4.98	-5.55	3.82	-6.47	23.34
7/7/2006 12:20	7/7/2006 12:50	3	5.36	2.87	46.50	4.83	9.97	2.85	0.85	41.08
7/7/2006 13:05	7/7/2006 13:30	4	5.00			4.94	1.10	3.00		
7/7/2006 13:45	7/7/2006 14:22	5	5.36	3.61	32.56	4.94	7.68	3.45	4.49	30.24
7/7/2006 14:33	7/7/2006 15:05	6	5.94	4.41	25.76	5.09	14.28	3.59	18.70	29.59

GRE Stanton Station – FF/SDA Installation Conclusions

- MerCAPTM Array has been removed from the GRE Stanton Station Unit 10 Baghouse.
- Nearly 2 years of continuous service and gas treatment time without regeneration
- Six regeneration cycles demonstrated on single substrate
- Acid pretreatment of substrate material increases mercury capture performance
- Removal performance varies with gas temperature and limestone/slurry feed-rate to SDA
- Removal performance does not directly correlate to active length of sorbent structure
- Indications that mercury capture may not be mass-transfer limited
- Final analysis of gold substrates pending