Demonstration of an Integrated Approach to Mercury Control at Lee Station

Preliminary Results

December 13 , 2006

Program description Program participants

- GE Energy Vitali Lissianski, Pete Maly
- Progress Energy Peter Hoeflich, Daniel Donochod, Garry Moore
- U.S. DOE Lynn Brickett
- DOE Contract No. DE-FC26-05NT42310

Project Objectives:

(1) Demonstrate 70% mercury control from current emissions

- the enhancement of "naturally" occurring Hg capture by fly ash
- duct humidification to lower ESP temperature
- ACI upstream of the ESP

(2) Minimize activated carbon injection rate

3) Determine effect of SO₃ on sorbent performance

Program description

- Lee station Unit 3
- Located near Goldsboro, NC
- 250 MW opposed-wall fired
- E. Bituminous coal
- SO₃ conditioning system

Program components

Program status

- Combustion optimization Dec 2005- Jan 2006
- Sorbent optimization Aug 2006
- 30-day sorbent injection Aug Sept 2006
- Data reduction in progress

Effect of LOI on mercury reduction

Potential to improve "native" mercury removal

) imagination at work

Combustion optimization

<u>Activities</u>

•Balancing coal flow

Adjustable riffle boxes – Foster Wheeler
Rotoprobe coal flow measurements

•Optimizing burners and SOF/

Minimizing excess O₂
Temporarily CO/O₂ grid

Expected Results

- More uniform LOI distribution
- Improvement in "native" mercury reduction on fly ash
- \bullet Reduction in $\text{NO}_{\rm x}$ emissions

CO/O₂ distribution in boiler backpass

Before Combustion Optimization

	02	NOx	CO
Average	3.04	311	38.5
St Dev	0.70	25	39.2
Variation	22.9%	8.0%	101.9%

After Combustion optimization

	02	NOx	CO
Average	2.63	257	157.7
St Dev	0.31	25	186.9
Variation	11.9%	9.8%	118.5%

Effect of combustion conditions

imagination at work

Combustion optimization

 38% improvement in comparison with pre Combustion Optimization mercury reduction GE / GE /

Sorbent injection strategy

imagination at work

CFD modeling

Characterize flow Obtain temperature distribution Determine optimum design of lances

Sorbent trajectories

Colored by residence time

Lances design

Particle concentration at model exit (kg/m³)

Sorbent injection system

•250 cf daily silo•40,000 lb bulk trailer•Bulk bag un-loader

Apogee Scientific provided mercury measurements

Sorbent injection ports

SO₃ injection

Lee 3 load and opacity

Opacity increases at full load
SO₃ injection is usually operational at full load

Sorbent optimization

Darco Hg and Darco Hg-LH showed similar performances
 40-50% higher sorbent injection rate in the presence of SO₁₈

GE .

Darco Hg injection – 30-day trial

Negative effect of SO₃ injection on sorbent performanc

Mercury reduction

imagination at work

Preliminary data

Darco Hg E25C injection

Experimental SO₃ resistant sorbent from Norit

No improvement in comparison with Darco Hg

GE /

Effect on opacity

Summary

- Combustion Optimization improved "native" mercury reduction and decreased NO_x emissions
- Not all optimized combustion conditions can be maintained in long-term operation
- Darco Hg and Darco Hg-LH showed similar performances
- SO_3 injection reduced sorbent reactivity by ~50%
- Darco Hg E25C did not show improved performance in SO₃ presence
- Mercury reduction target was difficult to meet in the presence of SO_3