#### EERC Technology... Putting Research into Practice

## Long-Term Demonstration of Sorbent Enhancement Additive Technology for Mercury Control Contractors Review Meeting

Pittsburgh PA

November 11 -13, 2006

Jason Laumb Brandon Pavlish Energy & Environmental Research Center

## **Presentation Outline**

- Introduction
- Previous work at Hawthorn
- Current Results at Hawthorn
- Introduce Phase III Project
- Schedule
- Acknowledgements



# Sorbent Enhancement Additive (SEA) Technology

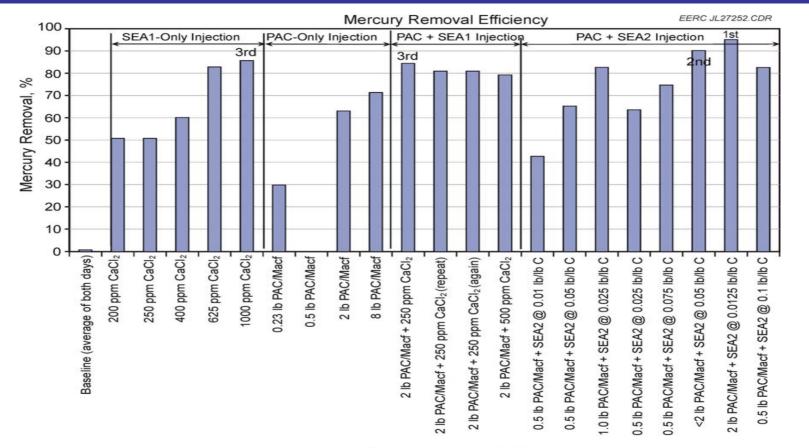
• SEA1 (B&W/Niro, U.S. patent 5,435,980)

- Chloride added to coal feed.

- Hg capture can be enhanced with carbon.
- SEA2 T2
  - Alternative method of adding SEA2.
  - Reduce effects of alkaline material.
- Questions about the technology can be addressed by B&W.



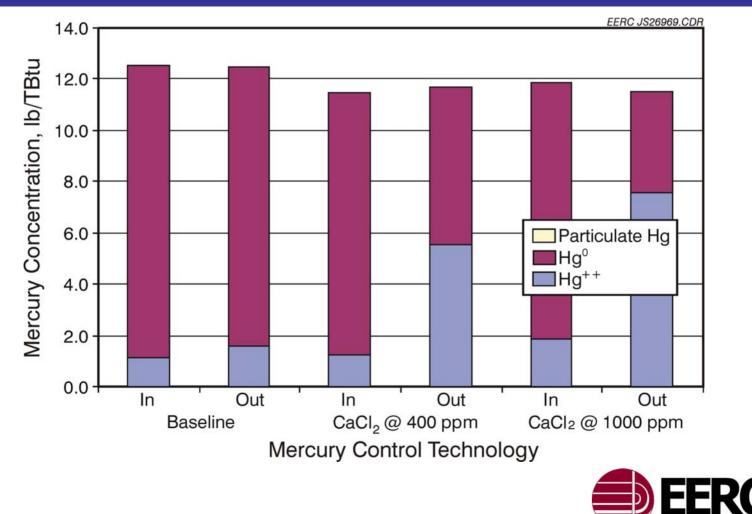
## **Hawthorn Unit 5**


| Plant | Utility<br>Owner | Coal | Boiler<br>Type | Boiler<br>Size, MW | Particulate<br>Control | SO <sub>2</sub><br>Control | NO <sub>x</sub><br>Control                      |
|-------|------------------|------|----------------|--------------------|------------------------|----------------------------|-------------------------------------------------|
| HAW5  | KCP&L            | PRB  | Wall-<br>fired | 550                | FF                     | SDA                        | LNB <sup>1</sup> ,<br>OFA <sup>2</sup> ,<br>SCR |

<sup>1</sup> Low-NO<sub>x</sub> burners.

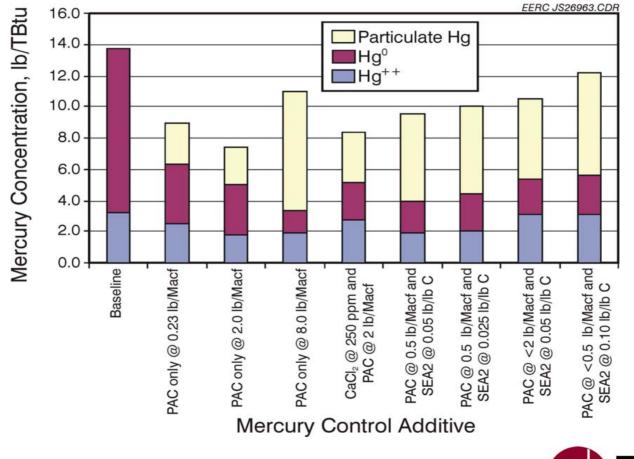
<sup>2</sup> Overfire air.




#### **Previous Hawthorn Test Results**

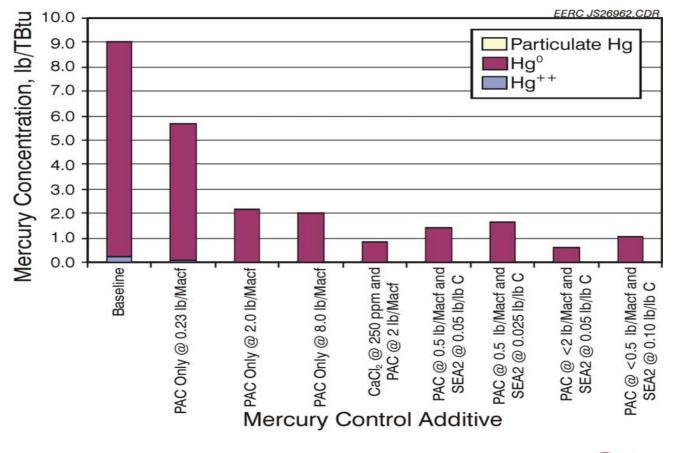


Mercury Control Additive




#### Previous Hg Speciation at SCR Outlet




Research Center®

### Previous Hg Speciation at SDA Inlet





#### **Previous Hg Speciation at Stack**





## Conclusions

- 1000 ppm Cl addition (no PAC) at Hawthorn provided an 80%+ Hg capture for 6 hours.
- >90% Hg capture was possible (for short periods of time) using SEA2 and PAC.
- >90% REDUCTION is possible with SEA2 T2.



## **Phase III Project**



## **Project Overview**

- Goals & Objectives
  - To demonstrate 90% REDUCTION in mercury emissions at Hawthorn Unit 5 and Mill Creek Unit 4.





| Plant | Utility<br>Owner | Coal                  | Boiler<br>Type | Boiler<br>Size, MW | Particulate<br>Control | SO <sub>2</sub><br>Control | NO <sub>x</sub><br>Control                      |
|-------|------------------|-----------------------|----------------|--------------------|------------------------|----------------------------|-------------------------------------------------|
| HAW5  | KCP&L            | PRB                   | Wall-<br>fired | 550                | FF                     | SDA                        | LNB <sup>1</sup> ,<br>OFA <sup>2</sup> ,<br>SCR |
| MC4   | LG&E             | Eastern<br>bituminous | Wall-<br>fired | 530                | ESP/SCA=<br>232        | Wet FGD                    | LNB,<br>SCR                                     |

Low-NO<sub>x</sub> burners.
Overfire air.



## **Task Structure/Schedule**

| Task Name                                                                | 2006 |   |     | 2007   |       |   |   | -     | 008   |        |         |     |
|--------------------------------------------------------------------------|------|---|-----|--------|-------|---|---|-------|-------|--------|---------|-----|
|                                                                          |      | - | r 3 | Qtr 4  | Otr 1 |   |   | 3 Qtr | 4 Qtr |        | 2 Qtr 3 | Otr |
| Task Name                                                                |      |   |     | Sect 1 |       |   |   | 0   0 | 1 444 | 1 0411 | -   0 0 | -   |
| Task 1. Hawthorn Unit 5 (HAW5)                                           | 1    | - |     |        |       |   |   |       | _     |        | _       | ,   |
| 1.1 Parametric Tests                                                     | 1    |   |     |        |       |   |   |       |       |        |         |     |
| 1.2 Longer-Term Tests                                                    | 1    |   |     | •      |       |   |   |       |       |        |         |     |
| Ontario Hydro Sampling (Three 1-week occurances during a 2-month period) | 1    |   |     |        |       |   |   |       |       |        |         |     |
| 1.3 Management and Reporting                                             | 1    |   |     |        |       |   |   |       |       |        |         | •   |
| Site Report - Go/No Go                                                   | ]    |   |     | •      |       |   |   |       |       |        |         |     |
| Quarterly Reports                                                        | ]    | ٠ |     | •      | ٠     | • | • | •     | •     | •      | •       |     |
| Project Final Report                                                     |      |   |     |        |       |   |   |       |       |        | •       |     |
| Task 2. Mill Creek Station Unit 4 (MC4)                                  |      | - |     |        |       |   |   |       |       |        |         |     |
| 2.1 Parametric Tests                                                     |      |   |     |        |       |   |   | —     |       |        |         |     |
| Parametric/Baseline SCR On                                               |      |   |     |        |       |   |   |       |       |        |         |     |
| Parametric/Baseline SCR Off                                              |      |   |     |        |       |   |   |       |       |        |         |     |
| 2.2 Longer-Term Tests                                                    |      |   |     |        |       |   |   |       |       |        |         |     |
| Ontario Hydro Sampling (Three 1-week occurances during a 2-month period) |      |   |     |        |       |   |   |       |       |        |         |     |
| 2.3 Management and Reporting                                             |      |   |     |        |       |   |   |       |       |        |         |     |
| Site Report - Go/No Go                                                   |      |   |     |        |       |   |   | •     |       |        |         |     |
| Quarterly Reports                                                        |      | ٠ | I   | ٠      | •     | • | • | •     | •     | •      | •       |     |
| Project Final Report                                                     |      |   |     |        |       |   |   |       |       |        |         |     |
| Task 3. Project Planning                                                 |      | - |     |        |       |   |   |       |       |        |         |     |
| Kick-off Meeting                                                         |      | ٠ |     |        |       | _ | _ |       |       |        |         |     |
| Test Plan Development                                                    |      |   |     |        |       |   |   |       |       |        |         |     |
| QA/QC Plan Development                                                   |      |   |     |        |       |   |   |       |       |        |         |     |
| Data Reduction/Analysis                                                  |      |   |     |        |       |   |   |       |       |        |         |     |

## **Test Plan for Hawthorn**

- Based on previous work the test plan for Hawthorn will concentrate on the following technologies:
  - SEA 1 Only
  - -SEA 1 + PAC
  - SEA 2 T2



#### Parametric Test Plan for Hawthorn

| Test | Hg Control |                   |          | CaCl        | SEA 2     | PAC     |
|------|------------|-------------------|----------|-------------|-----------|---------|
| #    | Date       | Technology        | Test     | Coal Equiv. | lb/lb PAC | lb/Macf |
| 1    | 18-Sep     | None              | Baseline |             |           |         |
|      | 19-Sep     | None              | Baseline |             |           |         |
| 2    | 20-Sep     | SEA1 only (CaCl2) | Rate 1   | 600         |           |         |
| 3    | 21-Sep     | SEA1 only (CaCl2) | Rate 2   | 800         |           |         |
| 4    | 22-Sep     | SEA1 only (CaCl2) | Rate 3   | 1000        |           |         |
| 5    | 23-Sep     | SEA1 + PAC        | Rate 1   | 600         |           | 1 & 3   |
| 6    | 24-Sep     | SEA1 + PAC        | Rate 2   | 800         |           | 1&3     |
| 7    | 25-Sep     | SEA1 + PAC        | Rate 3   | 1000        |           | 1&3     |
| 8    | 26-Sep     | SEA2-T2 + PAC     | Rate 1   |             | 0.0125    | 1&3     |
| 9    | 27-Sep     | SEA2-T2 + PAC     | Rate 2   |             | 0.05      | 1 & 3   |
| 10   | 28-Sep     | SEA2-T2 + PAC     | Rate 3   |             | 0.1       | 1&3     |



#### **Previous Data-Mill Creek Unit 4**

| Sample Location         | SCR Inlet,<br>µg/Nm <sup>3</sup> | SCR Outlet,<br>µg/Nm <sup>3</sup> | wet-FGD inlet,<br>µg/Nm <sup>3</sup> | Stack,<br>µg/Nm <sup>3</sup> | Removal % |
|-------------------------|----------------------------------|-----------------------------------|--------------------------------------|------------------------------|-----------|
| With the SCR in Service |                                  |                                   |                                      |                              |           |
| Hg <sup>p</sup>         | 0.02                             | 0.03                              | 0.00                                 | 0.00                         |           |
| $Hg^0$                  | 8.32                             | 2.83                              | 0.33                                 | 3.97                         |           |
| $Hg^{2+}$               | 0.94                             | 5.05                              | 7.60                                 | 0.54                         |           |
| Hg <sub>total</sub>     | 9.27                             | 7.90                              | 7.93                                 | 4.50                         | 43.3      |
| With the SCR Bypassed   |                                  |                                   |                                      |                              |           |
| Hg <sup>p</sup>         |                                  |                                   | 0.07                                 | 0.05                         |           |
| $Hg^0$                  |                                  |                                   | 2.44                                 | 2.63                         |           |
| $Hg^{2+}$               |                                  |                                   | 6.79                                 | 0.55                         |           |
| Hg <sub>total</sub>     |                                  |                                   | 9.30                                 | 3.23                         | 65.3      |



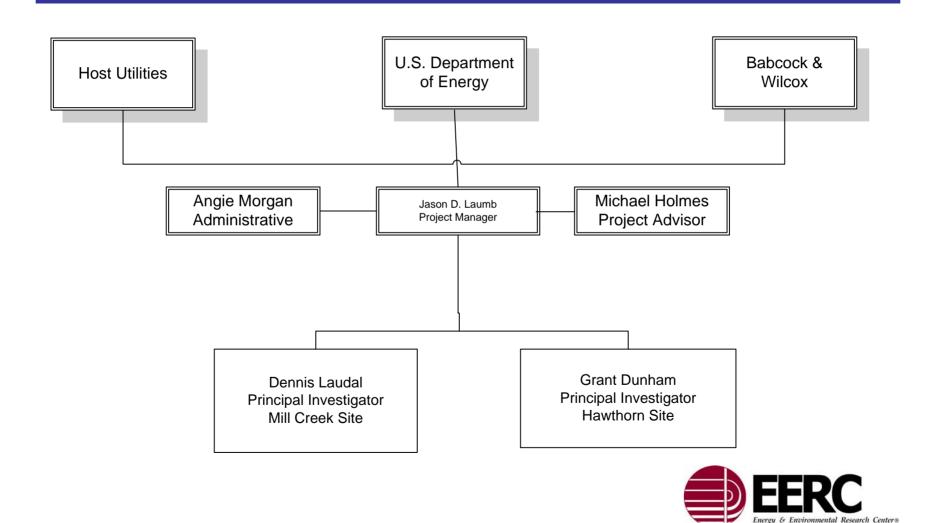
## Mill Creek Unit 4 Cont.

- Mill Creek offers challenges with the SCR in service!
  - Possibly due to reactions with sulfur species.
  - Lower halogen levels in scrubber?
- SEA2 T2 will be primary technology tested at Mill Creek.
- B&W Re-emission additive will also be added to scrubber, if necessary.



## Mill Creek Test Plan

- Parametric study with SCR in and out of service.
- Two Month demonstration with the SCR in service.
- Plan to be developed upon completion of negotiations with plant.




## **Sampling Locations (Both Sites)**

- Continuous Mercury Monitors PCD inlet and stack for parametric tests. Stack only for long-term.
- Ontario Hydro PCD inlet and stack for parametric tests and long term.
- Solid Samples Daily coal, ash, slurry samples during parametric. Three per week during long term.
- EPA Method 5 PCD inlet & stack?



### Personnel



## **Current Coal Results**

| Parameters, Unit                         | 9/18/2006 | 9/19/2006 | 9/20/2006 | Average | Standard Deviation |
|------------------------------------------|-----------|-----------|-----------|---------|--------------------|
| Mercury, ppm (dry)                       | 0.114     | 0.106     | 0.105     | 0.108   | 0.005              |
| Proximate                                |           |           |           |         |                    |
| Moisture, wt%                            | 19.1      | 20.6      | 20.9      | 20.20   | 0.964              |
| Volatile Matter, wt%                     | 34.86     | 34.22     | 34.14     | 34.41   | 0.395              |
| Fixed Carbon, wt%                        | 40.66     | 40        | 39.75     | 40.14   | 0.470              |
| Ash, wt%                                 | 5.38      | 5.18      | 5.21      | 5.26    | 0.108              |
| Ultimate Analysis                        |           |           |           |         |                    |
| Hydrogen, wt%                            | 6.12      | 6.1       | 6.1       | 6.11    | 0.012              |
| Carbon, wt%                              | 55.17     | 54.06     | 53.6      | 54.28   | 0.807              |
| Nitrogen, wt%                            | 1.05      | 0.97      | 0.96      | 0.99    | 0.049              |
| Sulfur, wt%                              | 0.45      | 0.38      | 0.5       | 0.44    | 0.060              |
| Oxygen, wt%                              | 31.83     | 33.32     | 33.62     | 32.92   | 0.959              |
| Heating Value, Btu/lb                    | 9613      | 10942     | 9365      | 9973    | 848                |
| Calculated Parameters                    |           |           |           |         |                    |
| F <sub>d.</sub> dscf/10 <sup>6</sup> Btu | 9636      | 8238      | 9542      | 9139    | 782                |
| Sulfur, wt% (dry)                        | 0.56      | 0.48      | 0.63      | 0.56    | 0.077              |
| Heating Value, Btu/lb (dry)              | 11883     | 13781     | 11839     | 12501   | 1109               |
| Hg, µg/Nm3 (flue gas basis)              | 13.67     | 12.82     | 12.76     | 13.08   | 0.509              |
| Hg, lb/Tbtu (flue gas basis)             | 9.59      | 7.69      | 8.87      | 8.72    | 0.960              |



## **Current Baseline Results**

•Baseline Hg measurements indicate a native Hg capture average of 17.8 %\*

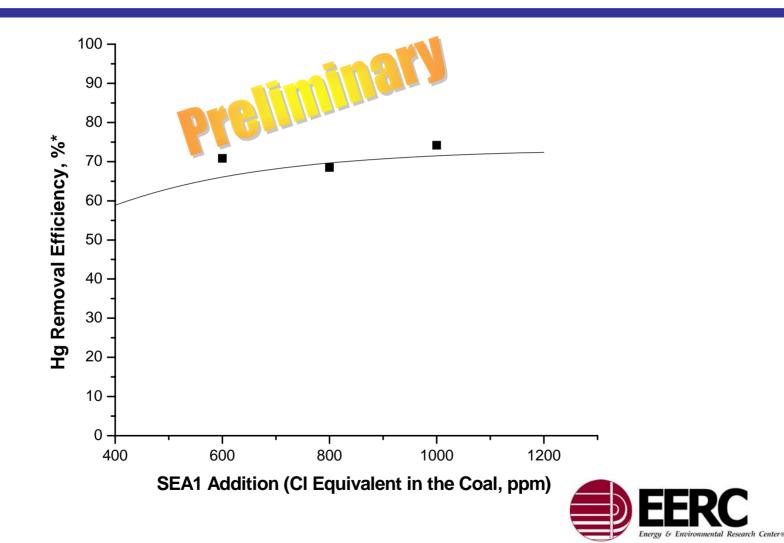
•Coal and OH inlet measurements are consistent.

•CMM inlet and outlet measurements tend to be low for the baseline period when compared to OH and Coal results, but agree well during Hg control technology testing

|           |                  |                 |                 |                 |                            |                 | Coal-to-Stack |          |
|-----------|------------------|-----------------|-----------------|-----------------|----------------------------|-----------------|---------------|----------|
|           |                  | Coal (Inlet)    | CMM Inlet       | OH Inlet        | CMM Outlet                 | OH Outlet       | Hg Ren        | noval, % |
| Date      | Test Description | μ <b>g/Nm</b> ³ | μ <b>g/Nm</b> ³ | μ <b>g/Nm</b> ³ | μ <b>g/Nm</b> <sup>3</sup> | μ <b>g/Nm</b> ³ | OH            | CMM      |
| 9/18/2006 | Baseline         | 13.67           | 7.23            | 14.28           | 8.7                        | 11.37           | 16.9          | 36.4     |
| 9/18/2006 | Baseline         | 13.67           | 7.52            | 13.61           | 8.64                       | 10.86           | 20.5          | 36.8     |
| 9/19/2006 | Baseline         | 12.82           | 6.24            | 11.27           | 8.28                       | 10.54           | 17.8          | 35.4     |
| 9/19/2006 | Baseline         | 12.82           | 6.93            | 12.67           | 8.64                       | 10.78           | 15.9          | 32.6     |

\*Coal inlet to OH outlet basis




## **Current SEA1 Results**

- Testing of SEA1 occurred during 9/20/06-9/22/06
- Results indicate a positive effect on Hg capture when compared to baseline removals.
- Hg removal efficiencies appear to only slightly increase with increasing SEA1 rate.

|           |                      | Coal (Inlet)    | CMM Inlet                 | OH Inlet        | CMM Outlet         | OH Outlet          |      | o-Stack<br>noval, % |
|-----------|----------------------|-----------------|---------------------------|-----------------|--------------------|--------------------|------|---------------------|
| Date      | Test Description     | μ <b>g/Nm</b> ³ | μ <b>g/Nm<sup>3</sup></b> | μ <b>g/Nm</b> ³ | μg/Nm <sup>3</sup> | μg/Nm <sup>3</sup> | ОН   | CMM                 |
| 9/18/2006 | Baseline             | 13.67           | 7.23                      | 14.28           | 8.7                | 11.37              | 16.9 | 36.4                |
| 9/18/2006 | Baseline             | 13.67           | 7.52                      | 13.61           | 8.64               | 10.86              | 20.5 | 36.8                |
| 9/19/2006 | Baseline             | 12.82           | 6.24                      | 11.27           | 8.28               | 10.54              | 17.8 | 35.4                |
| 9/19/2006 | Baseline             | 12.82           | 6.93                      | 12.67           | 8.64               | 10.78              | 15.9 | 32.6                |
| 9/20/2006 | SEA1 Only (600 ppm)  | 12.76           | 11.54                     | 12.46           | 3.72               | 4.67               | 63.4 | 70.8                |
| 9/21/2006 | SEA1 Only (800 ppm)  | 13.08           | 12.93                     | 12.15           | 4.12               | 4.53               | 65.4 | 68.5                |
| 9/22/2006 | SEA1 Only (1000 ppm) | 13.08           | 10.41                     | 13.88           | 3.37               | 8.05               | 38.4 | 74.2                |



## **Current SEA1 Results**



## Conclusions

- Baseline removals at Hawthorn are considerably higher than previous work.
  – Different coal?
- Preliminary results with CaCl<sub>2</sub> are also different (lower) from previous work.

- Catalyst age?



## Acknowledgments

 Electric Power Research Institute, Kansas City Power & Light, Otter Tail Power Company, Dynegy, Pacificorp, Ameren UE, Southern Company, Texas Genco, The Babcock & Wilcox Company, Wisconsin Public Service, Cormetech, Norit, and the U.S. Department of Energy National Energy Technology Laboratory

