DOE/NETL's Phase II Field Testing Program Preliminary Economic Analysis of Mercury Control via Activated Carbon Injection

DOE/NETL's Mercury Control Technology R&D Program Review

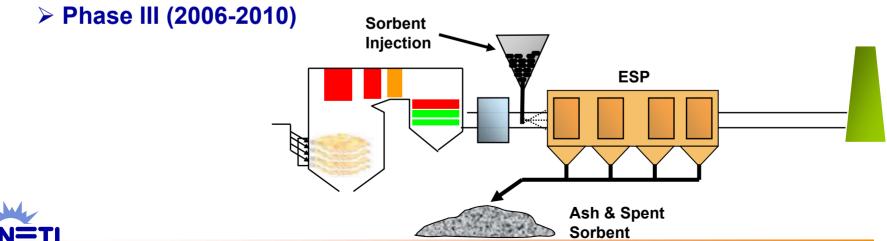
> December 11, 2006 Pittsburgh, PA

Andrew P. Jones Science Applications International Corporation

Disclaimer

This presentation was prepared by RDS/SAIC with the support of the U.S. Department of Energy. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

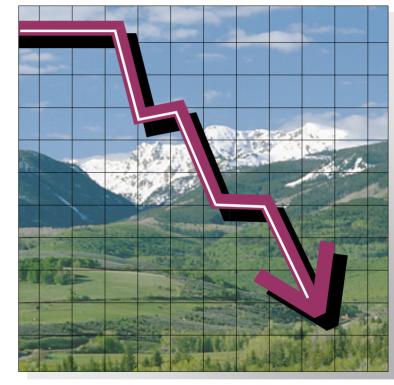
It should also be noted that the economic analyses represent "snapshots" in time based on the methodology used, assumptions made, and conditions that were specific to the time when DOE/NETL field testing occurred. Consequently, the economics presented are plant- and condition-specific and attempts to use this presentation as a tool to predict the performance of these mercury control technologies at other power plants should be conducted cautiously regardless of similarities in coal-rank and APCD configuration. In addition, the economics originate from relatively small datasets in many cases. As a result, the cost of mercury control could vary significantly with the inclusion of additional ACI performance data from current and future DOE/NETL field testing.


Background

Clean Air Mercury Rule (CAMR)

- > Phase I (2010) Cap: 38 tons
- Phase II (2018) Cap: 15 tons (~69% total Hg reduction)

DOE/NETL's Mercury Control Field Testing Program


- Phase I (2001-2002)
- Phase II (2004-2007)
 - Sorbent injection & mercury oxidation control technologies
 - Long-term (30 days or more @ optimum conditions), full-scale field testing
 - Focus on low-rank coals

Mercury Control Technology Field Testing Program Performance/Cost Objectives

- Have technologies ready for <u>commercial demonstration</u> by 2007 for all coals
- Reduce "uncontrolled" Hg emissions by 50-70%
- Reduce cost by 25-50% compared to baseline cost estimates

2000

Baseline (1999) Costs: \$50,000 - \$70,000 / Ib Hg Removed

Cost

Preliminary Economic Analysis of ACI *Purpose & Objectives*

Purpose

Develop plant-specific cost estimates for Hg control via:

- Conventional (untreated) ACI
- Chemically-treated (or brominated) ACI
- Conventional ACI with Sorbent Enhancement Additives (SEA)
- Gauge NETL's success in achieving cost target (25-50% reduction)

Objectives

- Discern the level of Hg capture that is attributable to ACI
- Incorporate the long-term (~30 days) field testing results
- Quantify the potential impacts of ACI on byproduct reuse & disposal

Economics represent "snapshots" in time based on the methodology used, assumptions made, and conditions present when DOE/NETL field testing occurred

DOE/NETL's Phase II Mercury Control Technology Field Testing Program

Preliminary Economic Analysis of Activated Carbon Injection

Prepared for

U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory Innovations for Existing Plants Program

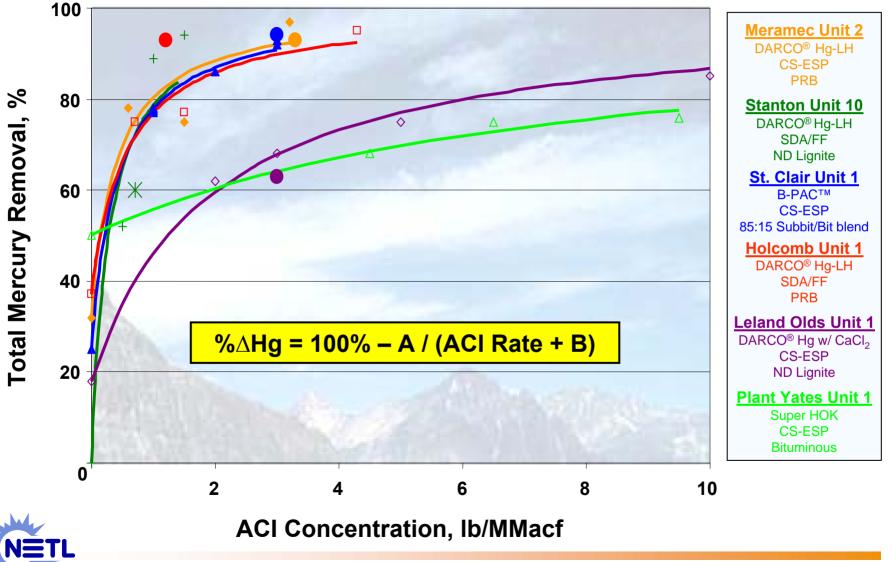
Prepared by

Andrew P. Jones¹, Jeffrey W. Hoffmann², Dennis N. Smith³, Thomas J. Feeley, III², and James T. Murphy¹

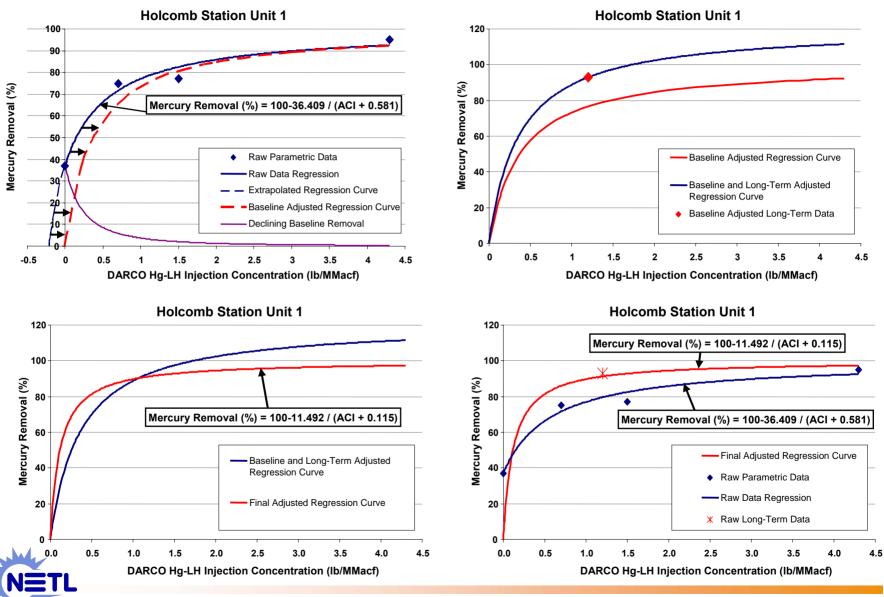
¹ Research and Development Solutions, LLC
² U.S. Department of Energy, National Energy Technology Laboratory
³ U.S. Department of Energy, Office of Fossil Energy

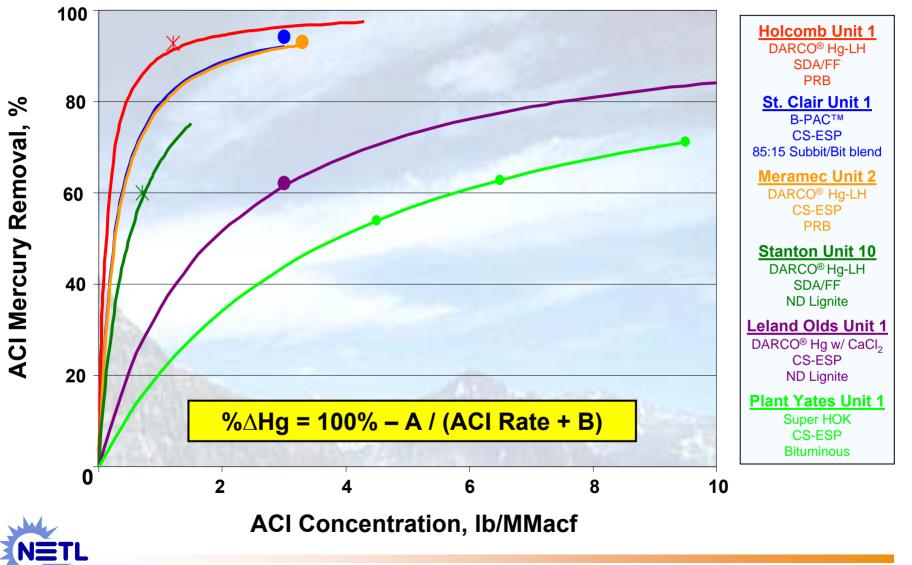
April 2006

Complete report available at:


http://www.netl.doe.gov/technologies/coalpower/ewr/index.html

Phase II Site Descriptions


Site	Holcomb Unit 1	Meramec Unit 2	Stanton Unit 10	St. Clair Unit 1	Leland Olds Unit 1	Yates Unit 1
Capacity, MW	360	140	60	145	220	100
Coal Rank	PRB	PRB	ND Lignite	85:15 PRB/ Bituminous blend	ND Lignite	Bituminous
APCD Configuration	SDA/FF	CS-ESP	SDA/FF	CS-ESP	CS-ESP	CS-ESP / Wet FGD
T _{ACI,} °F	290	310	300	290	340	310
Flue Gas Flow Rate, ACFM	1,194,444	555,556	251,789	751,000	878,049	480,000
Hg in Flue Gas, Ib/hr	0.0383	0.0128	0.005 <mark>0</mark>	0.0087	0.0216	0.0071
Co-benefit Hg Capture, lb/hr	0.0142 (37%)	0.0041 (32%)	0.0000 (0%)	0.0022 (25%)	0.0039 (18%)	0.0035 (50%)
Hg Control Technology	DARCO [®] Hg-LH	DARCO [®] Hg-LH	DARCO [®] Hg-LH	B-PAC™	DARCO® Hg w/ CaCl ₂	Super HOK


Phase II Raw Data Regression

Phase II Data Adjustment Methodology

Phase II Adjusted Regression Curves

Capital Cost

- Equipment cost based on estimates provided by ADA-ES
- Minimum equipment cost of \$690,000
- Cost of retrofit installation is site-specific
 - ~15% of uninstalled equipment cost
- No adjustment for interest during construction

Equipment, FOB Holcomb	\$711,116
Site Integration (materials and labor)	\$51,884
Taxes (6%)	\$45,780
Installation	\$124,000
General Facilities (10%)	\$93,278
Engineering Fees (10%)	\$93,278
Project Contingency (15%)	\$139, <mark>917</mark>
Process Contingency (5%)	\$46,639
Total Capital Requirement (TCR)	\$1,305,892
TCR, \$/kW	\$3.63

Annual Operating & Maintenance (O&M) Costs

- 1) Sorbent Consumption
 - ACI Concentration (Ib/MMacf) & Delivered Sorbent Prices
- 2) Sorbent Disposal
 - \$17/ton
- 3) SEA Consumption (Leland Olds only)
 - Delivered Price of \$0.15/lb for aqueous CaCl₂ solution
- 4) "Other" Costs^a

Byproduct Impacts

For All Units

 \$17/ton for fly ash & SDA byproduct disposal

For Units with ESP

 \$18/ton for lost revenue from fly ash sales (assuming 100% utilization prior to ACI)

Sorbent Name	Manufacturer	Description	Delivered Price (\$/lb) ^b
DARCO [®] Hg	NORIT Americas	Conventional (untreated)	0.54
Super HOK	RWE Rhinebraun	Conventional (untreated)	0.39
DARCO [®] Hg-LH	NORIT Americas	Brominated	0.95
B-PAC™	Sorbent Technologies	Brominated	0.85

^a Includes power consumption (\$0.05/kW); operating labor (4 hrs/day @ \$45/hr); ACI equipment maintenance (5% of uninstalled equipment cost); and spare parts (\$10,000 annually).

^b Includes \$0.10/lb for transportation expenses.

Cost Estimates for 50% ACI Mercury Control

	Holcomb Unit 1	St. Clair Unit 1	Meramec Unit 2	Stanton Unit 10	Leland Olds Unit 1	Plant Yates Unit 1
PAC / SEA	DARCO [®] Hg-LH	B-PAC™	DARCO [®] Hg-LH	DARCO [®] Hg-LH	DARCO [®] Hg & CaCl ₂	Super HOK
ACI Rate, Ib/MMacf	0.11	0.26	0.27	0.49	1.88	3.85
Total Capital Requirement (TCR), (\$1,000)	\$1,310	\$1,280	\$1,280	\$1,270	\$1,390	\$1,270
Unit TCR, \$/kW	\$3.63	\$8.79	\$9.16	\$21.10	\$6.33	\$12.66
	First-	Year Annual	O&M Costs (8	0% capacity fa	ictor)	
PAC Consumption, \$/yr	\$54,800	\$68,800	\$59,200	\$49,500	\$374,000	\$303,000
PAC Disposal, \$/yr	\$490	\$688	\$529	\$443	\$5,890	\$6,600
SEA Consumption, \$/yr	NA	NA	NA	NA	\$388,000	NA
Other, \$/yr	\$105,000	\$104,000	\$104,000	\$104,000	\$107,000	\$107,000
Total O&M, \$/yr	\$160,000	\$174,000	\$164,000	\$154,000	\$875,000	\$417,000
Byproduct Impacts, (\$1,000/yr)	\$1,430	\$792	\$1,060	\$579	\$3,240	\$1,080

20-Year Levelized Cost Estimates for 50% ACI Mercury Control

	Holcomb Unit 1	St. Clair Unit 1	Meramec Unit 2	Stanton Unit 10	Leland Olds Unit 1	Plant Yates Unit 1
PAC / SEA	DARCO [®] Hg-LH	B-PAC™	DARCO [®] Hg-LH	DARCO [®] Hg-LH	DARCO [®] Hg & CaCl₂	Super HOK
ACI Rate, Ib/MMacf	0.11	0.26	0.27	0.49	1.88	3.85
	20-Year I	Levelized C	ost without	Byproduct I	mpacts	
COE Increase, mills/kWh	0.14	0.36	0.37	0.82	0.83	0.97
\$/Ib Hg Removed	\$4,220	\$16,200	\$11,800	\$19,500	\$20,600	\$54,600
	20-Yea	r Levelized	Cost with B	yproduct Im	pacts	
COE Increase, mills/kWh	0.86	1.36	1.75	2.57	3.50	2.94
\$/Ib Hg Removed	\$25,700	\$60,100	\$56,400	\$61,300	\$86,900	\$166,000

Cost Estimates for 70% ACI Mercury Control

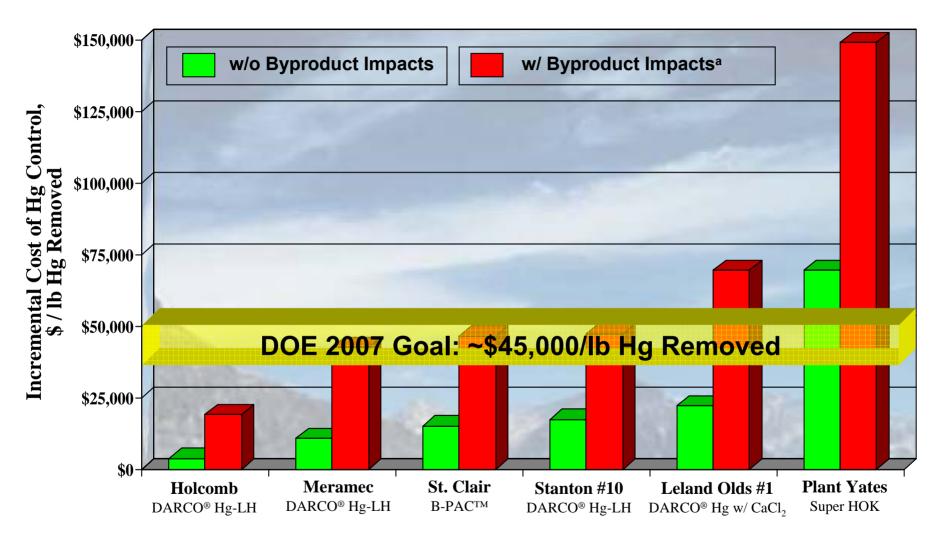
	Holcomb Unit 1	St. Clair Unit 1	Meramec Unit 2	Stanton Unit 10	Leland Olds Unit 1	Plant Yates Unit 1
PAC / SEA	DARCO [®] Hg-LH	B-PAC™	DARCO [®] Hg-LH	DARCO [®] Hg-LH	DARCO [®] Hg & CaCl ₂	Super HOK
ACI Rate, Ib/MMacf	0.27	0.60	0.62	1.15	4.39	8.98
TCR, (\$1,000)	\$1,310	\$1,280	\$1,280	\$1,270	\$1,390	\$1,270
Unit TCR, \$/kW	\$3.63	\$8.79	\$9.16	\$21.10	\$6.33	\$12.66
	First-	Year Annual	O&M Costs (80	0% capacity fa	ictor)	
PAC Consumption, \$/yr	\$128,000	\$160,000	\$138,000	\$116,000	\$875,000	\$707,000
PAC Disposal, \$/yr	\$1,140	\$1,610	\$1,230	\$1,040	\$13,800	\$15,400
SEA Consumption, \$/yr	NA	NA	NA	NA	\$388,000	NA
Other, \$/yr	\$105,000	\$105,000	\$105,000	\$104,000	\$111,000	\$111,000
Total O&M, \$/yr	\$234,000	\$267,000	\$244,000	\$221,000	\$1,390,000	\$833,000
Byproduct Impacts, (\$1,000/yr)	\$1,430	\$792	\$1,060	\$579	\$3,240	\$1,080

20-Year Levelized Cost Estimates for 70% ACI Mercury Control

	Holcomb Unit 1	St. Clair Unit 1	Meramec Unit 2	Stanton Unit 10	Leland Olds Unit 1	Plant Yates Unit 1
PAC / SEA	DARCO [®] Hg-LH	B-PAC™	DARCO [®] Hg-LH	DARCO [®] Hg-LH	DARCO [®] Hg & CaCl₂	Super HOK
ACI Rate, Ib/MMacf	0.27	0.60	0.62	1.15	4.39	8.98
	20-Year I	_evelized C	ost without	Byproduct I	mpacts	
COE Increase, mills/kWh	0.18	0.48	0.47	1.02	1.25	1.72
\$/Ib Hg Removed	\$3,810	\$15,200	\$10,800	\$17,400	\$22,200	\$69,500
	20-Yea	r Levelized	Cost with B	yproduct Im	pacts	
COE Increase, mills/kWh	0.90	1.47	1.85	2.77	3.92	3.69
\$/Ib Hg Removed	\$19,200	\$46,600	\$42,700	\$47,300	\$69,600	\$149,000

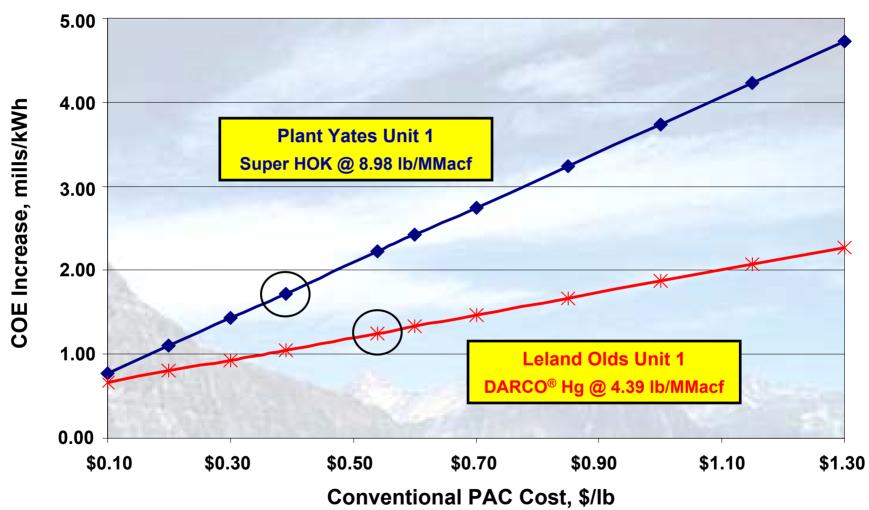
Cost Estimates for 90% ACI Mercury Control

	Holcomb Unit 1	St. Clair Unit 1	Meramec Unit 2	
PAC	DARCO [®] Hg-LH	B-PAC™	DARCO [®] Hg-LH	
ACI Rate, lb/MMacf	1.03	2.31	2.40	
TCR, \$	\$1,310,000	\$1,280,000	\$1,280,000	
Unit TCR, \$/kW	\$3.63	\$8.79	\$9.16	
First-Year	Annual O&M Costs	s (80% capacity fact	or)	
PAC Consumption, \$/yr	\$493,000	\$619,000	\$532,000	
PAC Disposal, \$/yr	\$4,420	\$6,190	\$4,760	
Other, \$/yr	\$107,000	\$107,000	\$106,000	
Total O&M, \$/yr	\$605,000	\$732,000	\$643,000	
Byproduct Impacts, \$/yr	\$1,430,000	\$792,000	\$1,060,000	

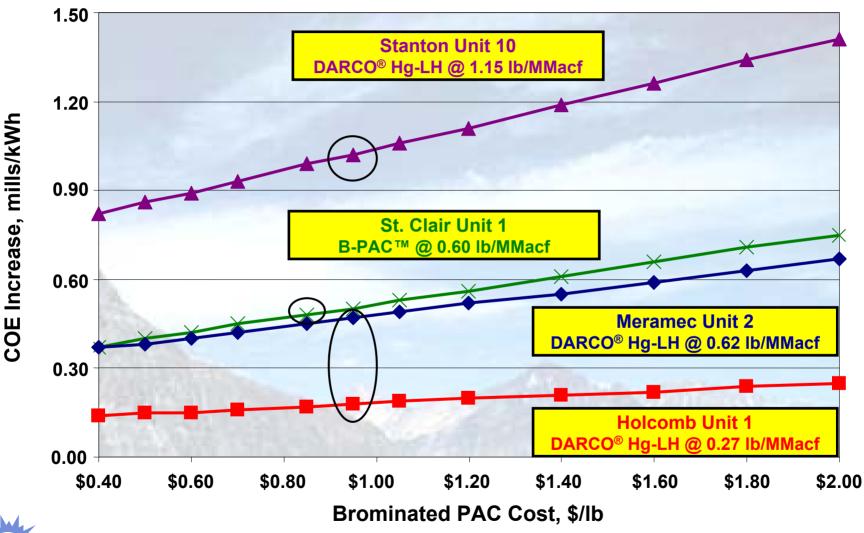


20-Year Levelized Cost Estimates for 90% ACI Mercury Control

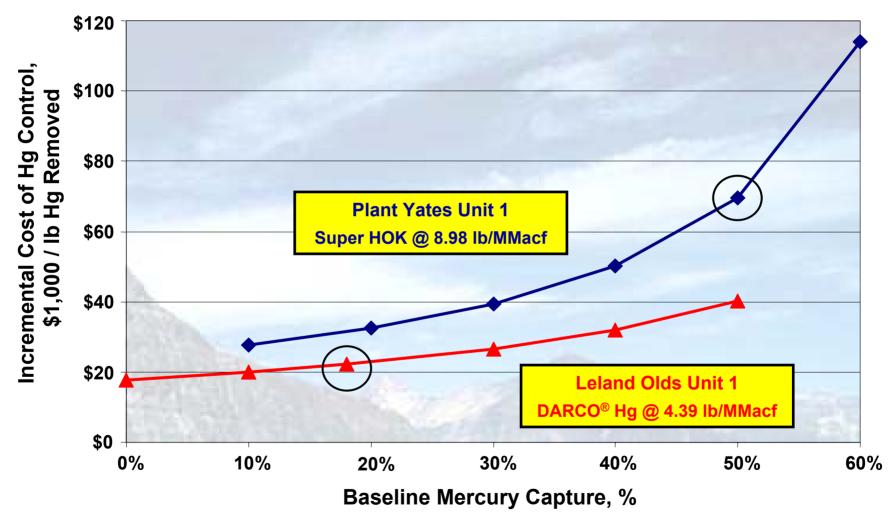
	Holcomb Unit 1	St. Clair Unit 1	Meramec Unit 2			
PAC / SEA	DARCO [®] Hg-LH	B-PAC™	DARCO [®] Hg-LH			
ACI Rate, lb/MMacf	1.03	2.31	2.40			
20-Year Le	20-Year Levelized Cost without Byproduct Impacts					
COE Increase, mills/kWh	0.37	1.06	0.99			
\$/Ib Hg Removed	\$6,060	\$26,200	\$17,700			
20-Year I	20-Year Levelized Cost with Byproduct Impacts					
COE Increase, mills/kWh	1.09	2.05	2.37			
\$/Ib Hg Removed	\$18,000	\$50,600	\$42,500			



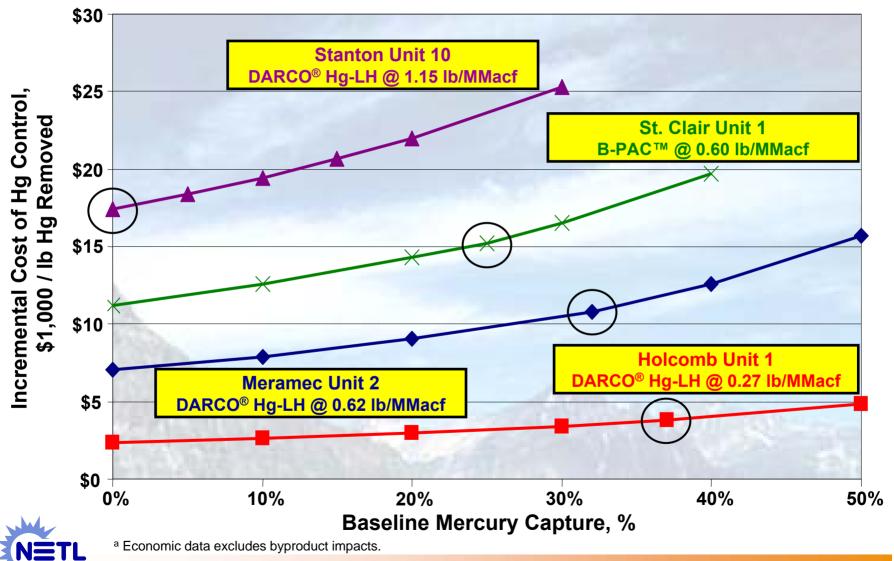
Incremental Cost of 70% ACI Mercury Control


NETL

Sensitivity of Incremental COE Increase^a for 70% ACI Mercury Control to Variations in Conventional PAC Cost



Sensitivity of Incremental COE Increase^a for 70% ACI Mercury Control to Variations in Brominated PAC Cost



Sensitivity of the Incremental Cost^a of 70% ACI Mercury Control to Changes in Baseline Mercury Capture

Sensitivity of the Incremental Cost^a of 70% ACI Mercury Control to Changes in Baseline Mercury Capture

Preliminary Conclusions

- Estimated cost of mercury control on a \$/lb removed basis continues to decline under "no byproduct impact" scenario
- Excluding byproduct impacts, economics of mercury control via ACI are dominated by PAC consumption costs when FF retrofit is not required
- Brominated ACI shows promise for effective mercury removal on low-rank coals
- Incremental Cost of Mercury Control (\$/Ib Hg Removed) can be influenced by a number of factors including:
 - **Baseline mercury removal**
 - *** Coal mercury content**

Thank You!!!

Co-Authors

Thomas Feeley, III (DOE/NETL); Jeffrey Hoffmann (DOE/NETL); Dennis Smith (DOE); James Murphy (SAIC)

NETL Project Managers

> Andrew O'Palko; Lynn Brickett; Dawn Deel; Pierina Noceti

Field Contractors

Sharon Sjostrom (ADA-ES); Sid Nelson, Jr. (Sorbent Technologies); Michael Holmes (UNDEERC); Carl Richardson (URS)

Host Utilities

AmerenUE; Basin Electric; Detroit Edison; Great River Energy; Southern Company; Sunflower Electric

