EERC Technology... Putting Research into Practice

Mercury Control Technology R&D Program Review

Enhancing Carbon Reactivity for Mercury Control in Coal-Fired Power Plants: Results from Leland Olds, Stanton, and Antelope Valley Stations

> Michael J. Holmes DOE COR: Lynn Brickett December 11, 2006

Members of the Lignite-Based Consortium

North Dakota Industrial Commission

Apogee Scientific

OAL

General Site Information

			Boiler		
Plant	Coal	Boiler Type	Size ¹ , MW	Particulate Control	SO ₂ Control
LOS1 ²	Lignite–PRB Blend	Wall fired	220 (110)	ESP ³ SCA ⁴ =320	None
SS10	Freedom	Tang. fired	60	FF ⁵	Spray dryer
AVS1	Freedom	Tang. fired	440	FF	Spray dryer
SS1	PRB ⁶	Wall fired	140 (70)	ESP SCA=470	None

1 Total size of the boiler with the value in parenthesises being the test size.

2 Fires mostly ND lignite; however, periodically fires a 30% blend of PRB coal.

3 Electrostatic precipitator.

4 Specific collection area, $ft^2/1000$ acfm.

5 Fabric filter.

6 Stanton Station switched from lignite to PRB coal in 2005.

Program Objectives

- To demonstrate two enhanced sorbent injection technologies (treated carbons and SEA with carbon) to obtain greater than 55% Hg removal.
 - Measure technology performance
 - Evaluate balance-of-plant impacts
 - Conduct economic analysis of options

SEA Skid and Injection Nozzle

PAC Storage Silo and Injection Equipment

Leland Olds Station (LOS) Unit 1

- 4% baseline Hg capture (ICR Basis)
- Testing occurred March–May 2004

LOS Parametric Results

Parametric testing of 30% PRB blended fuel showed similar results.

Results from LOS

Average coal Hg: 9.05 µg/dNm³

- Average injection rates
 - 2.9 lb/Macf
 SEA1
 - 2.7 lb/Macf
 PAC
- Overall 58% Hg capture across ESP
- Hg emission
 2.14 lb/TBtu

Antelope Valley Station (AVS) Unit 1

- No native capture across SDA/FF (ICR Basis)
- Testing occurred February–April 2005

Parametric Tests at AVS

Results from AVS

- Average injection rates
 - 0.81 lb/MacfPAC
 - 0.033 lb/Macf
 SEA2
- Overall Hg removal of 92% across SDA–FF
- Hg emission 0.55
 IbTBtu

Stanton Station (SS) Unit 1

- 75%–90% elemental mercury at ESP inlet
- No baseline Hg capture (ICR basis)
- Testing occurred: July, September EEF October 2005

Parametric Tests at SS1

Results from SS1

Stanton Station (SS) Unit 10

- 3% native Hg capture across SDA-FF system (ICR basis)
- Testing occurred March–April, June 2004

SS10 Parametric Results

Vapor-Phase Hg During Monthlong Testing at SS10

- Darco Hg-LH injected at an average of 0.7 lb/Macf
- Overall Hg capture across SDA–FF: 59%
- Hg emission
 2.74 lb/TBtu

Comparison – Parametric Tests at ESP Sites (LOS and SS1)

Comparison – Parametric Tests at Three SDA–FF Sites

Parametric Test Results – Darco Hg

Parametric Test Results – All Sites

Hg Reduction Cost/lb for Halogenated PAC and SEA+PAC

- Cost of PAC only, per lb Hg removed
 - LOS: \$69,168(50% removal)
 - SS1: \$57,500 (60% removal)
 - AVS: \$18,032(70% removal)
 - SS10: \$14,710 (70% removal)

*CMM costs not included in this analysis.

Cost Breakdown for ESP Sites

*Capital costs amortized over a 20-year period.

Cost Breakdown for SDA-FF Sites

*Capital costs amortized over a 20-year period.

Mercury Stability in Coal Combustion Byproducts (CCBs)

- Baseline and monthlong CCBs were tested.
 - Ash from ESP at LOS
 - Ash from FF and solids from SDA at AVS
- Leaching results were all below 0.1 ug/L Hg.
- The primary drinking water limit is 2 µg/L.
- Most Hg was thermally desorbed between 300° and 370°C.

Balance-of-Plant Impacts

- No measurable changes in
 - Corrosion
 - Opacity
 - Pressure drop

Corrosion/deposition probe assembly

- ESP and FF operation

Much longer operation is needed to fully characterize the long-term effects of PAC and SEA injection.

Final program report under review.

