#### Low Cost Options for Moderate Levels of Mercury Control TOXECON II<sup>TM</sup> and High Temperature Sorbents



DOE/NETL Mercury Control Technology Conference December 11, 2006 Tom Campbell, ADA-ES, Inc.

DOE/NETL Project Manager: Andrew O'Palko DOE Cooperative Agreement DE-FC26-05NT42307



# MidAmerican's Louisa High Temperature Sorbent Test

- MidAmerican's Louisa Unit 1
  - 700 MW
  - Test full unit
  - PRB Coal
- Hot Side ESP
  - Four boxes
  - Five mechanical fields
  - 459 SCA
- Project goal
  - 50-70% Hg removal
- Ash resold
  - Ash disposal per normal plant operations



#### **Test Results:**

ADA-37 – No correlation with enhanced Hg removal

KNX – Increased speciation, no enhanced Hg removal



# MidAmerican's Council Bluff Unit 2 High Temperature Sorbent Test

- MidAmerican's Council Bluff
  Unit 2
  - 88 MW
  - Test full unit
  - PRB Coal
- Hot Side ESP
  - One box
  - Four mechanical fields
  - 224 SCA
- Project goal
  - 50-70% Hg removal
- Ash resold
  - PAC/ash disposal plans under discussion



#### **Tentative Test Plans**

MinPlus - furnace injection

PAC – injection upstream of ESP Spring 2007



# **TOXECON II™ Full-Scale Evaluation**

- Entergy's Independence
   Steam Electric Station
  - 880 MW
  - Test on 1/8 of Unit 2
  - PRB Coal from North Antelope
- Cold Side ESP
  - Four boxes
  - Eight electrical fields per box (32 total)
  - 540 SCA
- Project goal
  - 50-70% Hg removal



Ash sold for concrete

 PAC/ash routed to
 separate silo during tests



### **TOXECON II<sup>TM</sup> Evaluation Co-funders**

Alliant Atco Power DTE **Entergy\*** Oglethorpe Power Southern Company Xcel Energy ADA-ES Arch Coal EPCOR EPRI NORIT Americas

\* Host Sites







#### **Project Objectives**

 Determine the cost and effects of sorbent injection using EPRI's TOXECON II<sup>™</sup> process for control of mercury in stack emissions



# **EPRI TOXECON II<sup>™</sup> Configuration**





# **Test Equipment**





#### **Lance Configuration**



- 16 lances in  $\frac{1}{2}$  of one ESP box
- 1/8 of Unit 2 flow treated
- ~ 42-feet long, 33-inch spacing
- 11 nozzles per lance

Control-Side of ESP Box **(ADA-ES** 



#### **Mercury Removal Results Comparisons**





# **Long-Term Performance Results**



#### **Test Results – Balance of Plant**

- Opacity
  - Some opacity spikes measured during last field rapping while operating at reduced ESP power
  - Testing with full ESP power and varying the rapping sequence limited the particulate and opacity spikes for all sorbents tested
- Minimal other plant impacts



### **Test Results – Summary**

- Achieved project goal of 50 to 70% Hg removal
- TOXECON II<sup>™</sup> Hg removal limited to < 80% at full load with up to 8 lb/MMacf DARCO<sup>®</sup> Hg-LH
- Hg removal > 80% with pre-ESP injection of DARCO<sup>®</sup> Hg-LH at 1 to 2 lb/MMacf
- TOXECON II<sup>™</sup> Hg removal varied significantly with load (lower removal at high load)

Physical and CFD modeling indicate lowerthan expected TOXECON II<sup>™</sup> results due to poor carbon distribution



# Physical Modeling #1 Plume Penetration

# Existing blower design: Poor coverage 、



Increased air flow to lances = increases penetration distance

Performed by NELS



#### **Original Lance Design – Low Load**



#### **Original Lance Design – High Load**



# **Carbon Distribution – Physical Model**



#### **Carbon Distribution – CFD Model**



# **Plans for Additional Testing**

- Finalize and test new grid design in ADA-ES lab
- Fabricate and install new grid in 2006
- Parametric and 30-day test scheduled for 2007



## **New Design – High Load**



# New Lance Design Carbon Distribution



# **Economics Comparisons (ESPs)**

| Plant                     | Coal | Sorbent                  | Removal<br>(%) | Sorbent Cost<br>(mills/kWh) |
|---------------------------|------|--------------------------|----------------|-----------------------------|
| Pleasant Prairie          | PRB  | DARCO <sup>®</sup> Hg    | 67             | 1.2                         |
| Brayton Point             | Bit  | DARCO <sup>®</sup> Hg    | 90             | 2.4                         |
| Meramec                   | PRB  | DARCO <sup>®</sup> Hg-LH | 90             | 0.74                        |
| Independence              | PRB  | DARCO <sup>®</sup> Hg-LH | 70             | 1.68                        |
|                           |      |                          | ∫ <b>70</b>    | 0.26                        |
| Projected with new lances |      |                          | 90             | 0.91                        |



#### **Importance of Additional Testing**

- TOXECON II<sup>™</sup> should provide a low-cost alternative for mercury control
- Goals for future Independence tests
  - Improve mercury removal efficiency
  - Minimize sorbent use
    - Manage costs
    - Minimize potential of increased particulate emissions
  - Assess impact of injection on particulate emissions (through EPRI funding)



#### Contacts

- Tom Campbell, ADA-ES Manager of DOE Demonstrations Project Engineer responsible for site activities at Independence 2005-2006 Tomc@adaes.com
- Sharon Sjostrom, ADA-ES Director of Technology Development Current Project Manager Sharons@adaes.com
- **Cam Martin**, ADA-ES Director of Engineering Responsible for Commercial Applications Camm@adaes.com

(303) 734-1727

