
Full-Scale Demonstration of a Mercury Oxidation Catalyst Upstream of a Wet FGD System

DOE-NETL Cooperative Agreement DE-FC26-06NT42778

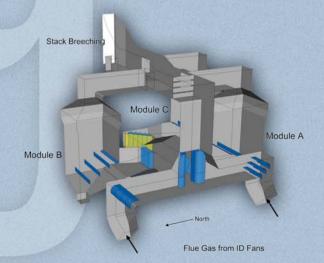
Project Overview

- Demonstrate gold catalyst upstream of a full-scale wet FGD module for oxidizing Hg⁰, enhancing FGD removal of total Hg
- To be conducted at the Lower Colorado River Authority's (LCRA) Fayette Power Project Unit 3
 - Located near LaGrange, Texas
 - 460 MW
 - Fires PRB coal
 - $\mbox{ Low NO}_{\rm x}$ burners, cold-side ESP, LSFO wet FGD
 - FGD has 3 absorbers, 2 operate at full unit load
 - Only Module C will have catalyst retrofitted (~200 MW)

Project Description

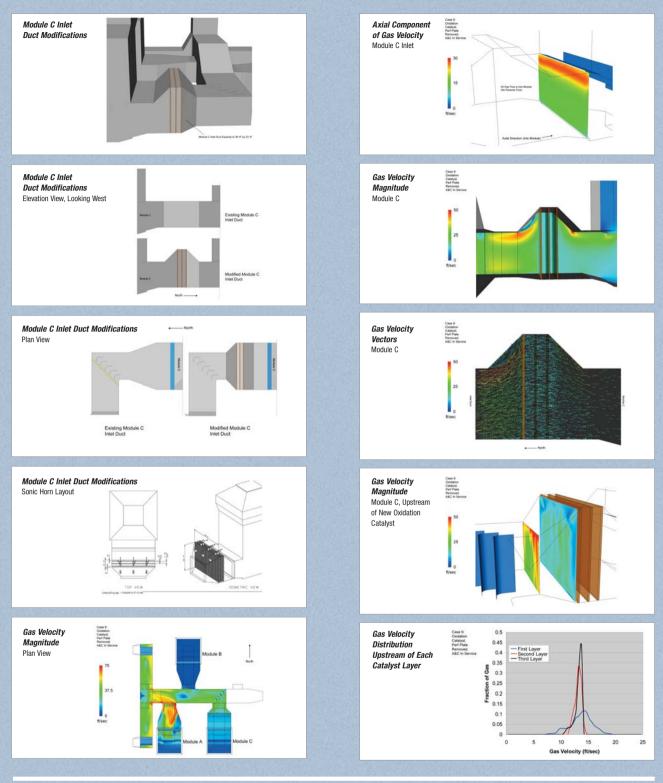
- NETL Project Manager: Chuck Miller
- Total Value: \$4.08 million (\$2.5 million DOE share)
- Period of Performance: 7/24/06-7/23/09
- Project Participants/Co-funders (role):
 - LCRA (host)
 - EPRI
 - Great River Energy
 - Johnson Matthey (catalyst supplier)
 - Southern Company
 - SRP
 - TVA (patent holder)
 - URS (prime contractor)
 - Westar

Project Objectives


- Confirm catalyst quantities and life for achieving:
 - Average of 70% oxidation of Hg⁰ in PRB flue gas over 24-mos.
 - Corresponding increase in FGD capture of Hg
- Meet or exceed solicitation objectives:
 - 50% to 70% Hg removal beyond baseline removal
 - Cost at least 50% lower than baseline of \$60,000/lb of Hg removed

Major Project Tasks

- Design Module C duct modifications for catalyst retrofit (Aug-Dec 06)
 Reduce gas velocity to ~15 ft/sec at catalyst
 - CFD modeling of gas flow distribution
 - Future application on entire unit would likely be installed at ESP outlet (~5 ft/sec)
- Construct duct modifications (Dec 06-May 07)
- Procure and install catalyst (Dec 06-July 07)
- Operate catalyst upstream of Module C (July 07-June 09)


Long-term Catalyst Evaluation

- Up to 24 months duration
- Bimonthly SCEM measurements
- Hg0 oxidation across catalyst,
- Net removal of Hg across FGD Module C
- Compare to other FGD module in service
- Three sets of Ontario Hydro verification measurements (each w/triplicate runs)
 - Catalyst inlet, catalyst outlet, Module C outlet
 - "Baseline" sampling across other FGD module
- Track catalyst pressure drop vs. time
- Other flue gas characterization (HCI, etc.)

CFD Modeling Results

Summary of CFD Results

Case	Description	Gas Flow Split to FGD Modules			Perf Plate dP	Catalyst dP	Average Superficial
		A	B	С	IWG	IWG	Gas Velocity (ft/sec)
1	Existing Operation	50.5		49.5	0.80		
2	Existing Operation		51.0	49.0	0.80		
9	Catalyst	54.8		45.2		1.40	13.2
10	Catalyst		55.1	44.9		1.40	13.1

Conclusions:

- Existing perforated plate can be removed
- No gas flow straighteners required at catalyst chamber
- Predicted 0.6 IWG increase in pressure drop to module C will not significantly alter gas flow distribution among modules

