Strategies for

Managing Insecticide Resistance

in the

Codling Moth

(Cydia pomonella L)

Volker Harries, Max Angst and Pascal Caruhel

I R A C
INSECTICIDE RESISTANCE ACTION COMMITTEE

Topics

- Codling moth it importance
- Factors influencing the resistance to CM
- Chemical, Bio-technical and non-chemical toolbox
- Current recommended control strategies
- IRAC's plan for a CM Symposium on RM

Cydia pomonella, a key pest in fruits & nuts

Larval damage

Adult

CM: ca 40% of pome fruit market

Regional records (IRAC survey) of resistant populations in the codling moth

	OP	SP	IGR	
Australia	X			
Canada	X			
USA	x			
Netherlands			X	
South Africa	x	x		
Germany	x	x	X	
Italy	x	x	X	
France	x	×	×	

Factors linked to the development and incidence of resistance in Cydia pomonella (1)

- Codling moth through its key pest status accounts for a substantial proportion of total pesticide use in pome fruit production
- Local climatic and cropping conditions that allow three generations per year, encourage the development of high moth populations and, consequently, of severe fruit infestation
- The very low economic damage threshold levels (fruit damage 1% 2 % is generally regarded as commercially unacceptable) motivates intensive insecticide programs
- The overlapping of several codling moth summer generations hampers the optimum timing of control measures and impedes particularly the use of selective technologies

Factors linked to the development and incidence of resistance in Cydia pomonella (2)

- The reliance on broad-spectrum insecticides, that may affect the balance of naturally ocurring beneficial organisms (antagonists) is not compatible with the implementation of sustainable control programs
- The exclusive use of insecticides belonging to the same MOA-classification (e.g. oganophosphates, synthetic pyrethroids, chitin biosynthesis inhibitors) increases the risk of selecting for resistance
- The misuse of products (dose rates, timing and method of application) as well as the mismanagement of the orchards (lack of adequate prognostic methods and inappropriate agronomic practices) and - last but not least - ...
- Insufficient information and communication to and at the grower level are main factors limiting the development of rational pest management and contributing to the onset of resistance

Products representing innovative insecticide chemistry:

Opportunities for building flexible strategies in sustainable codling moth management and resistance avoidance

chemical class	common name	primary target site	MOA group	activity spectrum	product status
neonicotinoids	thiacloprid acetamiprid	Nocotinic AcCh reseptor agonist	4 A	broad-spectrum homopteran and lepidopteran insects	registration / commercial introduction phase
oxadiazines	indoxacarb	voltage dependant sodium channel blocker	22 A	broad-spectrum lepidopteran insects	registration / commercial introduction phase
hydrazides	tebufenozide methoxyfenocide chromafenozide	ecdyson agonists	nists 16 A broad-spectrum lepidopteran insects		registration / commercial introduction phase
phenoxy- phenylethers	fenoxycarb	juvenile hormon mimic	7B	tortricidae	commercial

Pyrethroids,

I R A C

INSECTICIDE RESISTANCE ACTION COMMITTEE

Op's,

Acylureas

Depending on regional conditions and the national status of product registration, a variable range of products can be offered to the grower

MOA	Chemical class	France	Germany
1B	organophosphates	azinphos-m, diazinon, diethion, fenthion, formothion, malathion, methidathion, parathion-m., parathion-e., phosmet, phosalone	parathion-m.
1A	carbamates	carbaryl, methomyl	-
1B + 3A	organophosphate + synth. Pyrethroid	fenitrothion + esfenvalerate, oxydemeton-m. + betacyfluthrin	1
3A	synth. Pyrethroids	alphamethrin, betacyfluthrin, cyfluthrin, bifenthrin, cypermethrin, deltamethrin, fenpropathrin, lambda-cyhalothrin, tau-fluvalinate	betacyfluthrin, cyfluthrin
7	Juvenil hormon mimics	fenoxycarb	fenoxycarb
15 A	chitin biosynthesis inhibitors	diflubenzuron, flufenoxuron*, hexaflumuron, triflumuron *cross-resistance status under research	-
16	ecdyson agonists	tebufenozide	

Acreage of apple orchards treated with the mating disruption technique against codling moth, South Tirol 1991 – 2000 (Waldner)

Factors affecting the success of Mating Disruption Technique (MDT)

Many factors affecting performance

- population density
- product / dispenser → pheromone release
- crop, size (canopy, height) of trees
- orchard size, shape, isolation
- application → dispenser placement

- very selective products → secondary pest
- technical expertise → regular monitoring, damage rating

Additive effect of granulose virus (CpGV) and pheromones (Attract and Kill Technique, AKT), Grosssachsen 1998

source: E. Dickler, European Apple Symp., 2001

Advantages versus disadvantages of codling moth granulosis virus (CpGV) on pome fruit orchards

Advantages

excellent fit for resistance management within IFP high selectivity, efficacy safe to beneficials pre-harvest interval 0 days common application technique mixes well with other pesticides no environmental restrictions no drift problems high user safety

Disadvantages

- high spray frequency due to the lack of UV-stability
- economic threshold can be exceeded under higher infestation pressure
- high cost level
- very selective against codling moth calls for additional action for control of other pests
- technically demanding

source: E. Dickler, 2000

Cultural- and monitoring methods in resistance prevention

- Apply adequate cultural methods to alleviate the population build-up:
 - removal and destruction of pruning remains
 - make use of ground cover management (green-covered soil surface)
 - select the cropping system best adapted to the location
- Use monitoring methods to predict the development of codling moth populations and the optimum application timing of the most appropriate product or technique under the given conditions
 - computer-based modelling devices
 - trunk bands
 - pheromone traps
 - direct counting of eggs and / or larval stages

INRA/SPV: CM management strategies: France strategic options / recommended product alternations (G 1)

B. Sauphanor et al., supported by IRAC

status of codling moth control in year 1	control of 1st. generation (G1) in year 2		
no resistance problem year 1(G2)	alternate MOA group used against 1st and 2nd. generation year 1		
acceptable control	1 B2: 'soft' OP's (phosmet, phosalone, phosphamidon)		
damage G2: < 2%	7 B: JHM's (fenoxycarb)		
	16 A: EA's (e.g. tebufenozide)		
	15 A: CBI's (flufenoxuron)		
	1 A: carbamate (e.g. methomyl)		
	23 A: virus (CpGV)		
resistance suspected year 1	1 B1 : larvicide strategy: OP's (azinphos-m, chlorpyrifos + dimathoate, parathion)		
or lack of evidence	23 A: virus (CPGV), spray sequence (2 applications)		
acceptable control			
damage G2 < 2%	15 A: ovicide strategy: CBl's (flufenoxuron), spray sequence (3 applications)		
resistance suspected year 1	1 B1 : larvicide strategy: OP's (azinphos-m, chlorpyrifos + dimethoate, parathion)		
or lack of evidence	or		
inadequate control	15 A: CBI (flufenoxuron), spray sequence (max. 3 applications)		
damage G2 > 2%			

INRA/SPV CM management strategies: France strategic options / recommended product alternations (G 2)

B. Sauphanor et al., supported by IRAC

status of codling moth control 1st Gen in in year 2	control of 2nd. Generation (G2)			
15t Gen in in year Z	in year 2			
no resistance problem year 2 (G 1)	alternate MOA group used against G1 / year 2 and G2 / year 1			
acceptable control	1 B2: 'soft' OP's (phosmet, phosalone, phosphamidon) at peak egg hatch			
	or			
damage G1: < 3% or damage G1: > 3%	1 B1: OP's (azinphos-m, chlorpyrifos + dimethoate, parathion) on high population			
due to unsufficient contro lof G2 in year 1				
resistance suspected or lack of evidence	1 B1: OP's (azinphos-m, chlorpyrifos + dimethoate, parathion) during high- risk period			
	exclude MOA groups 15 A (CBI's except flufenoxuron),			
damage G1 < 3%	1 B2 ('soft' OP's),			
	7 B (fenoxycarb), 16 A (EA's), 3 A (SP's)			
resistance suspected	1B1: OP's (azinphos-m, chlorpyrifos + dimethoate, parathion) during the			

whole risk period

or lack of evidence

damage G1 > 3%

RAC: CM resistance management strategies: Switzerland Strategic options / recommended product alternations (G 1/G 2)

PJ. Charmillot et al., supported by IRAC

status of CM control	1st. generation		2nd. generation		
	24 A/B:	Mating disruption	24 A/B:	Mating disruption	
	or		or		
	Attract & Kill		Attract & Kill		
no special	23 A: CM GV				
advice	7 B: juvenile hormon mimics		7 B: juve	nile hormon mimics	
	15 A: chitin biosynthesis inhibitors		15 A: chitin biosynthesis inhibitors		
	16 A: ecc	dysone agonists	16 A: ecc	lysone agonists	
	22 A: sodium channel blocker		22 A: soc	lium channel blocker	

summary

- resistant populations of codling moth have been detected in many countries most serious in SE-France
- all available tools of codling moth control have to be implemented in sustainable strategies for managing resistance in codling moth.
- New insecticides, representing different innovative chemistries under registration but registration in fruits most difficult
- IRAC is keen to work together with scientific and advisory community

The Mission of IRAC

www.plantprotection.org/IRAC

secure a prolonged effective life of reliable insecticides and acaricides

- provide potential users with guidelines that convey technically and environmentally sound practices in sustainable pest control, resistance prevention and management on key target pest species
- conduct worldwide surveys on the occurrence of suspected or proven resistance being reported from key pests in essential crop areas, organize the updating of a valid resistance database
- collect, revise and publish existing bioassay methods, develop new bioassays, which serve to establish reliable programs for monitoring pest suceptibility
- contribute funding to research organisations and field projects outside industry
- support and sponsor research projects, seminars, symposia and workshops according to current needs
- promote and patronize education, communication and collaboration between all those - inside and outside industry - involved in crop production and insect control

IRAC will organise an

International Codling Moth Symposium

to be held within the

VIIth. European Congress of Entomology

Tessaloniki, Greece, Oct 7

Oct 7-13, 2002

objective

review and discuss status on CM resistance and IRM strategies

http://www.helexpo.gr/ece.

Thanks

IRAC is pleased to continue to work together with the scientific and advisory community

