LA-UR-05-4983

Approved for public release; distribution is unlimited.

Title:	FUNDAMENTALS OF MONTE CARLO PARTICLE TRANSPORT
Author(s):	FORREST B. BROWN
Submitted to:	Lecture notes for Monte Carlo course

NATIONAL LABORATORY
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Fundamentals of Monte Carlo Particle Transport \Rightarrow

Forrest B. Brown
Diagnostics Applications Group (X-5) Los Alamos National Laboratory

Abstract

Fundamentals of Monte Carlo Particle Transport

Solving particle transport problems with the Monte Carlo method is simple just simulate the particle behavior. The devil is in the details, however. This course provides a balanced approach to the theory and practice of Monte Carlo simulation codes, with lectures on transport, random number generation, random sampling, computational geometry, collision physics, tallies, statistics, eigenvalue calculations, variance reduction, and parallel algorithms. This is not a course in how to use MCNP or any other code, but rather provides in-depth coverage of the fundamental methods used in all modern Monte Carlo particle transport codes. The course content is suitable for beginners and code users, and includes much advanced material of interest to code developers. (10 lectures, 2 hrs each)

The instructor is Forrest B. Brown from the X-5 Monte Carlo team. He has 25 years experience in developing production Monte Carlo codes at DOE laboratories and over 200 technical publications on Monte Carlo methods and high-performance computing. He is the author of the RACER code used by the DOE Naval Reactors labs for reactor design, developed a modern parallel version of VIM at ANL, and is a lead developer for MCNP5, MCNP6, and other Monte Carlo codes at LANL.

1. Introduction

- Monte Carlo \& the Transport Equation
- Monte Carlo \& Simulation

2. Random Number Generation
3. Random Sampling
4. Computational Geometry
5. Collision Physics
6. Tallies \& Statistics
7. Eigenvalue Calculations - Part I
8. Eigenvalue Calculations - Part II
9. Variance Reduction
10. Parallel Monte Carlo

11. References

Introduction

- Von Neumann invented scientific computing in the 1940s
- Stored programs, "software"
- Algorithms \& flowcharts
- Assisted with hardware design as well
- "Ordinary" computers today are called "Von Neumann machines"
- Von Neumann invented Monte Carlo methods for particle transport in the 1940s (with Ulam, Fermi, Metropolis, \& others at LANL)
- Highly accurate - no essential approximations
- Expensive - typically the "method of last resort"
- Monte Carlo codes for particle transport have been proven to work effectively on all types of computer architectures:

SIMD, MIMD, vector, parallel, supercomputers, workstations, PCs, Linux clusters, clusters of anything, ...

- Two basic ways to approach the use of Monte Carlo methods for solving the transport equation:
- Mathematical technique for numerical integration
- Computer simulation of a physical process
\Rightarrow Each is "correct"
- Mathematical approach is useful for:

Importance sampling, convergence, variance reduction, random sampling techniques, eigenvalue calculation schemes,

- Simulation approach is useful for: collision physics, tracking, tallying,
- Monte Carlo methods solve integral problems, so consider the integral form of the Boltzmann equation
- Most theory on Monte Carlo deals with fixed-source problems. Eigenvalue problems are needed for criticality and reactor physics calculations.

Introduction

Simple Monte Carlo Example

Evaluate $\quad G=\int_{0}^{1} g(x) d x$, with $g(x)=\sqrt{1-x^{2}}$
g(x)

- Mathematical approach:

For $k=1, \ldots, N$: choose \hat{x}_{k} randomly in $(0,1)$

$$
G=(1-0) \cdot[\text { average value of } g(x)] \approx \frac{1}{N} \cdot \sum_{k=1}^{N} g\left(\hat{x}_{k}\right)=\frac{1}{N} \cdot \sum_{k=1}^{N} \sqrt{1-x_{k}^{2}}
$$

- Simulation approach:
"darts game"
For $k=1, \ldots, N$:
choose \hat{x}_{k}, \hat{y}_{k} randomly in $(0,1)$, if $\hat{x}_{k}^{2}+\hat{y}_{k}^{2} \leq 1$, tally a "hit"

$$
G=[\text { area under curve }] \approx(1 \cdot 1) \cdot \frac{\text { number of hits }}{N}
$$

Monte Carlo is often the method-of-choice for applications with integration over many dimensions

Examples: high-energy physics, particle transport, financial analysis, risk analysis, process engineering,

Evaluate

$$
G=\int_{a_{1} a_{2}}^{b_{1} b_{2}} \ldots \int_{a_{M}}^{b_{M}} g\left(r_{1}, r_{2}, \ldots, r_{M}\right) d r_{1} d r_{2} \ldots d r_{M}
$$

where $r_{1}, r_{2}, \ldots, r_{M}$ are all independent variables

For $\mathrm{k}=1, \ldots, \mathrm{~N}$:

$$
\begin{gathered}
\text { For } m=1, \ldots, M: \quad \text { choose } R_{m}^{(k)} \text { randomly in }\left(a_{m}, b_{m}\right) \\
G \sim\left(b_{1}-a_{1}\right) \cdot \ldots \cdot\left(b_{M}-a_{M}\right) \cdot \frac{1}{N} \sum_{k=1}^{N} g\left(R_{1}^{(k)}, R_{2}^{(k)}, \ldots, R_{M}^{(k)}\right) \\
1-7
\end{gathered}
$$

Introduction - Probability Density Functions

- Continuous Probability Density
$f(x)=$ probability density function (PDF)
$f(x) \geq 0$
Probability $\{a \leq x \leq b\}=\int_{a}^{b} f(x) d x$

Normalization: $\int_{-\infty}^{\infty} f(x) d x=1$

- Discrete Probability Density
$\left\{f_{k}\right\}, k=1, \ldots, N, \quad$ where $f_{k}=f\left(x_{k}\right)$
$\mathrm{f}_{\mathrm{k}} \geq 0$
Probability $\left\{\mathrm{x}=\mathrm{x}_{\mathrm{k}}\right\}=\mathrm{f}_{\mathrm{k}}$
Normalization: $\quad \sum_{k=1}^{N} f_{k}=1$

- Mean, Average, Expected Value

$$
\begin{aligned}
& \mathrm{X}=\mu=\langle x\rangle=\mathrm{E}[\mathrm{x}] \\
& \mu=\int_{-\infty}^{+\infty} \mathrm{xf}(\mathrm{x}) \mathrm{dx} \quad \text { [continuous] } \quad \mu=\sum_{\mathrm{k}=1}^{\mathrm{N}} \mathrm{x}_{\mathrm{k}} \mathrm{f}_{\mathrm{k}} \quad \text { [discrete] }
\end{aligned}
$$

- Variance

$$
\begin{aligned}
& \operatorname{var}(x)=\overline{(x-\mu)^{2}}=\sigma^{2}=\left\langle(x-\mu)^{2}\right\rangle=E\left[(x-\mu)^{2}\right] \\
& \sigma^{2}=\int_{-\infty}^{+\infty}(x-\mu)^{2} f(x) d x \quad \sigma^{2}=\sum_{k=1}^{N}\left(x_{k}-\mu\right)^{2} f_{k}
\end{aligned}
$$

- Standard Deviation

$$
\sigma=\sqrt{\sigma^{2}}
$$

- Functions of a Random Variable

Consider $g(x)$, where x is a random variable with density $f(x)$

$$
E[g(x)]=\int_{-\infty}^{+\infty} g(x) f(x) d x \quad E[g(x)]=\sum_{k=1}^{N} g_{k} f_{k}
$$

Introduction

The key to Monte Carlo methods is the notion of random sampling.

- The problem can be stated this way:

Given a probability density, $f(x)$, produce a sequence of $\hat{\mathbf{X}}$'s.
The X's should be distributed in the same manner as $f(x)$.

- The use of random sampling distinguishes Monte Carlo from other methods
- When Monte Carlo is used to solve the integral Boltzmann transport equation:
- Random sampling models the outcome of physical events (e.g., neutron collisions, fission process, sources,)
- Computational geometry models the arrangement of materials

Monte Carlo

\&
 Transport Equation

Boltzmann transport equation - time-independent, linear

$$
\Psi(\mathbf{r}, \mathbf{v})=\int\left[\int \Psi\left(\mathbf{r}^{\prime}, \mathbf{v}^{\prime}\right) \mathrm{C}\left(\mathbf{v}^{\prime} \rightarrow \mathbf{v}, \mathbf{r}^{\prime}\right) \mathrm{d} \mathbf{v}^{\prime}+Q\left(\mathbf{r}^{\prime}, \mathbf{v}\right)\right] \mathrm{T}\left(\mathbf{r}^{\prime} \rightarrow \mathbf{r}, \mathbf{v}\right) \mathrm{d} \mathbf{r}^{\prime}
$$

where

- $\Psi(\mathbf{r}, \mathbf{v}) \quad=\quad$ particle collision density
- $Q\left(\mathbf{r}^{\prime}, \mathbf{v}\right) \quad=$ source term
- $\mathbf{C}\left(\mathbf{v}^{\prime} \rightarrow \mathbf{v}, \mathbf{r}^{\prime}\right) \quad=\quad$ collision kernel, change velocity at fixed position
- $T\left(\mathbf{r}^{\prime} \rightarrow \mathbf{r}, \mathbf{v}\right)=$ transport kernel, change position at fixed velocity
- Angular Flux $\quad \psi(\mathbf{r}, \mathbf{v})=\frac{\Psi(\mathbf{r}, \mathbf{v})}{\Sigma(\mathbf{r},|\mathbf{v}|)}$
- Scalar Flux

$$
\Phi(\mathbf{r},|\mathbf{v}|)=\int_{\vec{\Omega}} \frac{\Psi(\mathbf{r}, \mathbf{v})}{\Sigma(\mathbf{r},|\mathbf{v}|)} \mathrm{d} \stackrel{\rightharpoonup}{\Omega}, \quad \mathbf{v}=|\mathbf{v}| \stackrel{\rightharpoonup}{\Omega}
$$

Source term for the Boltzmann equation:

$$
Q(\mathbf{r}, \mathbf{v})= \begin{cases}S(\mathbf{r}, \mathbf{v}) & \Leftarrow \text { Fixed Source } \\ \mathrm{S}(\mathbf{r}, \mathbf{v})+\int \Psi\left(\mathbf{r}, \mathbf{v}^{\prime}\right) \mathrm{F}\left(\mathbf{v}^{\prime} \rightarrow \mathbf{v}, \mathbf{r}\right) \mathrm{d} \mathbf{v}^{\prime} & \Leftarrow \text { Fixed Source + Fission } \\ \frac{1}{\mathrm{~K}} \int \Psi\left(\mathbf{r}, \mathbf{v}^{\prime}\right) \mathrm{F}\left(\mathbf{v}^{\prime} \rightarrow \mathbf{v}, \mathbf{r}\right) \mathrm{d} \mathbf{v}^{\prime} & \Leftarrow \text { Eigenvalue }\end{cases}
$$

where

- $S(\mathbf{r}, \mathbf{v}) \quad=$ fixed source
- $\mathbf{F}\left(\mathbf{v}^{\prime} \rightarrow \mathbf{v}, \mathbf{r}\right)=$ creation operator (due to fission), particle at ($\mathbf{r}, \mathbf{v}^{\prime}$) creates particle at (\mathbf{r}, \mathbf{v})
- $\mathrm{K} \quad=\quad$ eigenvalue
$\Psi(r, v)=\int\left[\int \Psi\left(r^{\prime}, v^{\prime}\right) \cdot C\left(v^{\prime} \rightarrow v, r^{\prime}\right) d v^{\prime}+Q\left(r^{\prime}, v\right)\right] \cdot T\left(r^{\prime} \rightarrow r, v\right) d r^{\prime}$
- Assumptions
- Static, homogeneous medium
- Time-independent
- Markovian - next event depends only on current (r, v, E), not on previous events
- Particles do not interact with each other
- Neglect relativistic effects
- No long-range forces (particles fly in straight lines between events)
- Material properties are not affected by particle reactions
- Etc., etc.
\Rightarrow Can use the superposition principle

Basis for the Monte Carlo Solution Method

Let $p=(\vec{r}, \vec{v}) \quad$ and $\quad R\left(p^{\prime} \rightarrow p\right)=C\left(v^{\prime} \rightarrow v, r^{\prime}\right) \cdot T\left(r^{\prime} \rightarrow r, v\right)$

Expand Ψ into components having $0,1,2, \ldots, \mathrm{k}$ collisions

$$
\Psi(p)=\sum_{k=0}^{\infty} \Psi_{k}(p), \quad \text { with } \quad \Psi_{0}(p)=\int Q\left(r^{\prime}, v\right) T\left(r^{\prime} \rightarrow r, v\right) d r^{\prime}
$$

By definition,

$$
\Psi_{\mathrm{k}}(\mathrm{p})=\int \Psi_{\mathrm{k}-1}\left(\mathrm{p}^{\prime}\right) \cdot \mathrm{R}\left(\mathrm{p}^{\prime} \rightarrow \mathrm{p}\right) \mathrm{d} p^{\prime}
$$

Note that collision k depends only on the results of collision $k-1$, and not on any prior collisions $k-2, k-3, \ldots$

Histories

- After repeated substitution for Ψ_{k}

$$
\begin{aligned}
\Psi_{k}(p) & =\int \Psi_{k-1}\left(p^{\prime}\right) \cdot R\left(p^{\prime} \rightarrow p\right) d p^{\prime} \\
& =\int \ldots \int \Psi_{0}\left(p_{0}\right) \cdot R\left(p_{0} \rightarrow p_{1}\right) \cdot R\left(p_{1} \rightarrow p_{2}\right) \ldots R\left(p_{k-1} \rightarrow p\right) d p_{0} \ldots d p_{k-1}
\end{aligned}
$$

- A "history" is a sequence of states $\left(p_{0}, p_{1}, p_{2}, p_{3}, \ldots ..\right)$

- For estimates in a given region, tally the occurrences for each collision of each "history" within a region

$$
\Psi_{k}(p)=\int \ldots \int \Psi_{0}\left(p_{0}\right) \cdot R\left(p_{0} \rightarrow p_{1}\right) \cdot R\left(p_{1} \rightarrow p_{2}\right) \ldots R\left(p_{k-1} \rightarrow p\right) d p_{0} \ldots d p_{k-1}
$$

Monte Carlo approach:

- Generate a sequence of states ($\left.p_{0}, p_{1}, p_{2}, p_{3}, \ldots ..\right)$ [i.e., a history] by:
- Randomly sample from PDF for source: $\Psi_{0}\left(p_{0}\right)$
- Randomly sample from PDF for $k^{\text {th }}$ transition: $\quad R\left(p_{k-1} \rightarrow p_{k}\right)$
- Generate estimates of results by averaging over states for M histories:

$$
A=\int A(p) \cdot \Psi(p) d p \approx \frac{1}{M} \cdot \sum_{m=1}^{M}\left(\sum_{k=1}^{\infty} A\left(p_{k, m}\right)\right)
$$

Monte Carlo
 \&
 Simulation

"Simulation is better than reality"
Richard W. Hamming, 1991

Simulation approach to particle transport:

Faithfully simulate the history of a single particle from birth to death.

- Random-walk for a single particle
- Model collisions using physics equations \& cross-section data
- Model free-flight between collisions using computational geometry
- Tally the occurrences of events in each region
- Save any secondary particles, analyze them later

- A "history" is the simulation of the original particle \& all of its progeny

- Repeat for many histories, accumulating tallies
- Fundamental rule: Think like a particle!

Source

- Random sampling

E, Ω - analytic, discrete, or piecewise-tabulated PDF's

- Computational geometry
r - sample from region in 3-D space, or from discrete PDF

Tracking

- Random sampling
$\mathrm{d}_{\text {collide }}$ - distance to collision, from mfp \& exponential PDF
- Computational geometry
$d_{\text {geom }}$ - distance-to-boundary, ray-tracing, next-region,

Collisions

- Random sampling
$\mathrm{E}^{\prime}, \Omega^{\prime}$ — analytic, discrete, or piecewise-tabulated PDF's
- Physics
$\mathbf{\Sigma}, \mathrm{f}(\mu)$ - cross-section data, angular PDF's, kinematics,
Tallies
- Statistics

Variance Reduction

- Random sampling

Monte Carlo \& Simulation
 - Los Alamos

Single particle

- random-walk for particle history
- simulate events, from birth to death
- tally events of interest

Batch of histories ("generation")

- random-walk for many particle histories
- tally the aggregate behavior

Overall

- timesteps
- geometry changes
- material changes
- fuel depletion
- burnable absorbers
- control rods

```
* Loop over timesteps
* * Loop over batches
. . * Loop over histories
. . . }->\mathrm{ random walk
- . ...
- . }->\mathrm{ update Keff & reaction rates
• - . 
- }->\mathrm{ compute statistics
-> update number densities,.....
...
```

\square

Los Alamos

Lecture 2

Random Number Generation

"Randomness is a negative property; it is the absence of any pattern."
Richard W. Hamming, 1991
"...random numbers should not be generated by a method chosen at random."
Donald Knuth, 1981

Forrest B. Brown
Diagnostics Applications Group (X-5)
Los Alamos National Laboratory

Random Number Generators

Random Number Generators (RNGs)

- Numbers are not random; a sequence of numbers can be.
- Truly random sequences are generally not desired on a computer.
- Pseudo-random sequences:
- Repeatable (deterministic)
- Pass statistical tests for randomness
- RNG
- Function which generates a sequence of numbers which appear to have been randomly sampled from a uniform distribution on (0,1)
- Probability density function for $f(x)$

- Typical usage in codes: $\quad r=r a n f()$
- Also called "pseudo-random number generators"
- All other random sampling is performed using this basic RNG

Most production-level Monte Carlo codes for particle transport use linear congruential random number generators:

$$
\begin{aligned}
\mathrm{S}_{\mathrm{i}+1} & =\mathrm{S}_{\mathrm{i}} \cdot g+c \quad \bmod 2^{\mathrm{m}} \\
\mathrm{~S}_{\mathrm{i}} & =\text { seed }, \quad \mathrm{g}=\text { multiplier, } \mathrm{c}=\text { adder, } 2^{\mathrm{m}}=\text { modulus }
\end{aligned}
$$

- Robust, over 40 years of heavy-duty use
- Simple, fast
- Theory is well-understood (e.g., DE Knuth, Vol. 2, 177 pages)
- Not the "best" generators, but good enough - RN's are used in unpredictable ways during particle simulation
- To achieve reproducibility of Monte Carlo calculations, despite vectorization or varying numbers of parallel processors, there must be a fast, direct method for skipping ahead (or back) in the random sequence

Linear Congruential RNGs

- due to Lehmer, 1949
- most common method, excellent (when not abused)
- Method:

$$
\begin{aligned}
& \mathrm{s}_{0} \leftarrow \text { initial value } \\
& \mathrm{r}_{\mathrm{k}} \leftarrow \mathrm{~s}_{\mathrm{k}} / \mathrm{p} \\
& \mathrm{~s}_{\mathrm{k}+1} \leftarrow\left[\mathrm{~g} \cdot \mathrm{~s}_{\mathrm{k}}+\mathrm{c}\right] \bmod \mathrm{p}
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathrm{s}_{\mathrm{k}}, \mathrm{~g}, \mathrm{c}, \mathrm{p}=\text { integers, } \quad \mathrm{r}_{\mathrm{k}}=\text { real } \\
& \mathrm{s}_{\mathrm{k}}=\text { seed } \\
& \mathrm{g} \quad=\text { generator, or multiplier } \\
& \mathrm{c}=\text { increment } \\
& \mathrm{p} \quad=\text { modulus } \\
& \mathrm{r}_{\mathrm{k}} \quad=\mathrm{psuedo} \text {-random number, } 0 \leq \mathrm{r}_{\mathrm{k}} \leq 1 \\
& \text { - "mod } \mathrm{p} " \Rightarrow \quad \begin{array}{l}
\text { "remainder after division by } \mathrm{p} ", \\
\text { - Multiplicative: } \\
\text { absolutely no roundoff is permitted } \\
\text { - Mixed: }
\end{array} \quad \mathrm{c}=0
\end{aligned}
$$

Example \#1: \quad| $\quad s_{k+1}$ | $\leftarrow\left[g \cdot s_{k}+c\right] \bmod p$ |
| ---: | :--- |
| | with $g=47, c=1, s_{0}=1, p=100$ |

$s(0)$		(47			100	=	48	mod	100	=	48
	=	(47x48	+ 1)	mod	100	=	2257	mod	100	=	57
s(3)	=	(47x57	+ 1)	mod	100	=	2680	mod	100	=	80
s(4)		(47x80	+ 1)	mod	100	=	3761	mod	100		61
s(5)		(47x61	+ 1)	mod	100	=	2868	mod	100	=	8
s(6)		(47x68	+ 1)	mod	100	=	3197	mod	100	=	97
s(7)	=	(47x97	+ 1)	mod	100	=	4560	mod	100	$=$	6
s(8)	=	(47x60	+ 1)	mod	100	=	2821	mod	100	=	21
s(9)	=	(47x21	+ 1)	mod	100	=	988	od	100	=	88
s(10)		(47x88	+ 1)	mod	100	$=$	4137	od	100	=	37
s(11)		(47x37	+ 1)	mod	100	=	1740	mod	100	=	40
s(12)		(47x40	+ 1)	mod	100	=	1881	mod	100	=	81
s(13)		(47x81	+ 1)	mod	100	=	3808	mod	100	=	8
s(14)		(47x8	+ 1)	mod	100	=	377	mod	100		77
s(15)		(47x77	+ 1)	mod	100	=	3620	mod	100	$=$	20
s(16)		(47x20	+ 1)	mod	100	=	941	mod	100		41
s(17)		(47x41	+ 1)	mod	100	=	1928	mod	100	=	28
s(18)		(47x28	+ 1)	mod	100	=	1317	mod	100	=	7
s(19)		(47x17	+ 1)	mod	100	=	800	mod	100		
s(20)		(47x0	+ 1)	mod	100			mod	100		1
s(21)		(47x1	+ 1)	mod	100		48	mod	100	=	48
s(22)		(47x48	+ 1)	mod	100	=	2257	mod	100	-	57

Simple RNG - Examples \#2 \& \#3

Example \#2: $\quad \begin{aligned} s_{k+1} & \leftarrow\left[g \cdot s_{k}+c\right] \bmod p \\ & \text { with } g=5, c=1, s_{0}=1, p=100\end{aligned}$

(0)		1									
s(1)	=	(5×1	+ 1)	mod	100	=	6	mod	100		6
S(2)	$=$	(5x6	+ 1)	mod	100	=	31	mod	100	$=$	31
S(3)	=	(5×31	+ 1)	mod	100	$=$	156	mod	100	$=$	56
S(4)	=	(5×56	+ 1)	mod	100	=	281	mod	100	=	81
S(5)	=	(5×81	+ 1)	mod	100	$=$	406	mod	100	=	6
s(6)	=	(5×6	+ 1)	mod	100	$=$	31	mod	100	$=$	31

Example \#3: $\quad \mathbf{s}_{\mathbf{k}+1} \leftarrow\left[\mathbf{g} \cdot \mathbf{s}_{\mathbf{k}}+\mathbf{c}\right] \bmod \mathbf{p}$
with $g=5, c=0, s_{0}=1, p=100$

s(0)	$=$	1							
s(1)	=	(5x1)	mod 100	=	5	mod	100	=	
s(2)	=	(5x5)	mod 100	=	25	mod	100	=	25
s(3)	=	(5x25)	mod 100	=	125	mod	100	=	25
S(4)	=	(5x25)	mod 100	=	125	mod	100		25

$$
s_{k+1} \leftarrow\left[g \cdot s_{k}+c\right] \bmod p
$$

- Modulus (p):
— choose $p=2^{N}$
- simplifies "mod p "- discard all but the N least significant bits
- simplifies division by p - shift the "point" left by N bits
- N should be as large as possible, $N>35$ is best.
- Usually, choose N to be number of bits in largest positive integer.
- Generator (g), Initial Seed (s_{0}), \& Increment (c) :
- choose g \& c to maximize the period
- large g is best to reduce serial correlation
- obviously, $\mathrm{g}=1$ or $\mathrm{g}=0$ are bad
- For $\mathrm{c}=0$ (multiplicative PRNG):
choosing
(1) $g \bmod 8=3$ or 5
(2) $\mathrm{s}_{0}=$ odd
results in: \quad period $=2^{\mathrm{N}-2}$, the maximum possible period.
— For c>0 (mixed PRNG):
choosing (1) \mathbf{c} relatively prime to p
(2) $(g-1)$ to be a multiple of every prime factor of p
(3) $\begin{aligned} & (\mathrm{g}-1) \\ & \mathrm{g}-1)\end{aligned}$ to be a multiple of 4 if p is a multiple of 4
results in: \quad period $=2^{N}$, the maximum possible period.

Typical Linear Congruential RNGs

Multiplicative congruential method - Lehmer

$$
\begin{array}{ll}
S_{i+1}=g \cdot S_{i}+c \bmod 2^{m}, & 0<S_{i}<2^{m} \\
\xi_{i}=S_{i} / 2^{m}, & 0<\xi<1
\end{array}
$$

Typical parameters

		$\boldsymbol{2}^{\boldsymbol{m}}$	period	\boldsymbol{g}	\boldsymbol{q}
RACER	(KAPL)	2^{47}	2^{45}	$84,000,335,758,957$	0
RCP	(BAPL)	2^{48}	2^{48}	$2^{9}+1$	$59,482,192,516,946$
MORSE	(ORNL)	2^{47}	2^{45}	5^{15}	0
MCNP	(LANL)	2^{48}	2^{46}	5^{19}	0
VIM	(ANL)	2^{48}	2^{46}	5^{19}	0
RANF	(CRAY)	2^{48}	2^{46}	$44,485,709,377,909$	0
- (G. Marsaglia)	2^{32}	2^{32}	69069	1	
MCNP5	(LANL)	$\mathbf{2}^{63}$	$\mathbf{2 0}^{63}$	(varies)	$\mathbf{1}$

Aside ...

For the multiplicative congruential method,
why is the period limited to a maximum of $2^{\mathrm{N}-2}$??

$$
s_{k+1} \leftarrow g \cdot s_{k} \bmod p, \quad s_{0} \text { odd, } \mathbf{g} \bmod 8=3 \text { or } 5
$$

- All s_{k} 's are odd, g is odd
$\Rightarrow \mathrm{g} \cdot \mathrm{s}_{\mathrm{k}}$ will always be odd, reduces period by a factor of two.
- For $g \bmod 8=3$, trailing bits of g are (...011)
or

$$
\begin{aligned}
& g \cdot s_{k}=(\ldots 011) \cdot(\ldots . .11)=(\ldots 11) \\
& g \cdot s_{k}=(\ldots 011) \cdot(\ldots .01)=(\ldots 01)
\end{aligned}
$$

\Rightarrow next-to-last bit of s_{k} will not change, reduces period by a factor of two.

- For $g \bmod 8=5$, trailing bits of g are (...101)
or
$g \cdot s_{k}=(\ldots 101) \cdot(\ldots 1 \times 1)=(\ldots 1 \times 1)$
$g \cdot s_{k}=(\ldots 101) \cdot(\ldots 0 \times 1)=(\ldots 0 \times 1)$
\Rightarrow third-to-last bit of $\mathrm{s}_{\mathbf{k}}$ will not change, reduces period by a factor of two.

RNG Example (old)

Example -- CYBER-205 RANF

$\mathbf{s}_{\mathbf{k + 1}} \leftarrow\left[\mathbf{g} \cdot \mathbf{s}_{\mathbf{k}}+\mathbf{c}\right] \bmod p$			
FORTRAN		META	
common/q8ranfc/ seed	LOD	s_descr, s	*load the seed
$\mathrm{r}=\mathrm{ranf}()$	EX	g, 84000335758957	*generator
	EX	e, 65489	*exponent, 2**-47
	MPYL	$\mathrm{g}, \mathrm{s}, \mathrm{s}$	*mult, keep last 47 bits
	STO	s_descr, s	*store new seed
	PACK	e, s, r	*insert exponent
	ADDN	r, , r	*normalized result

Note: (1) $0<r<1$
(2) scalar timing $\sim 320 \mathrm{~ns} / \mathrm{prn}$
(3) to vectorize - "unroll" or "replicate", vector timing ~30 ns / m

How long will the PRNs last ?
time to generate ALL $\mathbf{2}^{\mathbf{4 5}} \mathbf{R N s}$

Sharp EL-515s	
CYBER-205,	scalar
CRAY-1,	vector
CYBER-205,	2-pipe vector
CYBER-20,	4-pipe vector
CRAY-XMP/48,	vector $\times 4$
CRAY-2,	vector $\times 4$
ETA-10,	vector $\times 8$
cray-c90,	vector $\times 16$

1 M yr
4 mos
15 days
12 days
6 days
3 days
30 hr
13 hr
4 hr

Module mcnp_random ! Multiplier, adder, mask (to get lower bits) integer(I8), PRIVATE, SAVE :: RN_MULT, RN_ADD, RN_MASK ! Factor for normalization to $(0,1)$ real(R8), PRIVATE, SAVE ::

RN_NORM
! Private data for a single history integer(I8), PRIVATE :: RN_SEED, RN_COUNT, RN_NPS common /RN_THREAD/ RN_SEED, RN_COUNT, RN_NPS !\$OMP THREADPRIVATE (/RN_THREAD/)

CONTAINS
function rang()
! MCNP5 random number generator
implicit none
real(R8) :: rang
RN_SEED = iand(RN_MULT*RN_SEED, RN_MASK)
RN_SEED = iand(RN_SEED+RN_ADD, RN_MASK)
rang = RN_SEED * RN_NORM
RN_COUNT = RN_COUNT + 1
return
end function rang

Program mcnp5

! Initialize RN parameters for problem
call RN_init_problem(new_seed= ProblemSeed)
.....
do $\mathrm{nps}=1$, number_of_histories
! Analyze one particle history call RN_init_particle($n p s$)
....
if(rang ()$>\mathbf{x s}) \ldots$
.....
! Terminate history
call RN_update_stats

Other PRNGs

- Middle-square method:
- Quadratic-congruential:
- Modified Middle-square:
- Additive:
- Additive (or Shift):
- Generalized Additive (or Shift):
- Quasi-random sequences
- etc., etc.,
$s_{k+1}=$ middle digits of $\mathrm{s}_{\mathrm{k}}{ }^{2}$
$s_{k+1}=\left[a \cdot s_{k}^{2}+b s_{k}+c\right] \bmod p$
$s_{k+1}=\left[s_{k} \cdot\left(s_{k}+1\right)\right] \bmod p$
$s_{k+1}=\left[s_{k}+s_{k-i}\right] \bmod p$
$s_{k}=\left[s_{k-j}+s_{k-i}\right] \bmod p$
$s_{k}=\left[a_{1} s_{k-1}+a_{2} s_{k-2} \ldots . . a_{i} s_{k-1}\right] \bmod p$

Testing PRNGs

- See Knuth, Vol. 2, pp. 38-113
- Empirical Tests:

Chi-square test Kolmogorov-Smirnov test Gap test Rap test Serial Correlation coefficients
Coupon Collector test Collision test etc.

- Theoretical Tests

Spectral test

Serial Correlation (global)

Frequency test Poker tests Maximum-of-t test

Random Number Generators - Reproducibility

Reproducibility of a Particle History

- use separate, distinct random sequence for each particle
- starting seeds for separate particles are separated by "stride"

- stride should be large enough to prevent overlap (for most histories)
- 1000 is common for reactor analysis problems
- spliting \& variance reduction not needed for in-core physics
- reduces total random number usage
- 4,297 is the "old" default for MCNP \& VIM
- 152,917 is the default for MCNP \& VIM
- prepared for lots of splitting \& variance reduction
- potential for lots of secondary particles

Parallel processing

- take "super-stride" in random sequence for particles on each processor

Eigenvalue Problems

- batches of particles, distributed among parallel processors
- seeds for each
batch stride

Random Number Generators - Skip Ahead

To skip ahead \boldsymbol{k} steps in the random sequence, [initial seed] $\rightarrow\left[\boldsymbol{k}^{\text {th }}\right.$ seed]

$$
\begin{aligned}
S_{k} & =g \cdot S_{k-1}+c \bmod 2^{m} \\
& =g \cdot\left(g \cdot S_{k-2}+c\right)+c \bmod 2^{m} \\
& \left.=g\left(\ldots \cdot g\left(g\left(g S_{0}+c\right)+c\right)+c\right) \ldots . .\right)+c \bmod 2^{m} \\
& =g^{k} \cdot S_{0}+c \cdot\left(g^{k-1}+g^{k-2}+\ldots \ldots+g+1\right) \bmod 2^{m} \\
& =g^{k} \cdot S_{0}+c \cdot\left(g^{k}-1\right) /(g-1) \bmod 2^{m}
\end{aligned}
$$

- Periodic sequence:
negative skip $\boldsymbol{k}_{\boldsymbol{n}}$ equivalent to positive skip (period $-\boldsymbol{k}_{\boldsymbol{n}}$)
- Can skip from any seed directly to any other:
initial seed $\rightarrow i^{\text {th }}$ seed for $f^{\text {th }}$ particle on $m^{\text {th }}$ processor in $n^{\text {th }}$ batch particle $i \rightarrow$ particle j batch $i \rightarrow$ batch j
- All arithmetic must be performed $\bmod 2^{m}$, without truncation or roundoff

$$
S_{k}=G(k) \cdot S_{0}+C(k) \quad \bmod 2^{m}
$$

Define $\quad G(k)=g^{k} \bmod 2^{m}$

$$
\begin{array}{ll}
\mathbf{m}=32 \text { or } 48 \text { (typical), } & \text { based on the size of a computer word } \\
-2^{m}<\mathbf{k}<+2^{m}, & \text { based on desired "stride" }
\end{array}
$$

Denote the $j^{\text {th }}$ bit of \mathbf{k} by $\mathbf{k}_{[j]}$, so that

$$
k=2^{m-1} k_{[m-1]}+2^{m-2} k_{[m-2]}+\ldots . .+2^{1} k_{[1]}+2^{0} k_{[0]}
$$

Substituting into G(k) yields

$$
\begin{aligned}
G(k) & =g^{k} \bmod 2^{m}=g^{\sum^{m-1} k_{[j]} 2^{j}} \bmod 2^{m} \\
& =\prod_{j=0}^{m-1}\left(g^{2^{j}}\right)^{k[j]} \bmod 2^{m}
\end{aligned}
$$

Efficient algorithms for evaluating $\mathrm{G}(\mathbf{k})$ can be formulated using only \mathbf{m} steps

Random Number Generators - Skip Ahead

Enumerating a few terms of $\mathbf{G}(\mathbf{k})$ makes the algorithm obvious

$$
G(k)=\left(g^{1}\right)^{[0]} \bullet\left(g^{2}\right)^{[1]} \bullet\left(g^{4}\right)^{k_{[2]}} \bullet\left(g^{8}\right)^{[3]} \cdots\left(g^{2^{m-1}}\right)^{k_{[m-1]}} \bmod 2^{m}
$$

Note that $k_{[j]}=0$ or $k_{[j]}=1$, so that each term $\left(g^{n}\right)^{[j]}$ evaluates to either 1 or g^{n}

Algorithm G:

$$
\begin{array}{ll}
\mathrm{G} \leftarrow 1, \quad \mathrm{~h} \leftarrow \mathrm{~g}, \quad \mathrm{i} \leftarrow \mathrm{k}+2^{\mathrm{m}} \bmod 2^{\mathrm{m}} \\
\text { while } \quad & \mathrm{i}>0 \\
& \text { if } \quad \mathrm{i}=\mathrm{odd}: \quad \mathrm{G} \leftarrow \mathrm{Gh} \bmod 2^{m} \\
& \mathrm{~h} \leftarrow \mathrm{~h}^{2} \bmod 2^{m} \\
& \mathrm{i} \leftarrow\lfloor\mathrm{i} / 2\rfloor
\end{array}
$$

Remarks

- Algorithm G terminates after \mathbf{m} steps, rather than \mathbf{k} steps
- Negative strides are trivial, due to periodicity: $\quad G(-s)=G\left(2^{m}-s\right)$

Define $\quad C(k)=c\left(\frac{g^{k}-1}{g-1}\right) \bmod 2^{m}$

$$
=c \cdot\left(1+g+g^{2}+g^{3}+\ldots+g^{k-1}\right) \bmod 2^{m}
$$

The series for $C(k)$ can be evaluated recursively, similar to $G(k)$, in \mathbf{m} steps:

Algorithm C:

$\mathrm{C} \leftarrow 0, \quad \mathrm{f} \leftarrow \mathrm{c}, \quad \mathrm{h} \leftarrow \mathrm{g}, \quad \mathrm{i} \leftarrow \mathrm{k}+2^{\mathrm{m}} \bmod 2^{\mathrm{m}}$
while $i>0$
if $\quad \mathrm{i}=$ odd: $\quad \mathrm{C} \leftarrow \mathrm{Ch}+\mathrm{f} \bmod 2^{m}$
$f \leftarrow f(h+1) \bmod 2^{m}$
$\mathrm{h} \leftarrow \mathrm{h}^{2} \bmod 2^{\mathrm{m}}$
$i \leftarrow\lfloor i / 2\rfloor$

- Since most of the common random number generators use $c=0$, Algorithm C is generally not required.
- Algorithm C can be included with Algorithm A, at very little extra cost

RNG \& Skip Ahead - Example
R. N. Generator for 32-bit machines
(sparc2, rs6000, indigo,)

Fortran, 48-bit generator:	$\mathrm{g}=5^{19}$,	$\mathrm{c}=0$,	$\mathrm{m}=48$	(VIM \& MCNP)
C, 32-bit generator:	$\mathrm{g}=69069$,	$\mathrm{c}=1$,	$\mathrm{m}=32$	(from Marsaglia)

C, 32-bit

random number	
skip forward,	average for $+1 \ldots 10^{5}$
skip backward,	average for $-1 \ldots-10^{5}$

Sparc2 rs6000/350

$1.0 \mu \mathrm{~s}$	$.7 \mu \mathrm{~s}$
$7.4 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$
$4.0 \mu \mathrm{~s}$	$20 \mu \mathrm{~s}$

Fortran, 48-bit

random number
skip forward, $\quad+152,917$
$3.6 \mu \mathrm{~s}$
$2.3 \mu \mathrm{~s}$
skip backward, -152,917
skip forward, average for $+1 \ldots 10^{5}$ skip backward, average for $-1 \ldots-10^{5}$
skip forward, $\quad+1,152,917$ skip forward, $\quad+1,152,917$, brute force skip backward, skip backward, -1,152,917, brute force

Random Number Generators - Skip Ahead

- Algorithms for direct skip-ahead in the random sequence are simple, fast, convenient,, for modern Monte Carlo codes
- Arbitrary positive or negative strides can be taken, without precomputing or hardwiring specific constants
- Direct skip-ahead simplifies the initialization of random numbers for each particle, especially for parallel processing
- Algorithms described are currently used in:

parallel VIM	- ANL	- Sun, rs6000, SP1,
RACER	- KAPL	-Cray, Meiko CS1 \& CS2, Sun, SGI,
KENO-Va	- CSN (Spain)	- Convex-C3440
MCNP5	-- LANL	-- all machines
		$2-22$

\square

MCNP5 RNG:

- MCNP \& related precursor codes
- 40+ years of intense use
- Many different computers \& compilers
- Modern versions are parallel: MPI + threads
- History based: Consecutive RNs used for primary particle, then for each of it's secondaries in turn, etc.
- RN generator is small fraction of total computing time ($\sim 5 \%$)
- Traditional MCNP RN Algorithm
- Linear congruential, multiplicative

$$
S_{n+1}=g S_{n} \bmod 2^{48}, \quad g=5^{19}
$$

- 48-bit integer arithmetic, carried out in 24-bit pieces
- Stride for new histories: 152,917
- Skip-ahead: crude, brute-force
- Period / stride $=460 \times 10^{6}$ histories
- Similar RN generators in RACER, RCP, MORSE, KENO, VIM
- Algorithm
- Robust, well-proven
- Long period: $\quad>10^{9}$ particles x stride $152,917=10^{14} \mathrm{RNs}$
- $>10^{9}$ parallel streams
- High-precision is not needed, low-order bits not important
- Must have fast skip-ahead procedure
- Reasonable theoretical basis, no correlation within or between histories
- Coding
- Robust !!!! Must never fail.
- Rapid initialization for each history
- Minimal amount of state information
- Fast, but portable - must be exactly reproducible on any computer/compiler

MCNP5 RNG:

- Linear congruential generator (LCG)

$$
\begin{aligned}
S_{n+1} & =g S_{n}+c \bmod 2^{m} \\
\text { Period } & =2^{m}(\text { for } c>0) \text { or } 2^{m-2}(\text { for } c=0)
\end{aligned}
$$

Traditional MCNP: $\quad m=48, c=0 \quad$ Period $=10^{14}, 48$-bit integers
MCNP5: $\quad m=63, c=1 \quad$ Period $=10^{19}, 63$-bit integers

How to pick g and c ???

- RN Sequence \& Particle Histories

1
2
3
etc.

- Stride for new history: 152,917
- RN Generation in MCNP-5
- RN module, entirely replaces all previous coding for RN generation
- Fortran-90, using INTEGER(I8) internally, where I8=selected_int_kind(18)
- All parameters, variables, \& RN generator state are PRIVATE, accessible only via "accessor" routines
- Includes "new" skip-ahead algorithm for fast initialization of histories, greatly simplifies RN generation for parallel calculations
- Portable, standard, thread-safe
- Built-in unit test, compile check, and run-time test
- Developed on PC, tested on SGI, IBM, Sun, Compaq, Mac, alpha

Extended generators: 63-bit LCGs

- Selection of multiplier, increment and modulus

- Multiplicative LCG($\mathrm{g}, 0,2^{\beta}$)

$$
\mathrm{g} \equiv \pm 3 \bmod 8, \mathrm{~S}_{0}=\text { odd } \quad \square \text { Period }: 2^{\beta-2}
$$

- Mixed LCG(g, c, 2^{β})

$$
g \equiv 1 \bmod 4, c=\text { odd } \quad \square \text { Period }: 2^{\beta}
$$

- MCNP5 - Extension of multiplier
- $5^{19}=45$-bit integer in the binary representation
- 5^{19} seems to be slightly small in 63-bit environment.
- Odd powers of 5 satisfy both conditions above.
- Try these:

$$
\left(5^{19}, 0,2^{63}\right),
$$

$$
\left(5^{23}, 0,2^{63}\right),
$$

$$
\left(5^{25}, 0,2^{63}\right),
$$

$$
\left(5^{19}, 1,2^{63}\right), \quad\left(5^{23}, 1,2^{63}\right)
$$

$$
\left(5^{25}, 1,2^{63}\right)
$$

- L'Ecuyer suggested 63-bit LCGs with good lattice structures.

Math. Comp., 68, 249-260 (1999)

- Good multipliers were chosen based on the spectral test.
- Multiplicative LCGs
- LCG(3512401965023503517, 0, 2^{63})
- LCG(2444805353187672469, 0, 2^{63})
- LCG(1987591058829310733, 0, 2^{63})
- Mixed LCGs
- LCG(9219741426499971445, 1, 2^{63})
- LCG(2806196910506780709, 1, 2^{63})
- LCG(3249286849523012805, 1, 2^{63})
- 13 different LCGs were tested:
- Traditional MCNP RNG, $\left(5^{19}, 0,2^{48}\right)$
- 6 - Extended 63-bit LCGs
- 6 - L'Ecuyer's 63-bit LCGs
- Theoretical tests :
- Analyze the RNG algorithm of based on number theory and the theory of statistics.
- Theoretical tests depend on the type of RNG. (LCG, Shift register, Lagged Fibonacci, etc.)
- For LCGs, the Spectral test is used
- Empirical tests :
- Analyze the uniformity, patterns, etc. of RNs generated by RNGs.
- Standard tests - reviewed by D. Knuth, SPRNG test routines
- DIEHARD tests - Bit level tests by G. Marsaglia, more stringent
- Physical tests - RNGs are used in a practical application. The exact solutions for the tests are known. (not performed in this work)
- LCGs have regular patterns (lattice structures) when overlapping t tuples of a random number sequence are plotted in a hypercube. (Marsaglia, 1968).
- all the t-tuples are covered with families of parallel (t - 1)-dimensional hyperplanes.
- The spectral test determines the maximum distance between adjacent parallel hyperplanes.

Illustration of the spectral test

- Example: $\mathrm{S}_{\mathrm{n}+1}=137 \mathrm{~S}_{\mathrm{n}} \mathbf{+ 1 8 7} \bmod 256$

- $\quad \mu$ value proposed by Knuth
- Represent the effectiveness of a multiplier.

Knuth's criterion

$\mu_{\mathrm{t}}(\mathrm{m}, \mathrm{g})$ for $2 \leq \mathbf{t} \leq 6$	Result
$\mu_{\mathrm{t}}(\mathrm{m}, \mathrm{g})>1$	Pass with flying colors
$0.1 \leq \mu_{\mathrm{t}}(\mathrm{m}, \mathrm{g}) \leq 1$	Pass
$\mu_{\mathrm{t}}(\mathrm{m}, \mathrm{g}) \leq 0.1$	Fail

- S value
- Normalized maximum distance
$S_{t}=\frac{d_{t}^{*}(m)}{d_{t}(m, g)} \quad \begin{aligned} & d_{t}(m, g):{ }_{\text {Maximum distance between adjacent parallel }} \quad d_{t}^{*}(m): \text { Lower bound on } d_{t}(m, g) .\end{aligned}$
- The closer to 1 the S value is, the better the RNG is.
\qquad

Spectral test for extended LCGs

- Los Alamos

Dimension(t)	2	3	4	5	6	7	8
LCG($\mathbf{5}^{19,0,263}$)							
$\mu_{\mathrm{t}}(m, g)$	1.7321	2.1068	2.7781	1.4379	0.0825	2.0043	5.9276
$\mathrm{S}_{\mathrm{t}}(m, g)$	0.6910	0.7085	0.7284	0.6266	0.3888	0.6573	0.7414
LCG($5^{\mathbf{2 3}, 0,2^{63} \text {) }}$							
$\mu_{t}(m, g)$	0.0028	1.9145	2.4655	5.4858	0.3327	0.2895	6.6286
$\mathrm{S}_{\mathrm{t}}(m, g)$	0.0280	0.6863	0.7070	0.8190	0.4906	0.4986	0.7518
LCG($\mathbf{5}^{\mathbf{2 5}, 0,2^{63} \text {) }}$							
$\mu_{\mathrm{t}}(m, g)$	0.3206	1.8083	0.0450	3.0128	0.3270	3.1053	0.4400
$\mathrm{S}_{\mathrm{t}}(m, g)$	0.2973	0.6733	0.2598	0.7265	0.4892	0.6998	0.5356
LCG($\left.5^{19}, \mathbf{1 , 2 ^ { 6 3 }}\right)$							
$\mu_{\mathrm{t}}(m, g)$	1.7321	2.9253	2.4193	0.3595	0.0206	0.5011	1.6439
$\mathrm{S}_{\mathrm{t}}(m, g)$	0.6910	0.7904	0.7036	0.4749	0.3086	0.5392	0.6316
LCG($\left.5^{23}, 1,2^{63}\right)$							
$\mu_{\mathrm{t}}(m, g)$	0.0007	2.8511	2.5256	3.1271	4.5931	1.8131	4.2919
$\mathrm{S}_{\mathrm{t}}(m, g)$	0.0140	0.7837	0.7112	0.7319	0.7598	0.6480	0.7121
LCG($5^{25}, \mathbf{1 , 2}{ }^{63}$)							
$\mu_{\mathrm{t}}(m, g)$	0.0801	3.4624	1.3077	1.0853	1.4452	0.7763	1.3524
$\mathrm{S}_{\mathrm{t}}(m, g)$	0.1486	0.8361	0.6033	0.5923	0.6266	0.5740	0.6163

Dimension(t)	2	3	4	5	6	7	8
LCG(3512401965023503517,0,263)							
$\mu_{\mathrm{t}}(m, g)$	2.9062	2.9016	3.1105	4.0325	5.3992	6.7498	7.2874
$\mathrm{S}_{\mathrm{t}}(m, g)$	0.8951	0.7883	0.7493	0.7701	0.7806	0.7818	0.7608
LCG(2444805353187672469,0,2 ${ }^{63}$)							
$\mu_{\mathrm{t}}(m, g)$	2.2588	2.4430	6.4021	2.9364	3.0414	5.4274	4.6180
$\mathrm{S}_{\mathrm{t}}(m, g)$	0.7891	0.7443	0.8974	0.7228	0.7094	0.7579	0.7186
LCG(1987591058829310733,0,263)							
$\mu_{\mathrm{t}}(m, g)$	2.4898	3.4724	1.7071	2.5687	2.1243	2.0222	4.1014
$\mathrm{S}_{\mathrm{t}}(m, g)$	0.8285	0.8369	0.6449	0.7037	0.6682	0.6582	0.7080
LCG(9219741426499971445,1,263)							
$\mu_{\mathrm{t}}(m, g)$	2.8509	2.8046	3.5726	3.8380	3.8295	6.4241	6.8114
$\mathrm{S}_{\mathrm{t}}(m, g)$	0.8865	0.7794	0.7757	0.7625	0.7371	0.7763	0.7544
LCG(2806196910506780709,1,263)							
$\mu_{\mathrm{t}}(m, g)$	1.9599	4.0204	4.4591	3.1152	3.0728	3.0111	3.7947
$\mathrm{S}_{\mathrm{t}}(m, g)$	0.7350	0.8788	0.8199	0.7314	0.7106	0.6967	0.7012
LCG(3249286849523012805,1,263)							
$\mu_{\mathrm{t}}(m, g)$	2.4594	2.4281	3.7081	2.8333	3.7633	3.0844	1.9471
$\mathrm{S}_{\mathrm{t}}(m, g)$	0.8234	0.7428	0.7829	0.7176	0.7350	0.6991	0.6451

- Results for the traditional MCNP RNG

Dimension (t)	2	3	4	5	6	7	8
$\mu_{\mathrm{t}}(m, g)$	3.0233	0.1970	1.8870	0.9483	1.8597	0.8802	1.2931
$\mathrm{~S}_{\mathrm{t}}(m, g)$	0.9129	0.3216	0.6613	0.5765	0.6535	0.5844	0.6129

- All extended 63-bit LCGs fail with Knuth's criterion.
- All L'Ecuyer's 63-bit LCGs pass with flying colors.
- Comparison of minimum S values

RNG	Minimum $\mathrm{S}_{\mathrm{t}}(m, g)$
LCG($\mathbf{5}^{19}, \mathbf{0 , \mathbf { 2 } ^ { 4 8 } \mathbf {) }}$	0.3216
LCG(3512401965023503517,0,263$)$	0.7493
LCG(2444805353187672469,0,263)	0.7094
LCG(1987591058829310733,0,263)	0.6449
LCG(9219741426499971445,1,263)	0.7371
LCG(2806196910506780709,1,2 $\left.{ }^{\mathbf{6 3}}\right)$	0.6967
LCG(3249286849523012805,1,263)	0.6451
$\mathbf{2 - 3 8}$	

- SPRNG (Scalable Parallel Random Number Generators)
- Test programs are available. http://sprng.cs.fsu.edu
- Standard test suite (Knuth)
- Equidistribution
- Serial
- Gap
- Poker
- Coupon collector's
- Permutation
- Runs-up
- Maximum-of-t
- Collision tests
- Choice of test parameters
- L'Ecuyer's test suite : Comm. ACM 31 p. 742 (1988)
- Vattulainen’s test suite : Comp. Phys. Comm. 86 p. 209 (1995)
- Mascagni's test suite : Submitted to Parallel Computing
- Check whether RNs are uniformly generated in [0, 1).
- Generate random integers in [0,d-1].
- Each integer must have the equal probability $1 / d$.
$0.10574,0.66509,0.46622,0.93925,0.26551,0.11361, \ldots$
$\left\lfloor d^{*} \xi_{i}\right\rfloor$
$0,5,3,7,2,0,2,3,1,4, \ldots$
Count frequencies of $0 \sim \mathrm{~d}-1$.

Cumulative chi-square distribution

$$
V=\sum_{s=1}^{k} \frac{\left(Y_{s}-n p_{s}\right)^{2}}{n p_{s}}
$$

- All empirical tests score a statistic.
- A goodness-of-fit test is performed on the test statistic and yield a p-value. (Chi-sqaure or Kolmogorov-Smirnov test)
- If the p-value is close to 0 or 1 , a RNG is suspected to fail.
- Significance level : 0.01(1\%)
- Repeat each test 3 times.
- All 3 p-values are suspicious, then the RNG fails.

DIEHARD test suite

- DIEHARD test
- A battery of tests proposed by G. Marsaglia.
- Test all bits of random integers, not only the most significant bits.
- More stringent than standard Knuth tests.
- Default test parameters were used in this work.
- Test programs are available. http://stat.fsu.edu/~geo/diehard.html
- Included tests:
- Birthday spacings
- Overlapping 5-permutation
- Binary rank
- Bitstream
- Overlapping-pairs-sparse-occupancy (OPSO)
- Overlapping-quadruples-sparse-occupancy (OQSO)
- DNA
- Count-the-1's test on a stream of bytes
- Count-the-1's test for specific bytes
- Parking lot
- Minimum distance
- 3-D spheres
- Squeeze
- Overlapping sums
- Runs
- Craps
- OPSO = Overlapping-Pairs-Sparse-Occupancy test
- Preparation of 32-bit integers
$0.10574,0.66509,0.46622,0.93925,0.26551,0.11361, \ldots$

454158374, 2856527213, 2002411287, 4034027575, ...
Binary representation

11011000100011110100000100110,
10101010010000110010010101101101, ...

- Letter : a designated string of consecutive 10 bits 11011000100011110100000100110, $1010101001000011001001 \underbrace{0101101101, \ldots}$.

Letter : $2^{10}=1024$ patterns (letters)

Overlapping-pairs-sparse-occupancy test (2)

- 2-letter words are formed from an alphabet of 1024 letters. 0000100110, 0101101101, 1100010111, 0000110111, ...

Decimal representation

38, 365, 791, 55, ...

2-letter word 2-letter word

- Count the number of missing words (=j).
- The number of missing words should be very closely normally distributed with mean 141,909, standard deviation 290.

Cumulative normal distribution

- OQSO = Overlapping-Quadraples-Sparse-Occupancy test
- Similar to the OPSO test.
- Letter : a designated string of consecutive 5 bits

11011000100011110100000100110,
10101010010000110010010101101101, ...
$\underbrace{0-1}$
Letter : $2^{5}=32$ letters

- 4-letter words are formed from an alphabet of 32 letters.

- The number of missing words should be very closely normally distributed with mean 141909, standard deviation 295.

DNA test

- Similar to the OPSO and OQSO tests.
- Letter : a designated string of consecutive 2 bits
11011000100011110100000100110, $10101010010000110010010101101101, \ldots$

Letter : $2^{2}=4$ letters

- 10-letter words are formed from an alphabet of 4 letters.
$10,1,11,11,11,1,10,0,11,10, \ldots$

10-letter word

- The number of missing words should be very closely normally distributed with mean 141909, standard deviation 399.
- Criterion for DIEHARD test
- If the p-value is close to 0 or 1 , a RNG is suspected to fail.
- Significance level : 0.01(1\%)
- A RNG fails the test if we get six or more p-values less than 0.01 or more than 0.99.
- Results for standard \& DIEHARD tests
- All 13 RNGs pass all standard tests with L'Ecuyer's, Vattulainen's and Mascagni's test parameters.
- Extended and L'Ecuyer's 63-bit LCGs pass all the DIEHARD tests.
- The traditional MCNP RNG fails the OPSO, OQSO and DNA tests in the DIEHARD test suite.

Tested bits	p-value	Tested bits	p-value
bits 23 to 32	0.0000	bits 11 to 20	0.7457
bits 22 to 31	0.0000	bits 10 to 19	0.0598
bits 21 to 30	0.0000	bits 9 to 18	0.1122
bits 20 to 29	0.0000	bits 8 to 17	0.4597
bits 19 to 28	0.0001	bits 7 to 16	0.0011
bits 18 to 27	0.6639	bits 6 to 15	0.6319
bits 17 to 26	0.0445	bits 5 to 14	0.7490
bits 16 to 25	0.0125	bits 4 to 13	0.2914
bits 15 to 24	0.7683	bits 3 to 12	0.1792
bits 14 to 23	0.9712	bits 2 to 11	0.3253
bits 13 to 22	0.1077	bits 1 to 10	0.7277
bits 12 to 21	0.0717		

Tested bits	p-value	Tested bits	p-value
bits 28 to 32	1.0000	bits 14 to 18	0.6487
bits 27 to 31	1.0000	bits 13 to 17	0.5575
bits 26 to 30	1.0000	bits 12 to 16	0.1634
bits 25 to 29	1.0000	bits 11 to 15	0.6600
bits 24 to 28	1.0000	bits 10 to 14	0.2096
bits 23 to 27	1.0000	bits 9 to 13	0.3759
bits 22 to 26	0.0000	bits 8 to 12	0.9191
bits 21 to 25	0.0000	bits 7 to 11	0.8554
bits 20 to 24	0.0000	bits 6 to 10	0.5535
bits 19 to 23	0.1906	bits 5 to 9	0.4955
bits 18 to 22	0.0011	bits 4 to 8	0.0868
bits 17 to 21	0.3823	bits 3 to 7	0.1943
bits 16 to 20	0.8394	bits 2 to 6	0.8554
bits 15 to 19	0.2518	bits 1 to 5	0.7421

Result of DNA test for traditional MCNP RNG

- Los Alamos

Tested bits	p-value	Tested bits	p-value	Tested bits	p-value
bits 31 to 32	1.0000	bits 20 to 21	0.4937	bits 9 to 10	0.4550
bits 30 to 31	1.0000	bits 19 to 20	0.0613	bits 8 to 9	0.4737
bits 29 to 30	1.0000	bits 18 to 19	0.2383	bits 7 to 8	0.7834
bits 28 to 29	1.0000	bits 17 to 18	0.4831	bits 6 to 7	0.4063
bits 27 to 28	1.0000	bits 16 to 17	0.0925	bits 5 to 6	0.8959
bits 26 to 27	0.1777	bits 15 to 16	0.0197	bits 4 to 5	0.3438
bits 25 to 26	0.0000	bits 14 to 15	0.7377	bits 3 to 4	0.3972
bits 24 to 25	0.0000	bits 13 to 14	0.7171	bits 2 to 3	0.8986
bits 23 to 24	0.0000	bits 12 to 13	0.0309	bits 1 to 2	0.5407
bits 22 to 23	0.0000	bits 11 to 12	0.2803		
bits 21 to 22	0.0000	bits 10 to 11	0.8440		

- Less significant (lower) bits of RNs fail the tests.
- These failures in less significant bits are caused by the shorter period than the significant bits.

Drawback of LCGs with power-of-two modulus
The ($r+1$)-th most significant bit has period length at most 2^{-r} times that of the most significant bit.

- However, these failures do not have a significant impact in the practical use.

Performance test

- Test program
integer(8) :: i
integer(8), parameter :: NumGeneratedRNs = 1000000000
!real(8) :: rang! For MCNP4
real(8) :: RN_initial RN_last
real(8) :: dummy
!call random! For MCNP4
call RN_init_problem(new_standard_gen = 1)
RN_initial = rang()
do $\mathbf{i}=2$, NumGeneratedRNs-1
dummy = rang()
end do

RN_last = rang()

- Comparison between MCNP4 and MCNP5
- Generate 1 billion RNs.

	MCNP4	MCNP5	MCNP4/MCNP5
CPU (sec) No optimization (/optimization:0)	290.0	97.1	3.0
CPU (sec) Local optimization (/optimization:1)	191.7	77.2	2.5
CPU (sec) Full optimization (/optimization:4)	188.4	78.1	2.4

Platform : Windows 2000, Intel Pentium III 1GHz
Compiler : Compaq Visual Fortran Ver.6.6

Summary

- The traditional MCNP RNG fails the OPSO, OQSO and DNA tests in the DIEHARD test suite.
- The 63-bit LCGs extended from the MCNP RNG fail the spectral test.
- L'Ecuyer's 63-bit LCGs pass all the tests and their multipliers are excellent judging from the spectral test.
- These 63-bit LCGs are implemented in the RNG package for MCNP5
- The MCNP5 RNG is ~2.5 times faster than the MCNP4 RNG.
\square

Lecture 3

Random Sampling

"Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin."

John Von Neuman, 1951

Forrest B. Brown
Diagnostics Applications Group (X-5) Los Alamos National Laboratory

Introduction

Probability ?

What are the odds of

- Being audited by the IRS this year
- Losing your luggage on a U.S. flight
- Being dealt 4 aces on an opening poker hand
- Being struck by lightning in your lifetime
- Being hit by a baseball at a major league game
- Drowning in your bathtub this year

100 to 1
176 to 1
4,164 to 1

- Winning Lotto in the Illinois lottery with 1 ticket
$12,900,000$ to 1
- Winning the grand prize in the Reader's

Digest sweepstakes
$199,500,000$ to 1

- Continuous Probability Density
$f(x)=$ probability density function (PDF)
$f(x) \geq 0$
Probability $\{a \leq x \leq b\}=\int_{a}^{b} f(x) d x$

Normalization: $\quad \int_{-\infty}^{\infty} f(x) d x=1$

- Discrete Probability Density
$\left\{f_{k}\right\}, k=1, \ldots, N, \quad$ where $f_{k}=f\left(x_{k}\right)$
$f_{k} \geq 0$
Probability $\left\{\mathrm{x}=\mathrm{x}_{\mathrm{k}}\right\}=\mathrm{f}_{\mathrm{k}}$
Normalization: $\sum_{k=1}^{N} f_{k}=1$

The key to Monte Carlo methods is the notion of random sampling.

- The problem can be stated this way:

Given a probability density, $f(x)$, produce a sequence of \hat{X} 's.
The X 's should be distributed in the same manner as $f(x)$.

- The use of random sampling distinguishes Monte Carlo from other methods
- When Monte Carlo is used to solve the integral Boltzmann transport equation:
- Random sampling models the outcome of physical events
(e.g., neutron collisions, fission process, sources,)
- Computational geometry models the arrangement of materials
- Probability Density Function (PDF)
$f(x)=$ probability density function (PDF)
$f(x) \geq 0$
Probability $\{a \leq x \leq b\}=\int_{a}^{b} f(x) d x$
Normalization: $\quad \int_{-\infty}^{\infty} f(x) d x=1$

- Cumulative Distribution Function (CDF)
$F(x)=\int_{-\infty}^{x} f\left(x^{\prime}\right) d x^{\prime}$
$0 \leq F(x) \leq 1$
$\frac{d F(x)}{d x} \geq 0$
$F(-\infty)=0, \quad F(\infty)=1$

Monte Carlo \& Random Sampling

Monte Carlo Codes

Categories of random sampling

- Random number generator \rightarrow uniform PDF on $(0,1)$
- Sampling from analytic PDFs \rightarrow normal, exponential, Maxwellian, ...
- Sampling from tabulated PDFs \rightarrow angular PDFs, spectrum, ...

For Monte Carlo codes...

- Random numbers, ξ, are produced by the RN generator on $(0,1)$
- Non-uniform random variates are produced from the ξ 's by:
- Direct inversion
- Rejection methods
- Transformations
- Composition (mixtures)
- Sums, products, ratios, ...
- Table lookup + interpolation
- Lots (!) of other tricks
- Typically < 10\% of total CPU time

- Pseudo-Random Numbers

- Not strictly "random", but good enough
- Pass statistical tests for randomness
- Reproducible sequence

- Uniform PDF on $(0,1)$
- Must be easy to compute
- Linear Congruential Method
- Algorithm

$$
\begin{aligned}
& S_{0}=\text { initial seed, odd integer },<M \\
& S_{k}=G \cdot S_{k-1}+c \bmod M, \quad k=1,2, \ldots \ldots \\
& \xi_{k}=S_{k} / M
\end{aligned}
$$

- Usage
- In algorithms, usually denote RN uniform on $(0,1)$ by ξ
- In codes, invoke basic RN generator by: r = ranf()
- Each new usage of ξ or ranf() generates a new RN

Direct Sampling

- Direct solution of $\hat{\mathrm{x}}=\mathrm{F}^{-1}(\xi)$

Solve for $\hat{x}: \quad \xi=\int_{-\infty}^{\hat{x}} f(x) d x$

- Sampling procedure
- Generate ξ
- Determine \hat{X} such that $\hat{F} \hat{X}$) $=\xi$
- Advantages

- Straightforward mathematics \& coding
- "High-level" approach

- Disadvantages

- Often involves complicated functions
- In some cases, $\mathrm{F}(\mathrm{x})$ cannot be inverted (e.g., Klein-Nishina)

Rejection Sampling

Von Neumann

"..... it seems objectionable to compute a transcendental function of a random number."

Select a bounding function, $\mathbf{g}(\mathbf{x})$, such that

- $c \cdot g(x) \geq f(x)$ for all x
- $g(x)$ is an easy-to-sample PDF

Sampling Procedure:

- sample $\hat{\mathrm{x}}$ from $\mathrm{g}(\mathbf{x}): \quad \hat{\mathbf{x}} \leftarrow \mathrm{G}^{-1}\left(\xi_{1}\right)$
- test: $\quad \xi_{2} \cdot \operatorname{cg}(\hat{\mathbf{x}}) \leq f(\hat{\mathbf{x}})$
if true \rightarrow accept $\hat{\mathrm{x}}$, done
if false \rightarrow reject $\hat{\mathbf{x}}$, try again

Advantages

- Simple computer operations

Disadvantages

- "Low-level" approach, sometimes hard to understand

Discrete PDF's

- Discrete PDF
$\left\{f_{k}\right\}$, where $f_{k}=f\left(x_{k}\right), k=1, \ldots, N$

$$
\begin{aligned}
& f_{k} \geq 0 \\
& \sum_{j=1}^{N} f_{j}=1
\end{aligned}
$$

- Discrete CDF
$\left\{F_{k}\right\}$, where $F_{k}=\sum_{j=1}^{k} f_{j}, \quad k=1, \ldots, N-1$
and

$$
\begin{aligned}
& F_{0}=0, \\
& F_{N}=1
\end{aligned}
$$

F_{1}

Sampling from Discrete PDF's - Conventional Procedure
Direct Solution of $\quad \hat{x} \leftarrow F^{-1}(\xi)$
(1) Generate ξ
(2) Determine k such that $\mathrm{F}_{\mathrm{k}-1} \leq \xi \leq \mathrm{F}_{\mathrm{k}}$
(3) Return $\hat{\mathrm{x}}=\mathrm{x}_{\mathrm{k}}$

Step (2) requires a table search

- linear table searches require $O(N)$ time - use when N small
- binary table searches require $\mathrm{O}\left(\mathrm{In}_{2} \mathrm{~N}\right)$ time - use when N large

For some discrete PDFs, F_{k} 's are not precomputed.

- linear search, with F_{k} 's computed on-the-fly as needed

Example - Sampling from Discrete Uniform PDF

Discrete Uniform PDF

$$
\begin{array}{ll}
f_{k}=1 / N, & k=1, \ldots, N \\
F_{k}=k / N, & F_{0}=0, F_{N}=1
\end{array}
$$

Sampling procedure:
Could use table search method,

- Multigroup Scattering
- Scatter from group \mathbf{g} to group \mathbf{g}^{\prime}, where $1 \leq \mathrm{g}^{\prime} \leq \mathrm{G}$

$$
f_{g^{\prime}}=\frac{\sigma_{g \rightarrow g^{\prime}}}{\sum_{k=1}^{G} \sigma_{g \rightarrow k}}
$$

- Selection of scattering nuclide for a collision
- $\mathrm{K}=$ number of nuclides in composition

$$
f_{k}=\frac{N^{(k)} \sigma_{s}^{(k)}}{\sum_{j=1}^{K} N^{(j)} \sigma_{s}^{(j)}}
$$

Sampling from Discrete PDF's - Alias Method

Any discrete PDF can be converted into "Alias sampling" form
original PDF: $\quad\left\{f_{k}\right\}, \quad k=1, \ldots, N$
where $\quad f_{k}=$ probability of selecting $x=x_{k}$
aliased PDF: $\quad\left\{\mathrm{q}_{\mathrm{k}}, \mathrm{i}_{\mathrm{k}},\right\}, \quad \mathrm{k}=1, \ldots, \mathrm{~N}$

$$
\begin{array}{ll}
\text { where } & \frac{1}{N} \cdot q_{k} \\
& =\text { prob. of selecting } \hat{\mathrm{x}}=\mathrm{x}_{\mathrm{k}} \\
\frac{1}{\mathrm{~N}} \cdot\left(1-\mathrm{q}_{\mathrm{k}}\right) & =\text { prob. of selecting } \hat{\mathrm{x}}=\mathrm{x}_{i_{k}}
\end{array}
$$

Alias sampling procedure:
Select uniformly for $\hat{k}: \quad \hat{k} \leftarrow\left\lfloor 1+N \xi_{1}\right\rfloor$

Select either \hat{k} or its "alias" $\dot{i}_{\hat{k}}$:

$$
\begin{array}{ll}
\text { if } \xi_{2}<q_{\hat{k}}, & \hat{\mathrm{x}} \leftarrow \mathrm{x}_{\hat{k}}, \\
\text { otherwise, } & \hat{\mathrm{x}} \leftarrow \mathrm{x}_{i_{k}}
\end{array}
$$

Sampling from Discrete PDF's - Alias Method (continued)

Why bother with "alias sampling" ?
\rightarrow No table search needed, requires $\mathrm{O}(1)$ time
\rightarrow Sampling time is constant \& independent of size of PDF
\rightarrow Vectorizes completely \& efficiently
\rightarrow Fastest possible way to sample discrete PDFs
\rightarrow Invented by Brown (who later found out Walker did it 3 yr earlier)
Creating the "aliased PDF" amounts to converting an N-way tree from
arbitrary branching probabilities with single outcomes
to uniform branching probabilities with dual outcomes
(See FB Brown \& RACER coding for the set up algorithm)

Random Sampling - Continuous PDFs

Example - Sampling from uniform PDF in range (a,b), Histogram with 1 bin

$$
x \leftarrow a+\xi \cdot(b-a)
$$

Example - Sampling from histogram with 2 bins

$$
\begin{aligned}
& A_{1}=\left(x_{1}-x_{0}\right) \cdot f_{1} \\
& A_{2}=\left(x_{2}-x_{1}\right) \cdot f_{2}
\end{aligned}
$$

$p_{1}=\operatorname{Prob}\left\{x_{0}<x<x_{1}\right\}=A_{1} /\left(A_{1}+A_{2}\right)$
$p_{2}=\operatorname{Prob}\left\{x_{1}<x<x_{2}\right\}=A_{2} /\left(A_{1}+A_{2}\right)$
$p_{1}+p_{2}=1$

Two-step sampling procedure:

1. Select a bin, b:

$$
\begin{array}{ll}
\text { If } \xi_{1}<\mathrm{p}_{1}, & \text { select } \mathrm{b}=\text { bin } 1 \\
\text { otherwise, } & \text { select } \mathrm{b}=\text { bin } 2
\end{array}
$$

2. Sample x within bin:

$$
\mathrm{x} \leftarrow \mathrm{x}_{\mathrm{b}-1}+\xi_{2} \cdot\left(\mathrm{x}_{\mathrm{b}}-\mathrm{x}_{\mathrm{b}-1}\right)
$$

Random Sampling - Continuous PDFs

Example - Sampling from Histogram PDF

Two-step sampling: (1) Sample from discrete PDF to select a bin
(2) Sample from uniform PDF within bin

- Discrete PDF: $\quad p_{k}=f_{k} \cdot\left(x_{k}-x_{k-1}\right), \quad k=1, \ldots, N, \quad \Sigma p_{k}=1$
- Generate ξ_{1}
- Use table search or alias method to select k
- Uniform sampling within bin k
- Generate ξ_{2}
- Then,

$$
x \leftarrow x_{k-1}+\left(x_{k}-x_{k-1}\right) \cdot \xi_{2}
$$

Examples - Sampling from Linear PDF on $(0,1)$

$$
\begin{aligned}
& f(x)=2 x, \quad 0 \leq x \leq 1 \\
& F(x)=\int_{0}^{x} f\left(x^{\prime}\right) d x^{\prime}=\int_{0}^{x} 2 x^{\prime} d x^{\prime}=x^{2}
\end{aligned}
$$

Direct Sampling:
solving $F(\hat{\mathbf{x}})=\xi$ or $\hat{\mathbf{x}} \leftarrow \mathrm{F}^{-1}(\xi)$
gives:

$$
\hat{x} \leftarrow \sqrt{\xi}
$$

Examples - Sampling from $\mathbf{x}^{\mathbf{n}}$ PDF on $(0,1)$

$$
\begin{aligned}
& f(x)=(n+1) x^{n}, \quad 0 \leq x \leq 1 \\
& F(x)=x^{n+1}
\end{aligned}
$$

Solving $F(\hat{\mathbf{x}})=\xi$ gives: $\hat{\mathbf{x}} \leftarrow \xi^{\frac{1}{n+1}}$
(Note: only for $0<x<1$, does not apply to general intervals !)

Random Sampling - Continuous PDFs
Examples - Sampling from Arbitrary Linear PDF

Examples - Sampling from Piecewise Linear PDF

Two-step sampling:
(1) Sample from discrete PDF to select a bin
(2) Sample from linear PDF within bin

- Discrete PDF:
$p_{k}=\frac{\left(f_{k}+f_{k-1}\right)}{2} \cdot\left(x_{k}-x_{k-1}\right), \quad k=1, \ldots, N$
- generate ξ
— use table search or alias method to select K
- Linear sampling within bin K:
- generate ξ
- then,
if $\xi_{1}<\frac{\mathrm{f}_{\mathrm{k}-1}}{\mathrm{f}_{\mathrm{k}}+\mathrm{f}_{\mathrm{k}-1}}, \quad \hat{\mathrm{x}} \leftarrow \mathrm{x}_{\mathrm{k}} \quad-\left(\mathrm{x}_{\mathrm{k}}-\mathrm{x}_{\mathrm{k}-1}\right) \sqrt{\xi_{2}}$
otherwise

Random Sampling - Continuous PDFs

Examples - Sampling from an Exponential PDF

$$
\begin{aligned}
& f(x)=\frac{1}{\lambda} \cdot e^{-x / \lambda}, \quad 0 \leq x \leq \infty \\
& F(x)=\int_{0}^{x} f\left(x^{\prime}\right) d x^{\prime}=1-e^{-x / \lambda}
\end{aligned}
$$

Direct sampling:
Solve for $x: \quad F(x)=\xi$
Solving $\quad \xi=1-\mathrm{e}^{-\mathrm{x} / \lambda} \quad$ gives: $\quad \mathrm{x} \leftarrow-\lambda \cdot \ln (1-\xi)$
or

$$
x \leftarrow-\lambda \cdot \ln \xi
$$

Although ($1-\xi$) $\neq \xi$,
both ξ and $(1-\xi)$ are uniformly distributed on $(0,1)$, so that we can use either in the random sampling procedure.
(l.e., the numbers are different, but the distributions are the same)

Example - 2D Isotropic

$$
f(\vec{\rho})=\frac{1}{2 \pi}, \quad \vec{\rho}=(u, v)
$$

Rejection (old vim)

SUBROUTINE AZIRN_VIM (S, C)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
$100 \mathrm{Rl}=2 . *$ RANF ()-1.
R1SQ=R1*R1
R2=RANF ()
R2SQ=R2*R2
RSQ=R1SQ+R2SQ
IF (1.-RSQ) $100,105,105$
105 S=2.*R1*R2/RSQ
$C=(R 2 S Q-R 1 S Q) / R S Q$
RETURN
END
Direct (racer, new vim)


```
subroutine azirn_new( s, c )
implicit double precision (a-h,o-z)
parameter ( twopi = 2.*3.14159265 )
phi = twopi*ranf()
\(\mathrm{c}=\cos (\mathrm{phi})\)
\(s=\sin (p h i)\)
return
end
```


Random Sampling - Direct vs. Rejection

Example - Watt Spectrum

$$
f(x)=\frac{2 e^{-a b / 4}}{\sqrt{\pi a^{3} b}} e^{-x / a} \sinh \sqrt{b x}, \quad 0<x
$$

Rejection (mcnp)

- Based on Algorithm R12 from 3rd Monte Carlo Sampler, Everett \& Cashwell
- Define $\mathrm{K}=1+\mathrm{ab} / 8, \mathrm{~L}=\mathrm{a}\left\{\mathrm{K}+\left(\mathrm{K}^{2}-1\right)_{1 / 2}\right\}, \mathrm{M}=\mathrm{L} / \mathrm{a}-1$
- Set $\quad \mathrm{x} \leftarrow-\log \xi_{1}, \quad \mathrm{y} \leftarrow-\log \xi_{2}$
- If $\quad\{y-M(x+1)\}^{2} \leq b L x, \quad$ accept: return (Lx) otherwise, reject

Direct (new vim)

- Sample from Maxwellian in C-of-M, transform to lab

$$
\mathrm{w} \leftarrow \mathrm{a}\left(-\log \xi_{1}-\log \xi_{2} \cos ^{2} \frac{\pi}{2} \xi_{3}\right)
$$

$$
\mathrm{x} \leftarrow \mathrm{w}+\frac{\mathrm{a}^{2} \mathrm{~b}}{4}+\left(2 \xi_{4}-1\right) \sqrt{\mathrm{a}^{2} \mathrm{bw}} \quad \begin{gathered}
\text { (assume isotropic emission from fission fragment } \\
\text { moving with constant velocity in } \mathrm{C}-\mathrm{of}-\mathrm{M} \text {) }
\end{gathered}
$$ moving with constant velocity in C-of-M)

- Unpublished sampling scheme, based on original Watt spectrum derivation

Example - Linear PDF

$$
f(x)=2 x, \quad 0 \leq x \leq 1
$$

Rejection

> (strictly — this is not "rejection", but has the same flavor)

$$
\text { if } \xi_{1} \geq \xi_{2}, \quad \text { then } \quad \hat{\mathbf{x}} \leftarrow \xi_{1}
$$

$$
\text { else } \quad \hat{\mathbf{x}} \leftarrow \xi_{2}
$$

or

$$
\hat{\mathrm{x}} \leftarrow \max \left(\xi_{1}, \xi_{2}\right)
$$

or

$$
\hat{\mathrm{x}} \leftarrow\left|\xi_{1}-\xi_{2}\right|
$$

Direct

$$
\begin{aligned}
& F(x)=x^{2}, \quad 0 \leq x \leq 1 \\
& \hat{x} \leftarrow \sqrt{\xi}
\end{aligned}
$$

Probability Density Function	Direct Sampling Method
Linear: $\quad \mathrm{f}(\mathrm{x})=2 \mathrm{x}, \quad 0<\mathrm{x}<1$	$\mathrm{x} \leftarrow \sqrt{5}$
Exponential: $\mathrm{f}(\mathrm{x})=\mathrm{e}^{-\mathrm{x}}, \quad 0<\mathrm{x}$	$x \leftarrow-\log \xi$
2D Isotropic: $\mathrm{f}(\vec{\rho})=\frac{1}{2 \pi}, \quad \stackrel{\rightharpoonup}{\rho}=(\mathrm{u}, \mathrm{v})$	$\begin{aligned} & \mathrm{u} \leftarrow \cos 2 \pi \xi_{1} \\ & \mathrm{v} \leftarrow \sin 2 \pi \xi_{1} \end{aligned}$
3D Isotropic: $f(\vec{\Omega})=\frac{1}{4 \pi}, \quad \stackrel{\rightharpoonup}{\Omega}=(u, v, w)$	$\begin{aligned} & \mathrm{u} \leftarrow 2 \xi_{1}-1 \\ & \mathrm{v} \leftarrow \sqrt{1-\mathrm{u}^{2}} \cos 2 \pi \xi_{2} \\ & \mathrm{w} \leftarrow \sqrt{1-\mathrm{u}^{2}} \sin 2 \pi \xi_{2} \end{aligned}$
Maxwellian: $\quad f(x)=\frac{2}{T \sqrt{\pi}} \sqrt{\frac{x}{T}} e^{-x / T}, \quad 0<x$	$x \leftarrow T\left(-\log \xi_{1}-\log \xi_{2} \cos ^{2} \frac{\pi}{2} \xi_{3}\right)$
Watt Spectrum: $\quad f(x)=\frac{2 e^{-a b / 4}}{\sqrt{\pi a^{3} b}} e^{-x / a} \sinh \sqrt{b x}, \quad 0<x$	$\begin{aligned} & \mathrm{w} \leftarrow a\left(-\log \xi_{1}-\log \xi_{2} \cos ^{2} \frac{\pi}{2} \xi_{3}\right) \\ & \mathrm{x} \leftarrow \mathrm{w}+\frac{\mathrm{a}^{2} \mathrm{~b}}{4}+\left(2 \xi_{4}-1\right) \sqrt{a^{2} b w} \end{aligned}$
Normal: $f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}$	$\mathrm{x} \leftarrow \mu+\sigma \sqrt{-2 \log \xi_{1}} \cos 2 \pi \xi_{2}$

Machine Considerations

Vector Hardware

- Since ~ 1980, direct methods have been recommended for vectorization \& high performance on cray, cyber-205, sx-3, cm-2,
\rightarrow Vector concepts apply directly to pipelined RISC cpu's
(e.g., rs6000, i860, Fujitsu μ-vp,...)

Math Libraries

- Many routines in math libraries are now table-driven, hence very fast
\rightarrow fast sin, cos, sqrt, log, \& exp functions

RISC + Compiler Technology

- Pipelining, concurrent ops, simple instructions, register-to-register ops, 64-bit hardware, better instruction scheduling,
\rightarrow fast arithmetic (even for double-precision)
\rightarrow Today, the most expensive operations are
- load/store (memory access)
- IF...GOTO... (flush/fill instruction stack)

Software Considerations

"Rules of thumb" for M.C. algorithm design have changed

- Nevertake the square root of a random number
- Avoid using stn, cos, log, exp, $\ldots .$.
- Use IF...GOTO... to avold arithmetic
- Random-numbers are cheap, arithmettc-is-expensive

Direct sampling methods have advantages

- Clear, succinct coding - easier to verify \& maintain
- Cpu time is comparable to rejection
- Direct methods vectorize efficiently

If a specific number of samples, M, is needed from a single distribution:

- Naive approach - repeat the sampling procedure M times
- Stratified sampling approach
- partition the sample space into M disjoint regions of equal probability
- produce 1 sample from each region
- Stratified sampling considerations
F (x)

- $F(x)$ must be known \& easy to partition
- The number of partitions, M , must be known in advance
- Must be relatively easy to sample within each given partition
— Stratification improves the "coverage"
- Stratified sampling reduces variance, at little or no computing cost

Random Sampling - Rejection Method

- Rejection sampling methods are useful when it is difficult or impossible to invert $F(x)$, or when $F(x)$ is no known
- Example - Selection of initial source sites in a reactor
- Select a trial site:

$$
\begin{aligned}
& x^{\prime} \leftarrow x_{1}+\left(x_{2}-x_{1}\right) \cdot \xi_{1} \\
& y^{\prime} \leftarrow y_{1}+\left(y_{2}-y_{1}\right) \cdot \xi_{2}
\end{aligned}
$$

- If (x^{\prime}, y^{\prime}) is inside a fuel pin (shaded region), then accept (x^{\prime}, y^{\prime}).

- Otherwise, reject (x^{\prime}, y^{\prime}) and repeat
- Efficiency of rejection sampling ~ (volume source region) / (total volume)

It is sometimes useful to sample from an alternate PDF

$$
f(x) d x=\left[\frac{f(x)}{g(x)}\right] g(x) d x=h(x) g(x) d x
$$

\& then "correct" the result via either weight factors or a 2nd sampling stage

Weighted Sampling

- To sample $\hat{\mathbf{x}}$ from $f(\mathrm{x})$,
- first, sample $\hat{\mathbf{x}}$ from $\mathrm{g}(\mathbf{x})$
- then, multiply the "weight" assigned to \hat{x} by $\frac{\text { right answer }}{\text { wrong answer }}=\frac{f(\hat{x})}{g(\hat{x})}$
- Note that $\mathrm{g}(\mathrm{x})$ must be >0 whenever $\mathrm{f}(\mathrm{x})>0$.
- Also, $g(x)$ must be normalized so that $\int g(x) d x=1$
- Example - survival biasing of collisions

If a collision occurs, $\quad P_{\text {survive }}=\frac{\Sigma_{S}}{\Sigma_{T}}$ is the probability of surviving. Instead of sampling the outcome, always choose survival \& multiply the "weight" by $\mathrm{P}_{\text {survive }}$

Random Sampling - Splitting \& Russian Roulette

Combined Russian Rouletting \& Splitting

- Russian Roulette - kill off some particles, but conserve total weight
- Splitting - create extra identical particles, but conserve total weight
- Definitions
wgt $=$ Particle weight
For the region containing the particle:
$\mathbf{w}_{\text {high }}=$ upper bound on weight, if wgt larger - split
$\mathbf{w}_{\text {low }}=$ lower bound on weight, if wgt lower - roulette
$\mathbf{w}_{\text {ave }}=$ weight to assign survivors, $\mathbf{w}_{\text {low }}<\mathbf{w}_{\text {ave }}<\mathbf{w}_{\text {high }}$
Then,
wgt $/ \mathbf{w}_{\text {ave }}=$ probability of surviving split/roulette
- Combined game for split/roulette:
if $\mathbf{w g t}<\mathbf{w}_{\text {low }}$ or $\mathbf{w}_{\text {high }}<\mathbf{w g t}$,
create \mathbf{n} particles of weight $\mathbf{w}_{\text {ave }}, \quad$ where $\mathbf{n} \leftarrow\left\lfloor\frac{\mathbf{w g t}}{\mathbf{w}_{\text {ave }}}+\xi\right\rfloor$

Weighted Sampling Example - Effective Free-gas Model for Scatter with Bound Hydrogen

- Given a neutron with initial energy $E_{0}, E_{0}>.625 \mathrm{eV}$
- For scattering with free hydrogen (target-at-rest), PDF for scatter to E is

$$
\mathrm{f}_{\mathrm{FREE}}\left(\mathrm{E}_{0} \rightarrow \mathrm{E}\right)=\frac{1}{\mathrm{E}_{0}}, \quad 0 \leq \mathrm{E} \leq \mathrm{E}_{0}
$$

- For scattering with bound hydrogen (free-gas), PDF for scatter to E is

$$
\begin{array}{lll}
\text { down-scatter: } & f_{B O U N D}\left(E_{0} \rightarrow E\right)=\frac{\operatorname{erf} \sqrt{E / k T}}{E_{0}-k T / 2}, & 0 \leq E \leq E_{0} \\
\text { up-scatter: } & f_{B O U N D}\left(E_{0} \rightarrow E\right)=\delta\left(E-E_{0}\right), & E>E_{0} \\
P \text { (upscatter) } & =\frac{k T}{E_{0}+k T / 2} &
\end{array}
$$

- Sampling scheme for \hat{E}, \hat{a} :

First, sample Ê, $\hat{\mu}$ using target-at-rest scattering model.
Then,
If $\xi<P$ (upscatter), \quad set $\hat{E} \leftarrow E_{0}, \quad \hat{\mu} \leftarrow 1$, then exit
Otherwise, modify weight by factor

$$
\begin{aligned}
& \frac{\mathrm{f}_{\mathrm{BOUND}(}\left(\mathrm{E}_{0} \rightarrow \hat{\mathrm{E}}\right)}{\mathfrak{f}_{\text {FREE }}\left(\mathrm{E}_{0} \rightarrow \hat{\mathrm{E}}\right)}=\frac{\mathrm{erf} \sqrt{\hat{E} / \mathrm{kT}}}{1-\mathrm{kT} /\left(2 \mathrm{E}_{0}\right)} \\
& \text { and set } \hat{\mu} \leftarrow \mathrm{\mu}_{\text {BOUND }}\left(\mathrm{E}_{0} \rightarrow \hat{\mathrm{E}}\right)
\end{aligned}
$$

Random Sampling

- Source
- Fixed sites - uniform PDF + rejection
- Fission sites - discrete PDF + stratified sampling
— Energy - piecewise-linear PDF (binary table search + linear PDF)
- Direction - isotropic 3D PDF
- Tracking
- free-flight distance - exponential PDF
- delta-tracking - rejection sampling of pseudo- \& real collisions
- Russian Roulette \& Splitting
- discrete PDF + weights
- Collisions
- Survival biasing - weights
— Select phase \& nuclide - discrete PDF (on-the-fly)
- Epithermal
- Scattering angle - equally-probable histograms (uniform discrete PDF + uniform in bin)
- Inelastic: energy - discrete PDF (aliased), then uniform within group n 2 n - weights
- modified free-gas - weights
- Thermal
- multigroup - discrete PDF for group-to-group (aliased), linear PDF for μ
- $\mathrm{S}(\alpha, \beta)$ - discrete PDF (aliased) \& uniform PDF sampling
- Direction - polar angle from uniform PDF
- Fission bank - discrete PDF + weights

Every Monte Carlo code developer who works with random sampling should own \& read these references:

- D. E. Knuth, The Art of Computer Programming, Vol. 2: Semi-numerical Algorithms, $3^{\text {rd }}$ Edition, Addison-Wesley, Reading, MA (1998).
- L. Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, NY (1986).
- J. von Neumann, "Various Techniques Used in Conjunction with Random Digits," J. Res. Nat. Bur. Stand. Appl. Math Series 3, 36-38 (1951).
- C. J. Everett and E. D. Cashwell, "A Third Monte Carlo Sampler," LA9721-MS, Los Alamos National Laboratory, Los Alamos, NM (1983).
- H. Kahn, "Applications of Monte Carlo," AECU-3259, Rand Corporation, Santa Monica, CA (1954).

Computational Geometry

Forrest B. Brown
Diagnostics Applications Group (X-5) Los Alamos National Laboratory

- Model Generation
- Focus on engineering productivity
- Describes "reality" to computer
- Interactive, batch, or CAD
- Large-scale Computation
- Focus on efficiency \& capabilities
- Data structures should be compact \& regular
- Computational model often hidden from user
- Post-Processing
- Interpretation of results
- Visualization
- Element geometry
- Elements —> assemblies
- Assemblies -> core
- Core + peripherals \rightarrow 3D model

Monte Carlo Geometry

Geometry
- Which cell is particle in?
- What will it hit next?
- How far to boundary?
- What's on other side?
- Survival?

| \quad Physics |
| :--- | :--- | :--- |
| - How far to collision? |
| - Which nuclide? |
| - New E, direction? |
| - Secondaries? |
| - Survival? |

mcnp, rcp, vim, racer, sam-ce, tart, morse, keno, tripoli, mcbend, monk, o5r, recap, andy,.....

Development of particular geometric capabilities is driven by applications:

- Shielding \& experiment analysis
- Irregular geometry
- Moderate number of regions \& compositions

- Reactor core analysis

- Regular geometry
- Very many regions \& compositions

Repeat for all cycles

Repeat for all histories in cycle
. . Repeat until collision
Repeat for each universe level
Repeat for surfaces of 3D region
Distance calculation
.
. ...
. Boundary crossing
. Neighbor search
. Roulette/split

Collision analysis

Roulette/split

1 reactor calculation requires $\sim 10^{10}$ distance calculations

Computational Geometry

- Every point in space that a particle could possibly reach must be defined in the geometry model
- 3D volumes are defined by their bounding surfaces
- Boundary representation
- Combinatorial geometry, with either surfaces or primitive bodies
- CSG - constructive solid geometry, tree structure with boolean operators
- Mesh geometry
- A cell number is assigned to each 3D volume
- For some codes, disjoint volumes must have different cell numbers
- For MCNP \& others, disjoint volumes may have the same cell number
- A material number is assigned to each cell
- Composition is assumed to be uniform \& homogeneous within cell
- Tallies are defined for particular cells or surfaces, reaction types, \& estimator types
- Locate

Given a point in space, determine what cell it is in

- Distance to surface

Given a point \& direction in a particular cell, determine the distance to the next surface of that cell

- Neighbor search

For a particle which has hit a bounding surface of a cell, determine the cell to be entered next

- Boundary conditions

For a particle which has hit a cell bounding surface declared to be periodic or reflecting, determine the new position \& direction and cell to be entered next

- Particle

Position $=(x, y, z), \quad$ Direction $=(u, v, w)$

- Cell number
(i,j,k), indices in mesh
- Locate
i : binary search to find x -interval containing x

j : binary search to find y-interval containing y
k : binary search to find z-interval containing z
- Distance
- Use signs of (u, v, w) to select surfaces, then compute 3 distances:
if $u>0, \quad d_{x}=\left(x_{i+1}-x\right) / u$, otherwise $\quad d_{x}=\left(x_{i}-x\right) / u$ \ldots similar for $\mathrm{d}_{\mathrm{y}} \& \mathrm{~d}_{\mathrm{z}}$
- Distance: $\quad d=\min \left(d_{x}, d_{y}, d_{z}\right)$
- Neighbor search
- Boundary conditions

- MCNP uses a "combinatorial geometry" based on surfaces
- Define surfaces
- Define cells using surfaces \& operators (intersection, union, complement)
- Can also group cells together into a universe, and embed that universe inside another cell
- Can also group cells together into a universe, repeat that universe in a lattice arrangement, and embed that universe inside another cell
- Assign materials to cells
- Assign other properties to cells (e.g., importance weights)
- Define tallies using cell or surface numbers
- In MCNP, surface types include:
1st order: planes

2nd order: spheres, cylinders, cones, ellipsoid, hyperboloid, paraboloid, general quadric
4th order: \quad elliptical \& circular torus (axes parallel to x, y, or z)
[see tables on next 2 slides]

- Quadratic polynomial for surface:

$$
F(x, y, z)=a x^{2}+b y^{2}+c z^{2}+d x y+e y z+f z x+g x+h y+j z+k
$$

- Surface is defined by: $\mathbf{F}(\mathbf{x}, \mathbf{y}, \mathbf{z})=\mathbf{0}$
- Surface is either infinite or closed
- Normalization convention: factor of leading 2nd order term is positive

Table 3.1: MCNP Surface Cards

Mnemonic	Type	Description	Equation	Card Entries
P	Plane	General	$A x+B y+C z-D=0$	ABCD
PX		Normal to X -axis	$x-D=0$	D
PY		Normal to Y-axis	$y-D=0$	D
PZ		Normal to Z-axis	$z-D=0$	D
SO	Sphere	Centered at Origin	$x^{2}+y^{2}+z^{2}-R^{2}=0$	R
S		General	$(x-\bar{x})^{2}+(y-\bar{y})^{2}+(z-\bar{z})^{2}-R^{2}=0$	$\bar{x} \bar{y} \bar{z} R$
SX		Centered on X-axis	$(x-\bar{x})^{2}+y^{2}+z^{2}-R^{2}=0$	$\bar{x} R$
SY		Centered on Y-axis	$x^{2}+(y-\bar{y})^{2}+z^{2}-R^{2}=0$	$\bar{y} R$
SZ		Centered on Z-axis	$y^{2}+y^{2}+(z-\bar{z})^{2}-R^{2}=0$	$\bar{z} R$
C/X	Cylinder	Parallel to X-axis	$(y-\bar{y})^{2}+(z-\bar{z})^{2}-R^{2}=0$	$\bar{y} \geq R$
C/Y		Parallel to Y-axis	$(x-\bar{x})^{2}+(z-\bar{z})^{2}-R^{2}=0$	$\bar{x} \bar{z} R$
C/Z		Parallel to Z-axis	$(x-\bar{x})^{2}+(y-\bar{y})^{2}-R^{2}=0$	$\bar{x} \bar{y} R$
CX		On X-axis	$y^{2}+z^{2}-R^{2}=0$	R
CY		On Y-axis	$x^{2}+z^{2}-R^{2}=0$	R
CZ		On Z-axis	$x^{2}+y^{2}-R^{2}=0$	R

K/X	Cone	Parallel to X -axis	$\sqrt{(y-\bar{y})^{2}+(z-\bar{z})^{2}}-t(x-\bar{x})=0$	$\bar{x} \bar{y} \bar{z} t^{2} \pm 1$
K/Y		Parallel to Y-axis	$\sqrt{(x-\bar{x})^{2}+(z-\bar{z})^{2}}-t(y-\bar{y})=0$	$\bar{x} \bar{y} \bar{z} t^{2} \pm 1$
K/Z		Parallel to Z-axis	$\sqrt{(x-\bar{x})^{2}+(y-\bar{y})^{2}}-t(z-\bar{z})=0$	$\bar{x} \bar{y} \bar{z} t^{2} \pm 1$
KX		On X-axis	$\sqrt{y^{2}+z^{2}}-t(x-\bar{x})=0$	$\bar{x} t^{2} \pm 1$
KY		On Y-axis	$\sqrt{x^{2}+z^{2}}-t(y-\bar{y})=0$	$\bar{y} t^{2} \pm 1$
KZ		On Z-axis	$\sqrt{x^{2}+y^{2}}-t(z-\bar{z})=0$	$\bar{z} t^{2} \pm 1$ ± 1 used only for 1 sheet cone
SQ	Ellipsoid Hyperboloid Paraboloid	Axis parallel to X -, Y-, or Z -axis	$\begin{gathered} A(x-\bar{x})^{2}+B(y-\bar{y})^{2}+C(z-\bar{z})^{2} \\ \quad+2 D(x-\bar{x})+2 E(y-\bar{y}) \\ \quad+2 F(z-\bar{z})+G=0 \end{gathered}$	$\begin{aligned} & \text { ABCDE } \\ & \text { FG } \bar{x} \bar{y} \bar{z} \end{aligned}$
GQ	Cylinder Cone Ellipsoid Hyperboloid Paraboloid	Axes not parallel to X-, Y-, or Z-axis	$\begin{aligned} & A x^{2}+B y^{2}+C z^{2}+D x y+E y z \\ & +F z x+G x+H y+J z+K=0 \end{aligned}$	$\begin{gathered} \text { ABCDE } \\ \text { FGHJK } \end{gathered}$
TX TY	Elliptical or circular torus. Axis is parallel to $X-, Y$-, or Z-axis	$\begin{aligned} & (x-\bar{x})^{2} / B^{2}+\left(\sqrt{(y-\bar{y})^{2}+(z-\bar{z})^{2}}-A\right)^{2} / C^{2}-1=0 \\ & (y-\bar{y})^{2} / B^{2}+\left(\sqrt{(x-\bar{x})^{2}+(z-\bar{z})^{2}}-A\right)^{2} / C^{2}-1=0 \\ & (z-\bar{z})^{2} / B^{2}+\left(\sqrt{(x-\bar{x})^{2}+(y-\bar{y})^{2}}-A\right)^{2} / C^{2}-1=0 \end{aligned}$		$\begin{aligned} & \bar{x} \bar{y} \overline{z A B C} \\ & \bar{x} \bar{y} \bar{z} \mathrm{ABC} \end{aligned}$
TZ				$\bar{x} \bar{y} \bar{z} \mathrm{ABC}$
XYZP	Surfaces defined by points See p			3-15 and 3-17

- For a given point in space, (x, y, z), and surface equation, $F\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=0$, the sense of the point with respect to the surface is defined as:

Inside the surface,	sense <0,	if	$F(x, y, z)<0$
Outside the surface,	sense >0,	if	$F(x, y, z)>0$
On the surface,	sense $=0$,	if	$F(x, y, z)=0$

[Must be careful to consider computer roundoff!]

- A surface divides space into positive \& negative sides
- MCNP convention: $\quad+1=$ positive side of surface 1
$-1=$ negative side of surface 1

- If not sure which side is + or -, pick a point \& substitute into surface function, $F(x, y, z)$ - see if result is + or -

MCNP convention: $+1-2==$ intersection of positive side of surface 1 and negative side of surface 2

- MCNP convention: colon signifies a union operator
$-1: 2==$ union of negative side of surface 1 with positive side of surface 2

- A cell is defined to be the
- Intersection of half-spaces defined by a list of signed surface numbers

Example:
$\begin{array}{lllll}\text { cell } 1 & -5 & & \\ \text { cell } 2 & +1 & -2 & +3 & -4\end{array}$

- Union of half-spaces defined by signed surface numbers

Example: cell 1 +1:-2

- The complement of another cell (i.e., volume NOT in other cell)

Example: cell 1 \#5

- A combination of the above

Example: cell 1 (+1-2):3 \#5

- Cells do not have to be convex

- Cells may involve discontiguous regions

Given point (x, y, z), determine which cell it is contained in:

```
For( cell = 1 .. n_cells ) {
    Foreach surf in cell {
            Evaluate }\mp@subsup{S}{\mathrm{ surf }}{}=\operatorname{sign{ F}\mp@subsup{\textrm{F}}{\mathrm{ surf }}{}(x,y,z)
            Does }\mp@subsup{S}{\mathrm{ surf }}{}\mathrm{ match the sense from the cell definition?
    }
If all surface-senses for ( \(x, y, z\) ) matched the cell definition, then exit \& return cell as the result
}
```


Distance Calculation

Given point (x, y, z) in cell I,
determine the distance to the cell boundary
d $<-$ infinity
Foreach surf in cell I \{
If surf is part of the external boundary of cell I \{
Evaluate $\quad d_{\text {surf }}=$ smallest positive root of $F_{\text {surf }}(x+d u, y+d v, z+d w)=0$
$d=\min \left(d, d_{\text {surf }}\right)$
\}
\}
return the value of \mathbf{d}

- When a cell boundary is reached, what's on the other side?

- Most codes build "neighbor lists" during tracking
- For each bounding surface of cell, remember list of neighbors
- Initially, neighbor lists are empty
- Check all cells having surface in common, until one is found satisfying all sense conditions for the particle position
- Save it
- Later, check neighbor lists first, only do search if necessary
- Neighbor search is expensive at first, cheap later
- Tracking speeds up as calculation progresses
- In most real-world applications, there is a need for modeling detailed geometry with many repeating units

- All production Monte Carlo codes provide capabilities for multiple levels of nested geometry
- Called "universes" in MCNP
- A collection of cells may be grouped into a "universe"
- Universe may be embedded in another cell, with the universe 'clipped' by the cell boundaries

Universe 1 - cells for detailed fuel pin

Universe 2 - lattice of cells for fuel assembly

Universe 2, with cells filled by Universe 1

Universe 3 - lattice of cells for reactor

"Real world" - final geometry

Body Geometry

- Los Alamos

- Some Monte Carlo codes use primitive bodies rather than surfaces for defining cells (e.g., MORSE, KENO, ITS, VIM)

SPH - sphere
BOX - box
RPP - box
RCC - cylinder
WED - wedge

ELL - ellipsoid
REC - right elliptic cylinder
RHP - hexagonal prism
HEX - hexagonal prism
ARB - arbitrary polyhedron
TRC - truncated cone

- Usually called "combinatorial geometry"
- Invented by MAGI in ~ 1956, used in SAM-CE \& other codes
- Space inside the body has a negative sense, outside a positive sense
- Boolean operators AND, OR, NOT may be used to combine bodies (like MCNP's intersection, union, \& complement operators)
- MCNP allows body geometry input (calls them "macrobodies"), but internally converts them to lists of surfaces
- Simple cells are those which can be constructed using only intersections, with no union operators
- Some Monte Carlo codes require that all cells be simple cells. Union operators are not allowed.
- Tracking through simple cells is fast, at the expense of more complex geometry input \& setup
- For simple cells, the logic to find the distance to boundary is simple - check the distance to each of the cell surfaces \& keep only the smallest positive distance

Consider the example at the left.

Using the union operator, the cell is described by: $\quad+1:-2$
Without the union operator, separate cells must be defined \& then assigned the same material properties:

	+1,	$-1-2$	
or	-2,	$+1+2$	
or	$+1-2$,	$+1+2$,	$-1-2$

- 3D Surface
- $F(x, y, z)=0$
- Linear: $\quad \nabla F=$ constant
- Quadratic: $\nabla F=f(x, y, z), \nabla^{2} F=$ constant
- Distance calculation
- $\mathbf{S}=$ directed distance from $\left(x_{0}, y_{0}, z_{0}\right)$ along ($\left.u, v, w\right)$ to $F(x, y, z)=0$
$=$ smallest positive root of $\quad \mathbf{F}\left(\mathbf{x}_{0}+\mathbf{s u}, \mathbf{y}_{\mathbf{0}}+\mathbf{S v}, \mathbf{z}_{0}+\mathbf{s w}\right)=\mathbf{0}$
- General form:
$A s^{2}+2 B s+C=0, \quad D=B^{2}-A C$
- 27 combinations of $A, B, C>0,=0,<0$
- Only 12 yield valid solutions:

$s=-C /(2 B)$	if		$(\mathrm{A}=0, \mathrm{C}<0, \mathrm{~B}>0)$	or	$(\mathrm{A}=0, \mathrm{C}>0, \mathrm{~B}<0)$
$s=(-B-\sqrt{ }$ D $) / A$	if		$(A>0, C>0, B<0, D>0)$		$(\mathrm{A}<0, \mathrm{C}>0, \mathrm{~B}>0, \mathrm{D}>0$)
		or	$(A<0, C>0, B<0, D>0)$		($\mathrm{A}<0, \mathrm{C}>0, \mathrm{~B}=0, \mathrm{D}>0$)
$s=(-B+\sqrt{D}) / A$	if		$(A>0, C<0, B>0, D>0)$		($\mathrm{A}>0, \mathrm{C}<0, \mathrm{~B}<0, \mathrm{D}>0$)
		or	$(A>0, C<0, B=0, D>0)$		$(A<0, C<0, B>0, D>0)$
		or	$(A>0, C=0, B<0, D>0)$		($\mathrm{A}<0, \mathrm{C}=0, \mathrm{~B}>0, \mathrm{D}>0$)
$s=\infty$					

Special Topics -Distance Calculations

- Noting that $C=F\left(x_{0}, y_{0}, z_{0}\right)=$ sense at $\left(x_{0}, y_{0}, z_{0}\right)$,
the valid solutions can be simplified using the known surface sense \S :

$s^{\prime}=-C /(2 B)$	if	$(A=0, D>0)$
$s^{\prime}=(-B-\sqrt{ } D) / A$	if	$(A \neq 0, D>0, \S>0)$
$s^{\prime}=(-B+\sqrt{ } D) / A$	if	$(A \neq 0, D>0, \S<0)$
$s^{\prime}=\infty$	otherwise	

And

$$
\begin{aligned}
s & =s^{\prime} & & \text { if } s^{\prime}>0 \\
& =\infty & & \text { otherwise }
\end{aligned}
$$

- If 2 surfaces coincide, neighbor searches become more complicated \& tracking can slow down significantly

- Most MC codes check for coincident surfaces \& eliminate one of them (replacing it by the other)
- The tolerance for coincident surfaces usually defaults to a small separation distance (e.g., 1.e-4 cm). For problems with unusual geometry (very small or very large), this may have to be changed in the code or code input.

Stochastic Geometry \& HTGR Modeling

Forrest B. Brown
X-5, Los Alamos National Laboratory
fbrown@lanl.gov

Introduction

- Much interest lately in analyzing HTGRs
- Fuel kernels with several layers of coatings
- Very high temperatures
- Contain fission products
- Safety aspects ...
- Double heterogeneity problem
- Fuel kernels randomly located within fuel elements
- Fuel elements may be "compacts" or "pebbles" (maybe random)
- Challenging computational problem
- Monte Carlo codes can faithfully model HTGRs
- Full 3D geometry
- Multiple levels of geometry, including embedded lattices
- Random geometry ?????

Example - GT-MHR Modeling

(A)

kernels

Fig. 4. Fragments of double-heterogeneous GT-MHR (HTR3): (A) fuel element (compact) cross section

 same structure is valid for particles containing burnable poison-natural $\mathrm{Er}_{2} \mathrm{O}_{3}$.

Fig. 3. Fragments of single-heterogeneous GT-MHR (HTR2): (A) an active core structure: three rings of hexagonal fuel columns; (B) magnified view of a separate fuel assembly. Fuel compacts are presented in small grey circles, burnable poison compacts in light grey. Bigger diameter holes stand for He channels, while the rest material represents the graphite matrix.

MCNP Models for HTGRs

- Existing MCNP geometry can handle:
- 3D description of core
- Fuel compacts or lattice of pebbles
- Typically, hexagonal lattice with close-packing of spherical pebbles
- Proteus experiments:
~ 5,000 fuel pebbles
~ 2,500 moderator pebbles
- Lattice of fuel kernels within compact or pebble
- Typically, cubic lattice with kernel at center of lattice element
- Proteus experiments:
~10,000 fuel kernels per pebble
$\sim 50 \mathrm{M}$ fuel kernels, total
- Could introduce random variations in locations of a few thousand cells in MCNP input, but not a few million.
- See papers by: Difilippo, Plukiene et al, Ji-Conlin-Martin-Lee, etc.
- When a neutron enters a new lattice element, a transformation is made to the neutron's position \& direction to the local coordinates of the universe embedded in that lattice element. [standard MCNP]
- Users can flag selected universes as "stochastic" [new]
- A neutron entering a lattice element containing a stochastic universe undergoes the normal transformations.
- Then, additional random translations are made:

$$
\begin{aligned}
& x \leftarrow x+\left(2 \xi_{1}-1\right) \cdot \delta_{x} \\
& y \leftarrow y+\left(2 \xi_{2}-1\right) \cdot \delta_{y} \\
& z \leftarrow \mathrm{z}+\left(2 \xi_{3}-1\right) \cdot \delta_{z}
\end{aligned}
$$

- Then, tracking proceeds normally, with the universe coordinates fixed until the neutron exits that lattice element
- Neutron on lattice edge, about to enter embedded universe

- Embedded universe, before random translation after random translation

- Track normally, until neutron exits the lattice element

- On-the-fly random translations of embedded universes in lattice
- Does not require any extra memory storage
- Very little extra computing cost only 3 random numbers for each entry into a stochastic universe
- For K-effective calculations (KCODE problems)
- If fission occurred within fuel kernel, should have source site in next cycle be at same position within fuel kernel
- Need to save $\delta_{\mathrm{x}}, \delta_{\mathrm{y}}, \delta_{\mathrm{z}}$ along with neutron coordinates in fission bank
- On source for next cycle, apply $\delta_{x}, \delta_{y}, \delta_{z}$ after neutron pulled from bank
- To preserve mass exactly, rather than on the average stochastically, must choose $\delta_{x}, \delta_{y}, \delta_{z}$ so that fuel kernels are not displaced out of a lattice element

Numerical Results - HTGR Fuel Kernels

- Infinite array of TRISO fuel kernels in graphite matrix
- Fuel kernel geometry \& composition taken from the NGNP Point Design (MacDonald et al. 2003)

TRISO Fuel Kernel Geometry and Composition

Region $\#$	Name	Outer radius (μ)	Composition	Density $(\mathrm{g} / \mathrm{cc})$
1	Uranium oxycarbide	175	UCO $_{\left(\text {UC }^{.5} \mathbf{O}^{1.5}\right)}^{10.5}$	
2	Porous carbon buffer	275	C	1.0
3	Inner pyrolytic carbon	315	C	1.9
4	Silicon carbide	350	SiC	3.2
5	Outer pyrolytic carbon	390	C	1.9

- Calculations run 4 ways:

1. Fixed lattice with centered kernels
2. Fixed lattice with random kernels [MCNP stochastic geometry]
3. Multiple lattice realizations
4. Box of randomly place kernels

- Fixed lattice with centered kernels
- $5 \times 5 \times 5$ cubical lattice
- Lattice edge chosen to preserve the specified packing fraction.
- Fuel kernels centered within the cubical cells
- Reflecting boundaries on the outer surfaces
- Essentially same as Difilipo, Plukiene et al, Ji-Conlin-Martin-Lee
- No random geometry, standard MCNP5 calculations

- Fixed lattice with random kernels [MCNP stochastic geometry]
- $5 \times 5 \times 5$ cubical lattice
- Lattice edge chosen to preserve the specified packing fraction.
- Fuel kernels randomly placed on-the-fly within the cubical cells
- Reflecting boundaries on the outer surfaces
- Uses new MCNP5 stochastic geometry

Fuel kernel displaced randomly within lattice element each time that neutron enters

- Multiple lattice realizations
- $5 \times 5 \times 5$ cubical lattice
- Lattice edge chosen to preserve the specified packing fraction.
- Fuel kernels randomly placed in job input within the cubical cells
- Reflecting boundaries on the outer surfaces
- Uses standard MCNP5
- 25 separate calculations, each with different location of kernels in the input files

1 realization, fixed lattice with kernel locations chosen randomly in problem input \& held constant during each MCNP calculation

- Box of randomly placed fuel kernels
- Single box with 125 fuel kernels
- Box size chosen to preserve the specified packing fraction.
- Fuel kernels randomly placed in job input within the box (using RSA algorithm, Random Sequential Addition)
- Reflecting boundaries on the outer surfaces
- Uses standard MCNP5
- 25 separate calculations, each with different location of kernels in the input files

2 different realizations of "truly random" cases:

4-44

MCNP5 Results for Infinite Lattices of Fuel Kernels

$\#$	Method	K-effective
1	Fixed 5x5x5 lattice with centered spheres	1.1531 ± 0.0004
2	lixed 5x5x5 lattice with randomly located spheres ("on the fly")	1.1515 ± 0.0004
3	Multiple (25) realizations of $5 \times 5 \times 5$ lattice with randomly located spheres	1.1513 ± 0.0004
4	Multiple (25) realizations of randomly packed (RSA) fuel "box"	1.1510 ± 0.0003

Conclusions

- The new stochastic geometry treatment for MCNP5 provides an accurate and effective means of modeling the particle heterogeneity in TRISOL particle fuel
- Same results as (brute-force) multiple realizations of random geometry input with standard MCNP
- Negligible difference from "truly random" multiple realizations
- The results indicate that:
- The neutronic effect of using a fixed lattice is negligible
- The effect of choosing either a centered spheres or randomly located spheres is also small, at least for the specific fuel geometry that was analyzed during this study

Future work

- Examination of finite geometries, including cylindrical fuel compacts, hexagonal fuel blocks, and full core configurations.
- We will also consider lattices other than simple cubic lattices, such as BCC, FCC, and HCP lattices.
- Armishaw, M., Smith, N., and Shuttlesworth, E., Particle Packing Considerations for Pebble Bed Fuel Systems. Proc. ICNC 2003 Conference, JAERI-Conf-2003-019, Tokai-mura, Jap an (2003).
- Brown, F.B., Sweezy, J.E., and Hayes, R., Monte Carlo Parameter Studies and Uncertainty Analyses with MCNP5. Proc. PHYSOR 2004, Chicago, Illinois (2004).
- Brown, F.B. and Martin, W .R., Stochastic Geometry in MCNP5 for the Analysis of Particle Fuel. Annals of Nuclear Energy, (2004).
- Difilippo, F.C., Monte Carlo Calculations of Pebble Bed Benchmark Configurations of the PROTEUS Facility. Nud. Sci. Eng. 143, 240-253 (2003).
- Donovan, T. and Danon, Y., Application of Monte Carlo Chord-Length Sampling Algorithms to Transport Through a Two-Dimensional Binary Statistical Mixture. Nucl. Sci. Eng. 143, 226-239 (2003).
- Donovan, T., Sutton, T., and Danon, Y., Implementation of Chord Length Sampling for Transp ort Through a Binary Stochastic Mixture. Proc. ANS Top ical Conf. in Mathematics and Comp utation, Gatlinb urg, TN (2003).
- Donovan, T. and Danon, Y., HTGR Unit Fuel Pebble k-infinity Results Using Chord Length Sampling. Trans. Am. Nucl. Soc. 89, 37-39 (2003).
- Ji, W., C onlin, J., M artin, W.R., and Lee, J.C., Reactor Physics Analysis of the VHTGR Core. Submitted for presentation at the W inter Meeting of the American Nuclear Society (2004).
- Johnson, J.R., Lebenhaft, J.R., and Driscoll, M.J., Bumup Reactivity and Isotopics of an HTGR Fuel Pebble. Trans. Am. Nucl. Soc. 85, 273-274 (2001).
- MacDonald, P.E., et al., NGNP Preliminary Point Design - Results of the Initial Neutronics and Thermal-Hydraulic Assessments During FY-03, INEEL/EXT-03-00870 Rev. 1. Idaho National Engineering and Environmental Laboratory (2003)
- Massimo, L., Physics of High-Temperature Reactors. Pergamon Press (1976).

References - HTGR Models \& Stochastic Geometry

- MICROX-2, Code System to Create Broad-Group Cross Sections with Resonance Interference and Self-Shielding from Fine-Group and Pointwise Cross Sections, PSR-374. Oak Ridge National Lab oratory (1999).
- Mori, T., Okumura, K., and Nagaya, Y., Status of JAERI's Monte Carlo Code MVP. Proc. Monte Carlo 2000 Conference, Lisb on, 625-630 (2000).
- Murata, I., Mori, T., and Nakagawa, M., Continuous Energy Monte Carlo Calculations of Randomly Distributed Spherical Fuels in High-Temperature Gas-Cooled Reactors Based on a Statistical Geometry Model. Nucl. Sci. Eng. 123, 96-109 (1996).
- Murata, I., et al., New Sampling Method in Continuous Energy Monte Carlo Calculation for Pebble Bed Reactors. J. Nucl. Sci. Tech. 34, 734-744 (1997).
- Plukiene, R. and Ridikas, D., Modelling of HTRs with Monte Carlo: from a homogeneous to an exact heterogeneous core with microp articles. Annals of Nuclear Energy 30, 1573-1585 (2003).
- Torquato, S., Random Heterogeneous Materials: Microstructure and Macroscopic Properties, Springer-Verlag (2002).
- Widom, S., Random Sequential Addition of Hard Spheres to a Volume. J. Chem. Phy. 44, 3888-3894 (1966).
- X-5 Monte C arlo Team, MCNP - A General Monte Carlo N-Particle Transport Code, Version 5, Volume I: Overview and Theory, LA-UR-03-1987. Los Alamos National Lab oratory (2003).

Lecture 5

Collision Physics

Forrest B. Brown
Diagnostics Applications Group (X-5) Los Alamos National Laboratory

Monte Carlo Calculations

Geometry
 - Which cell is particle in?
 - What will it hit next?
 - How far to boundary?
 - What's on other side?
 - Survival?

| \quad Physics |
| :--- | :--- | :--- |
| - How far to collision? |
| - Which nuclide? |
| - New E, direction? |
| - Secondaries? |
| - Survival? |

mcnp, rcp, vim, racer, sam-ce, tart, morse, keno, tripoli, mcbend, monk, o5r, recap, andy,.....

- Geometry routines determine the cell \& material in that cell
- Collision routines model the physical interactions with the material
- Random sampling from PDFs determined by cross-section data
- Continuous: flight distance, exit E \& direction,
- Discrete: select nuclide, select interaction type, secondaries,

Free-flight distance to next collision, s

Collision isotope, Reaction type, Exit E' \& ($u^{\prime}, \mathbf{v}^{\prime}, w^{\prime}$), Secondary particles

- After a particle emerges from source or collision, or if the particle is on a cell bounding surface:
- Randomly sample the free-flight distance to the next interaction
- If the distance-to-interaction is less than the distance to cell boundary, then move the particle to the interaction point
- Collision physics at the interaction point:
- Determine which isotope the interaction is with
- Determine which interaction type for that isotope
- Determine the energy \& direction of the exiting particle
- Determine if secondary particles were produced
- Biasing + weight adjustments
- Tallies of quantities of interest
- Given a particle at $\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right)$ with direction (u, v, w) in cell I containing material M, sample the free-flight distance to the next interaction
- $\Sigma_{T}=$ total macroscopic cross-section in material M
$=\operatorname{sum}\left\{\mathrm{Ni}_{\sigma^{j}}\right\}$, where $\mathrm{j}=$ isotopes in material M
$=$ probability of any interaction per unit distance, units cm^{-1}
- PDF for flight distance s, where $0 \leq s \leq \infty$,
$f(s)=\{$ prob interaction p.u.d\} $\bullet\{$ prob travelling dist s w/o interact $\}$

$$
=\Sigma_{\mathrm{T}} \exp \left(-\Sigma_{\mathrm{T}} \mathrm{~s}\right)
$$

- Sampling procedure

$$
F(s)=1-\exp \left(-\Sigma_{T} s\right) \quad \rightarrow \quad s=-\ln (1-\xi) / \Sigma_{T}
$$

Selecting the Collision Isotope

- $\Sigma_{T}=\sum_{j} \mathrm{~N}^{(\mathrm{j})} \sigma_{\mathrm{T}}^{(\mathrm{j})} \quad$ where $\mathrm{j}=$ isotopes in material M
- Probability that collision is with isotope \mathbf{j}

$$
p_{j}=\frac{N^{(j)} \sigma_{T}^{(j)}}{\sum_{k} N^{(k)} \sigma_{T}^{(k)}}
$$

- $\left\{p_{j}\right\}=$ set of discrete probabilities for selecting collision isotope
- $\left\{P_{j}\right\}=\operatorname{discrete} C D F, \quad P_{j}=\operatorname{sum}\left\{p_{i}, i=1, j\right\}, \quad P_{0}=0$
- Discrete sampling for collision isotope \mathbf{k}
table search to determine \mathbf{k} such that $\mathrm{P}_{\mathbf{k}-1} \leq \xi \leq \mathrm{P}_{\mathbf{k}}$
- For collision isotope k,

$$
\sigma_{T}=\sigma_{\text {elastic }}+\sigma_{\text {inelastic }}+\sigma_{\text {capture }}+\sigma_{\text {fission }}+\ldots \ldots
$$

- $\mathrm{p}_{\mathrm{j}}=\sigma_{\mathrm{j}} / \sigma_{\mathrm{T}}=$ probability of reaction type j for isotope k
- $\left\{p_{j}\right\}=$ set of discrete probabilities for selecting reaction type j
- $\left\{P_{j}\right\}=$ discrete CDF, $\quad P_{j}=\operatorname{sum}\left\{p_{i}, i=1, j\right\}, \quad P_{0}=0$
- Discrete sampling for reaction type \mathbf{j}
table search to determine \mathbf{j} such that $\mathrm{P}_{\mathrm{j}-1} \leq \boldsymbol{\xi} \leq \mathrm{P}_{\mathrm{j}}$
- In many applications, survival biasing is an effective variance reduction technique
- Survival biasing is also called implicit absorption, nonabsorption weighting, or (loosely) implicit capture
$-\sigma_{\mathrm{T}}=\sigma_{\text {absorption }}+\sigma_{\text {scatter }} \quad$ (absorption $=$ disappearance)
- Probability that particle survives collision $=P_{\text {surv }}=\sigma_{\text {scatter }} / \sigma_{T}$
- Probability that particle is absorbed (killed) $=1-P_{\text {surv }}$
- Disallow absorption of particle, \& then adjust particle weight to ensure a fair game
- Tally absorption of wgte(1-P $\left.\mathrm{P}_{\text {surv }}\right)$
- Multiply particle weight by $P_{\text {surv }}$
- When selecting reaction type, don't consider probability of absorption
- Given a collision isotope \mathbf{k} \& reaction type \mathbf{j}, the random sampling techniques used to determine the exit energy and direction, E^{\prime} and ($u^{\prime}, v^{\prime}, w^{\prime}$), depend on
- Conservation of energy \& momentum
- Scattering laws - either equations or tabulated data
- Examples
- Isotropic scattering in lab system
- Multigroup scattering
- Elastic scattering, target-at-rest
- Inelastic scattering, MCNP
- Other collision physics, MCNP
- Elastic scattering from infinite-mass target nucleus
- No change in energy:

$$
\mathrm{E}^{\prime}=\mathrm{E}
$$

- Sample direction from isotropic scattering PDF, $f\left(u^{\prime}, v^{\prime}, w^{\prime}\right)=1 / 4 \pi$

$$
\begin{aligned}
\phi & =2 \pi \xi_{1} \\
u^{\prime} & =2 \xi_{2}-1 \\
v^{\prime} & =\operatorname{sqrt}\left(1-u^{\prime 2}\right) \cos (\phi) \\
\mathrm{w}^{\prime} & =\operatorname{sqrt}\left(1-\mathrm{u}^{\prime 2}\right) \sin (\phi)
\end{aligned}
$$

- Multigroup approach
- Divide energy range into intervals (groups)
- Use average cross-sections for each group,
$\sigma_{\mathrm{Tg}}=$ total cross-section for group g
- Use discrete transfer matrix for group-to-group scatter, $\sigma_{\mathrm{gg}}{ }^{\prime}=$ cross-section for scatter from group g to group g^{\prime}
- Multigroup scattering
- For particle with energy E, determine initial energy group g
- Select exit energy group g' by discrete sampling from $\sigma_{g g^{\prime}}$

$$
p_{g^{\prime}}=\frac{\sigma_{g \rightarrow g^{\prime}}}{\sum_{k=1}^{G} \sigma_{g \rightarrow k}}
$$

- Sample exit energy uniformly within bound of group g'
- Direction
- For P0 scattering - use procedure for isotropic lab scatter
- For P1 scattering - sample mu from linear PDF, then select new direction (see next section on elastic scatter)

- Sample μ_{cm} from tabulated PDF data, $\mathrm{f}\left(\mu_{\mathrm{cm}}\right)$
- Use kinematics to get $\mathrm{E}^{\prime}{ }_{\text {lab }}$ \& μ_{lab}
- Sample polar angle ϕ uniformly on $(0,2 \pi)$
- Rotate particle direction using $\mu_{\mathrm{lab}} \& \phi$
- Typical representations for $f\left(\mu_{\mathrm{cm}}\right)$
- Histogram or Equiprobable Histogram PDF

- Piecewise linear PDF

Elastic Scatter - E' \& μ_{lab}

- Target-at-rest elastic scatter in lab system - kinematics

$$
\begin{aligned}
& E^{\prime}=E \cdot \frac{A^{2}+2 A \mu_{c m}+1}{(A+1)^{2}} \\
& \mu_{\mathrm{lab}}=\frac{1+A \mu_{\mathrm{cm}}}{\sqrt{A^{2}+2 A \mu_{\mathrm{cm}}+1}}
\end{aligned}
$$

Where $\quad A=$ (mass target)/(mass particle)

- Rotation from ($u, v, w)$ to $\left(u^{\prime}, v^{\prime}, w^{\prime}\right) u s i n g \mu_{\text {ab }} \& \phi$

$$
\begin{aligned}
& \mu=\mu_{\mathrm{lab}} \\
& \phi=2 \pi \xi \\
& \mathbf{u}^{\prime}=\mu \mathbf{u}+\frac{\sqrt{1-\mu^{2}}(\mathbf{u w} \cos \phi-\mathbf{v} \sin \phi)}{\sqrt{1-\mathbf{w}^{2}}} \\
& \mathbf{v}^{\prime}=\mu \mathbf{v}+\frac{\sqrt{1-\mu^{2}}(\mathbf{v w} \cos \phi+\mathbf{u} \sin \phi)}{\sqrt{1-\mathbf{w}^{2}}} \\
& \mathbf{w}^{\prime}=\mu \mathbf{w}-\sqrt{1-\mu^{2}} \sqrt{1-\mathbf{w}^{2}} \cos \phi
\end{aligned}
$$

If μ close to 1 , special coding may be used to avoid roundoff

Inelastic Scattering - MCNP

- Law 1 ENDF law 1 - Equiprobable energy bins
- Law 2 Discrete photon energies
- Law 3 ENDF law 3 - Inelastic scatter from nuclear levels
- Law 4 ENDF law 4 - Tabular distribution
- Law 5 ENDF law 5 - General evaporation spectrum
- Law 7 ENDF law 7 - Simple Maxwell fission spectrum
- Law 9 ENDF law 9 - Evaporation spectrum
- Law 11 ENDF law 11 - Energy dependent Watt spectrum
- Law 22 UK law 2 - Tabular linear functions of incident energy out
- Law 24 UK law 6 - Equiprobable energy multipliers
- Law 44 ENDF law 1, lang 2, Kalbach-87 correlated energy-angle scatter
- Law 61 ENDF law 11, lang 0,12, or 14 - correlated energy-angle scatter
- Law 66 ENDF law 6 - N-body phase space distribution
- Law 67 ENDF law 7 - correlated energy-angle scatter
- Emission from fission
- Delayed neutron emission
- $S(\alpha, \beta)$ scattering for thermal neutrons
- Free-gas scattering for neutrons
- Probability tables for the unresolved resonance energy range for neutrons
- Photoelectric effect
- Pair production
- Compton scattering (incoherent)
- Thomson scattering (coherent)
- Fluorescent emission
- Photonuclear reactions
- Electron interactions - condensed history approach
- Stopping power, straggling, angular deflections
- Bremsstrahlung
- K-shell impact ionization \& Auger transitions
- Knock-on electrons

Secondary Particle Creation

- Consider a collision which results in fission
$\mathrm{wgt} \cdot v \sigma_{\mathrm{F}} / \sigma_{\mathrm{T}}=$ expected number of fission neutrons produced per collision
- To sample the number of neutrons produced in the collision

Let
$r=w g t \cdot v \sigma_{F} / \sigma_{T}$
$n=\operatorname{int}[r]$
Then, \quad Produce n fission neutrons with probability 1 and an additional fission neutron with probability r - n

Assign a weight of r / n to each

Example: $\quad \mathrm{wg} \cdot \bullet \sigma_{\mathrm{F}} / \sigma_{\mathrm{T}}=1.75$
If $\xi<.75$, produce 2 neutrons, otherwise produce 1
or
Produce int[$1.75+\xi$] neutrons

Alternative Schemes for Flights/Collisions

- Conventional scheme
- Particle weight constant during flight
- Use Σ_{T} to determine distance-to-collision, $\quad s=-\ln \xi / \Sigma_{T}$
- Change weight only on collisions
- For pathlength absorption estimator, tally wgt•s. Σ_{A}
- Most common scheme for reactors \& shielding applications
- Continuous absorption
- Particle weight decreases continuously during flight, due to absorption

$$
w g t(s)=w g t_{0} \cdot e^{-\Sigma_{A} s}
$$

- Use Σ_{S} to determine distance-to-scattering, $\mathrm{s}=-\ln \xi / \Sigma_{\mathrm{s}}$
- For pathlength absorption estimator, tally $\mathrm{wgt}_{0} \cdot\left(1-\mathrm{e}^{-\Sigma_{A} S}\right)$
- No absorption in collision
- Typical use in astrophysics (Implicit Monte Carlo codes)

Random Sampling - Flight Distance

Sampling the free-flight distance, s

- To simulate the free-flight of particles through the problem geometry, need to randomly sample the distance to collision
- PDF for free-flight distance, s, along the current direction:

$$
f(s)=\Sigma_{\mathrm{T}}(\mathrm{~s}) \cdot \exp \left(-\int_{0}^{\mathrm{s}} \Sigma_{\mathrm{T}}(x) \mathrm{dx}\right)
$$

- If $\Sigma_{\mathrm{T}}(\mathrm{x})$ is constant within a region, the PDF simplifies to

$$
f(s)=\Sigma_{T} \cdot \exp \left(-\Sigma_{T} \cdot s\right)
$$

- Sampling procedure is then:

$$
\hat{\mathrm{s}} \leftarrow \frac{-\ln \xi}{\Sigma_{\mathrm{T}}}
$$

- For multiple regions, can stop particle at each boundary \& resample s. Why is this OK ?
- Note that prob. of traversing region is $\operatorname{Prob}\{\hat{\boldsymbol{s}} \geq \mathrm{s}\}=1-\int_{0}^{\mathrm{s}} \Sigma_{\mathrm{T}} \mathrm{e}^{-\Sigma_{\mathrm{T}} \mathrm{x}} \mathrm{dx}=\mathrm{e}^{-\Sigma_{T} \mathrm{~s}}$
- For 2 regions, note that $e^{-\Sigma x_{1}} \cdot e^{-\Sigma x_{2}}=e^{-\Sigma\left(x_{1}+x_{2}\right)}$ $=$ prob. of traversing both regions

"Regular" Tracking

- Move particles through one region at a time, until collision occurs
- Can be expensive if many regions must be traversed before collision

- "Regular" tracking procedure, when Σ_{T} constant within each region:
- Sample a flight distance, \mathbf{s}^{\prime}, using Σ_{T} for current region:

$$
s^{\prime} \leftarrow \frac{-\ln \xi}{\Sigma_{T}}
$$

- If $\mathbf{s}^{\prime}<\mathrm{d}_{\text {boundary }}$, move particle by \mathbf{s}^{\prime}, then analyze the collision
- Otherwise, move particle by $d_{\text {boundary }}$, enter next region, repeat until collision occurs

Random Sampling - Tracking

Delta Tracking

- A type of rejection method for sampling the free-flight distance
- Also called Woodcock tracking, fast tracking, or hole tracking
- Useful when Σ_{T} varies rapidly over the flight path

$f(s)=\Sigma^{*} \cdot \exp \left(-\Sigma^{*} \cdot s\right)$
- For delta tracking, a fictitious cross-section Σ^{*} is used, rather than $\Sigma_{T}(s)$
- Σ^{*} should be chosen to be $\geq \Sigma_{\mathrm{T}}(\mathrm{s})$ for all possible points along path
- Σ^{*} may be a function of energy, or region, or not
$-\Sigma^{*}=\Sigma_{\top}(s)+\Sigma_{\delta}(s)=$ constant, $\quad \Sigma_{\delta}(s) \geq 0$ for all $s>0$
where $\quad \Sigma_{\delta}(\mathbf{s})=\quad$ cross-section for "delta-scattering",
i.e., scatter with no change in energy or direction, a fictitious scattering event, or "pseudo-collision"
- For many problems of interest, Σ_{T} varies within a cell
- Charged particle transport - continuous slowing down along the flight path due to interactions with electron field in material
$-\Sigma_{T}$ increases along the flight path

Flight distance, s

- For most MC codes, a procedure called delta tracking is used in sampling the free-flight distance
- Also called Woodcock tracking, fast tracking, pseudo-collision method, hole tracking, ...
- Involves biased sampling using a larger Σ_{T}, followed by rejection sampling to assure a fair game

Special Topic - Delta Tracking

- Los Alamos

Flight distance, s

- Introduce Σ for a "delta" collision
- Let $\Sigma^{*}=\Sigma_{\mathrm{T}}(\mathbf{s})+\Sigma_{\delta}(\mathbf{s})=$ constant, where
$\Sigma_{\delta}(\mathrm{s})=$ cross-section for "delta" collision no change in $E,(u, v, w)$, or wgt
$\Sigma_{*} \geq \Sigma_{\mathrm{T}}(\mathrm{s})$
$-\Sigma_{T}(\mathrm{~s}) / \Sigma^{*}=$ probability of a "real" collision
- $\Sigma_{\delta}(\mathrm{s}) / \Sigma^{\star}=$ probability of a "delta" collision
- Basic idea: Sample flight distance using Σ^{\star}, then reject collision point if $\xi>\Sigma_{\mathrm{T}}(\mathrm{s}) / \Sigma^{\star}$
- Using Σ^{*} rather than $\Sigma_{\mathrm{T}}(\mathrm{s})$ gives an interaction probability per unit distance that is too large, hence a flight distance that is too short. Rejection scheme compensates for this.
- Sampling procedure
- Sample s' from $f(s)=\Sigma^{\star} \exp \left(-\Sigma^{*} s\right): \quad s^{\prime}=-\ln \left(1-\xi_{1}\right) / \Sigma^{\star}$
- Move the particle a distance s'
- if $\quad \xi_{2}<\Sigma_{\mathrm{T}}\left(\mathrm{s}^{\prime}\right) / \Sigma^{*}$, "real" collision: do collision physics otherwise, \quad "delta" collision: no change in $E,(u, v, w)$, wgt
- Repeat until a real collision occurs
- Delta tracking can be effective if Σ^{*} is not too different from the "average" $\Sigma_{\mathrm{T}}(\mathbf{s})$
- Delta tracking can be ineffective if $\Sigma^{*} \gg \Sigma_{\mathrm{T}}(\mathbf{s})$ for most values of s , so that sampling efficiency is low
- Delta tracking is also frequently used for tracking through reactor fuel assemblies, where the geometry is a regular lattice.

Special Topic - Delta Tracking

Proof: Delta tracking is an unbiased method for sampling the free-flight distance

Consider the probability of traversing a distance s along the flight path without undergoing a (real) collision, $\mathbf{P (s)}$
$-\Sigma^{*}=\Sigma_{\mathrm{T}}(\mathbf{s})+\Sigma_{\delta}(\mathbf{s})=\mathbf{c o n s t a n t}, \quad \Sigma^{*} \geq \Sigma_{\mathrm{T}}(\mathrm{s})$ and $\Sigma_{\delta}(\mathrm{s}) \geq 0$ for all $\mathrm{s}>0$

- For convenience, define optical thickness for real \& delta scatter:

$$
\tau(s)=\int_{0}^{s} \Sigma_{\mathbf{T}}(\mathbf{x}) \mathrm{dx} \quad \tau_{\delta}(\mathbf{s})=\int_{0}^{s} \Sigma_{\delta}(\mathbf{x}) \mathrm{dx}
$$

Note that, by definition,

$$
\Sigma^{*} \mathrm{~S}=\tau(\mathrm{s})+\tau_{\delta}(\mathrm{s}), \quad \Sigma^{*} \mathrm{~S} \geq \tau(\mathrm{s})
$$

For a particular flight, there could be exactly $0,1,2, \ldots, \infty$ delta-collisions before a real collision occurs

Let $\mathrm{P}(\mathrm{s} \ln)=\quad$ probability of traversing distance s along the flight path with exactly n delta collisions
Then,

$$
\begin{aligned}
& P(s)=\sum_{n=0}^{\infty} P(s \mid n) \\
& P(s \mid 0)=e^{-\Sigma^{*} s} \\
& P(s \mid 1)=\int_{0}^{s} P(x \mid 0) \Sigma_{\delta}(x) P(s-x \mid 0) d x=\int_{0}^{s} e^{-\Sigma^{*} x} \Sigma_{\delta}(x) e^{-\Sigma^{*}(s-x)} d x=\tau_{\delta}(s) e^{-\Sigma^{*} s} \\
& P(s \mid 2)=\int_{0}^{s} P(x \mid 1) \Sigma_{\delta}(x) P(s-x \mid 0) d x=\int_{0}^{s} \tau_{\delta}(x) e^{-\Sigma^{*} x} \Sigma_{\delta}(x) e^{-\Sigma^{*}(s-x)} d x \\
& =\int_{0}^{s} \tau_{\delta}(\mathrm{x}) \Sigma_{\delta}(\mathrm{x}) \mathrm{e}^{-\Sigma^{*} s} \mathrm{dx}=\frac{\left[\tau_{\delta}(\mathrm{x})\right]^{2}}{2} \mathrm{e}^{-\Sigma^{*} s} \\
& P(s \mid n)=\int_{0}^{s} P(x \mid n-1) \Sigma_{\delta}(x) P(s-x \mid 0) d x=\frac{\left[\tau_{\delta}(s)\right]^{n}}{n!} e^{-\Sigma^{*} s}
\end{aligned}
$$

Special Topic - Delta Tracking

Then, the total probability of traversing a distance s
without undergoing a (real) collision is

$$
P(s)=\sum_{n=0}^{\infty} P(s \mid n)=\sum_{n=0}^{\infty} \frac{\left[\tau_{\delta}(s)\right]^{n}}{n!} e^{-\Sigma^{*} s}=e^{\tau_{\delta}(s)-\Sigma^{*} s}=e^{-\tau(s)}=\exp \left(-\int_{0}^{s} \Sigma_{T}(x) d x\right)
$$

This is the correct result, identical to the normal sampling of the flight path (without delta tracking)

For many problems of interest, Σ_{τ} varies within a cell

- Charged particle transport
- Continuous slowing down along the flight path due to interactions with electron field in material
- Σ_{T} increases along the flight path

Flight distance, s

- Atmospheric transport
- Air density varies with altitude
- Depleted reactor
- Fuel \& poison distribution varies due to burnup

Conventional techniques for handling varying material properties:

- Stepwise approximation
- Subdivide geometry
- Constant material properties within each step

Flight distance, s

- Woodcock tracking
- Also called delta tracking, fast tracking, pseudo-collision method, hole tracking, ...
- Involves biased sampling the flight distance using a larger Σ_{T}, followed by rejection sampling to assure a fair game

Sampling the flight distance in varying media

- Optical depth along flight path
$-\tau(s)=\int_{x}^{x+s} \Sigma_{T}\left(x^{\prime}\right) d x^{\prime} \quad \Sigma \mathrm{T}(\mathrm{x})$ is finite, $\quad \Sigma \mathrm{T}(\mathrm{x}) \geq 0$
- Note that $\quad \frac{d \tau(s)}{d s}=\Sigma_{T}(x+s), \quad 0 \leq \frac{d \tau}{d s} \leq \infty$
- To explicitly allow for the case of no collision,
- PNC = probability of no collision
- $P_{N C}=e^{-\tau(\infty)}$
- Probability density function (pdf) for the flight distance s:

$$
f(s)=P_{N C} \cdot \delta(s=\infty)+\left(1-P_{N C}\right) \cdot \frac{1}{G} \frac{d \tau}{d s} e^{-\tau(s)}
$$

- Where $\quad G=\int_{0}^{\infty} \frac{d \tau(s)}{d s} e^{-\tau(s)} d s=1-e^{-\tau(\infty)}=1-P_{N C}$
- Random sampling of the Monte Carlo free-flight path requires solving the following equation for s, the flight path:

$$
\begin{aligned}
& \xi=\int_{0}^{\int} f(x) d x \\
& \quad \text { or } \\
& \xi=P_{N C} \cdot H(s, \infty)+\left(1-P_{N C}\right) \cdot \frac{1}{G} \cdot\left(1-e^{-\tau(s)}\right)
\end{aligned}
$$

- Common case: Σ_{T} independent of x

$$
\tau(s)=\Sigma_{T} \cdot s, \quad \frac{d \tau}{d s}=\Sigma_{T}, \quad P_{N C}=0, \quad G=1, \quad f(s)=\Sigma_{T} \cdot e^{-\Sigma_{T} \cdot s}
$$

- With solution:

$$
s=-\frac{\ln (1-\xi)}{\Sigma_{T}}
$$

Sampling the flight distance in varying media

- Los Alamos

Direct Numerical Sampling for the free-flight distance:
Step [1]

$$
\begin{array}{lll}
\text { If } \xi<\text { PNC, } & \text { Then: } & \text { No collision, set } s=\infty \text {, exit } \\
& \text { Otherwise: } & \text { Do Steps } 2 \& 3
\end{array}
$$

Step [2]
Define $\quad \hat{\tau}=\tau(s)$
Sample $\hat{\tau}$ by solving

$$
\xi=\frac{1}{G} \int_{0}^{\hat{\tau}} e^{-\tau} d \tau, \quad \text { with } 0 \leq \tau \leq \tau(\infty)
$$

That is, sample from a truncated exponential PDF:

$$
\hat{\tau}=-\frac{\ln (1-\xi \cdot G)}{\Sigma_{T}}
$$

Step [3]
Solve for s: $\quad \hat{\tau}=\tau(s)=\int_{0}^{S} \Sigma_{T}\left(x+s^{\prime}\right) d s^{\prime}$
Analytic solution if possible, otherwise use Newton iteration

- Newton iteration to numerically solve for s:

$$
\begin{aligned}
& s_{0}=\hat{\tau} / \Sigma_{T}\left(x_{0}\right) \\
& n=0
\end{aligned}
$$

Iterate:

$$
\begin{aligned}
& n=n+1 \\
& g=\tau-\tau\left(s_{n-1}\right) \\
& g^{\prime}=d g / d s=-\Sigma_{T}\left(x_{0}+s_{n-1}\right) \\
& s_{n}=s_{n-1}-g / g^{\prime} \\
& \text { Stop if } \quad\left|s_{n}-s_{n-1}\right|<\varepsilon
\end{aligned}
$$

- Notes:
- Because $\mathrm{g}^{\prime}<0, \mathrm{~g}(\mathrm{~s})$ is monotone \& there can be only one root
- For cases where $\Sigma_{\top}>0$, Newton iteration guaranteed to converge
- If $\Sigma_{\top}(x)=0$ or very small, g' may be 0 , leading to numerical difficulties
- Remedied by combining Newton iteration with bisection if g' near zero
- Typically only 1-5 iterations needed to converge s to within 10-6

Varying Material Properties

- Represent material density by high-order, orthogonal polynomial expansion within each cell
- Legendre polynomial representation for material density in cell

$$
\begin{aligned}
\rho(x) & =\sum_{n=0}^{N} \frac{2 n+1}{2} \cdot a_{n} \cdot P_{n}\left[\frac{2}{\Delta x}\left(x-x_{\min }\right)-1\right] \\
a_{n} & =\frac{2}{\Delta x} \int_{x_{\min }}^{x_{\max }} \rho(x) P_{n}\left[\frac{2}{\Delta x}\left(x-x_{\min }\right)-1\right] d x
\end{aligned}
$$

- Sample the free-flight distance to next interaction using a direct numerical sampling scheme (Brown \& Martin)

$$
\Sigma(x)=\frac{\rho(x)}{\rho_{0}} \cdot \Sigma_{0}, \quad \tau(s)=\frac{\Sigma_{0}}{\rho_{0}} \cdot \int_{x}^{x+s} \rho\left(x^{\prime}\right) \frac{d x^{\prime}}{\mu}
$$

- Use Newton iteration to solve nonlinear equation for flight path
- FB Brown, D Griesheimer, \& WR Martin, "Continuously Varying Material Properties and Tallies for Monte Carlo Calculations", PHYSOR-2004, Chicago, IL (April, 2004)
- FB Brown \& WR Martin, "Direct Sampling of Monte Carlo Flight Paths in Media with Continuously Varying Cross-sections", ANS Mathematics \& Computation Topical Meeting, Gatlinburg, TN (April, 2003).
- DP Griesheimer \& WR Martin, "Estimating the Global Scalar Flux Distribution with Orthogonal Basis Function Expansions", Trans. Am. Nucl. Soc. 89 (Nov, 2003)
- DP Griesheimer \& WR Martin, "Two Dimensional Functional Expansion Tallies for Monte Carlo Simulations," PHYSOR-2004, Chicago, IL (April, 2004)
- ER Woodcock, T Murphy, PJ Hemmings, TC Longworth, "Techniques Used in the GEM Code for Monte Carlo Neutronics Calculations in Reactors and Other Systems of Complex Geometry," Proc. Conf. Applications of Computing Methods to Reactor Problems, ANL-7050, p. 557, Argonne National Laboratory (1965).
- LL Carter, ED Cashwell, \& WM Taylor, "Monte Carlo Sampling with Continuously Varying Cross Sections Along Flight Paths", Nucl. Sci. Eng. 48, 403-411 (1972).
- J. Spanier, "Monte Carlo Methods for Flux Expansion Solutions of Transport Problems," Nucl. Sci. Eng., 133, 73 (1999).

Lecture 6

Tallies

Statistics

Forrest B. Brown
Diagnostics Applications Group (X-5) Los Alamos National Laboratory

Geometry

- Which cell is particle in?
- What will it hit next?
- How far to boundary?
-What's on other side?
- Survival?

| \quad Physics |
| :--- | :--- | :--- |
| - How far to collision? |
| - Which nuclide? |
| - New E, direction? |
| - Secondaries? |
| - Survival? |

mcnp, rcp, vim, racer, sam-ce, tart, morse, keno, tripoli, mcbend, monk, o5r, recap, andy,.....

- During a history, tally the events of interest
- Upon completing a history, accumulate total scores \& squares
- After completing all histories, compute mean scores \& standard deviations

Given a function $R(x)$, where x is a random variable with PDF $f(x)$,

- Expected value of $R(x)$ is

$$
\begin{aligned}
\mu & =\int R(x) f(x) d x \\
\sigma^{2} & =\int R^{2}(x) f(\mathbf{x}) d x-\mu^{2}
\end{aligned}
$$

- Variance of $R(x)$ is

Monte Carlo method for estimating μ

- make N random samples $\hat{\mathbf{x}}_{\mathrm{j}}$ from $f(x)$
- Then

$$
\overline{\mathrm{R}} \approx \frac{1}{\mathrm{~N}} \sum_{\mathrm{j}=1}^{\mathrm{N}} \mathrm{R}\left(\hat{\mathbf{x}}_{\mathrm{j}}\right)
$$

- Central Limit Theorem states that for large N, the PDF of $\overline{\mathbf{R}}$ approaches a Gaussian distribution
- That is, if the Monte Carlo problem is repeated, $\overline{\mathbf{R}}$ will be normally distributed

Let $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{N}}$ be a sequence of independent, identically distributed random variables each with a finite mean $E\left[x_{j}\right]=\mu$ and let

$$
\bar{x}_{\mathrm{N}}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{j}=1}^{\mathrm{N}} \mathrm{x}_{\mathrm{j}}
$$

- Weak Law of Large Numbers

For any $\varepsilon>0$

$$
\lim _{N \rightarrow \infty} \mathbf{P}\left(\left|\overline{\mathbf{x}}_{\mathrm{N}}-\boldsymbol{\mu}\right|>\varepsilon\right)=0
$$

Tells how a sequence of probabilities converges

- Strong Law of Large Numbers

$$
\mathbf{P}\left(\lim _{N \rightarrow \infty}\left|\overline{\mathbf{x}}_{\mathbf{N}}-\mu\right|>\varepsilon\right)=0
$$

Tells how the sequence of IID random variables behaves in the limit

- Central Limit Theorem
$\lim _{N \rightarrow \infty} \operatorname{Prob}\left\{\mu-a \frac{\sigma}{\sqrt{N}} \leq \bar{x} \leq \mu+b \frac{\sigma}{\sqrt{N}}\right\}=\frac{1}{\sqrt{2 \pi}} \int_{-a}^{b} e^{-t^{2}} d t$
- If $\mathrm{a}=\mathrm{b}=1, \quad \operatorname{Prob}\left\{\mu-\frac{\sigma}{\sqrt{\mathbf{N}}} \leq \overline{\mathbf{x}} \leq \mu+\frac{\boldsymbol{\sigma}}{\sqrt{\mathbf{N}}}\right\}=\mathbf{6 8 \%}$

Note: 32% of the time, $\overline{\mathbf{X}}$ should be outside range $\mu \pm \frac{\boldsymbol{\sigma}}{\sqrt{\mathbf{N}}}$

- If $a=b=2, \quad \operatorname{Prob}\left\{\mu-\frac{2 \sigma}{\sqrt{\mathbf{N}}} \leq \overline{\mathbf{x}} \leq \mu+\frac{2 \sigma}{\sqrt{\mathbf{N}}}\right\}=\mathbf{9 5 \%}$

Note: 5% of the time, $\overline{\mathbf{x}}$ should be outside range $\mu \pm \frac{2 \sigma}{\sqrt{\mathbf{N}}}$

Tallies \& Statistics

- For a given history, tally events of interest
- Example - surface crossings
- For each particle crossing surface A, accumulate the weight each time a particle crosses that surface
- A particular particle may cross the surface more than once
- Progeny of that particle (e.g., another particle created by splitting) may also cross that surface one or more times
- When the history is complete, add the score \& score ${ }^{2}$ to accumulators for the problem

$$
\begin{aligned}
& \left.\left.\mathrm{S} 1_{\text {problem }}=\mathrm{S} 1_{\text {problem }}+\left(\mathrm{S}_{\text {nistory }}\right)\right)\right)_{\text {problem }}=\mathrm{S} 2_{\text {problem }}+\left(\mathrm{S}_{\text {history }}\right)^{2}
\end{aligned}
$$

- When all N histories are complete, compute final mean score \& standard deviation

$$
\begin{aligned}
\text { mean score } & =\frac{1}{N} \cdot S 1 \\
\text { std dev of mean } & =\sqrt{\frac{1}{N-1}\left[\frac{S 2}{N}-\left(\frac{S 1}{N}\right)^{2}\right]}
\end{aligned}
$$

- Given a set of random samples, $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{N}}$,
- Mean

$$
\bar{x}=\frac{1}{N} \sum_{j=1}^{N} x_{j}
$$

- Population variance

$$
\sigma^{2}=\frac{1}{N} \sum_{j=1}^{N} x_{j}^{2}-\left(\frac{1}{N} \sum_{j=1}^{N} x_{j}\right)^{2}=\frac{1}{N} \sum_{j=1}^{N} x_{j}^{2}-\bar{x}^{2}
$$

- Variance of the mean

$$
\sigma_{\bar{x}}^{2}=\frac{\sigma^{2}}{N}
$$

- Tallies can be made for selected events \& portions of phase space:
- Range of energies, $E_{1}-E_{2}$
- Range of particle times, $t_{1}-t_{2}$
- Specified cells
- Specified surfaces
- Specified range of $n \cdot \Omega$ for surface crossings
- Specified reaction cross-sections Σ_{x}
- Secondary particle production
- Energy deposited in cell
- Conditional events, e.g., absorption in cell B due to source in cell A
- Energy of neutrons causing fission
- Scattering from energy range $E_{1}-E_{2}$ to range $E_{3}-E_{4}$
- Etc.
- Angular flux

$$
\Psi(\mathbf{r}, \mathrm{E}, \Omega)
$$

- Flux
- Scalar quantity

$$
\phi(r)=\int_{E_{1}}^{E_{2}} d E \int_{4 \pi} d \Omega \Psi(r, E, \Omega)
$$

- Total distance traveled by all particles in a cm^{3} per second
- Units: distance $/ \mathrm{cm}^{3}-\mathrm{sec}=1 / \mathrm{cm}^{2}-\mathrm{sec}$
- Current
- Number of particles crossing surface per second per unit area
- Units: $\quad 1 / \mathrm{cm}^{2}$-sec
- Partial current: in + or - direction only, J^{+}or J-
- Net current $=\mathrm{J}=\mathrm{J}^{+}-\mathrm{J}$

$$
J(r)=\int_{E_{1}}^{E_{2}} d E \int_{4 \pi} d \Omega \vec{n} \bullet \Omega \Psi(r, E, \Omega)
$$

$J^{+}(r)=\int_{E_{1}}^{E_{2}} d E \iint_{\vec{n} \bullet \Omega>0} d \Omega \vec{n} \bullet \Omega \Psi(r, E, \Omega) \quad J^{-}(r)=\int_{E_{1}}^{E_{2}} d E \underset{\vec{n} \bullet \Omega<0}{\int d \Omega} \vec{n} \bullet \Omega \Psi(r, E, \Omega)$

Reaction Rates

- For a particular reaction "x"

$$
R_{x}(r)=\int_{E_{1}}^{E_{2}} d E \int d \pi(r, E, \Omega) \Sigma_{x}(r, E)
$$

- Reactions per cm^{3} per sec
- Collision density

$$
C(r)=\int_{E_{1}}^{E_{2}} d E \int d \Omega \Psi(r, E, \Omega) \Sigma_{T}(r, E)
$$

- Energy deposition (average per collision)

$$
E_{\text {deposited }}(r)=\int_{E_{1}}^{E_{2}} d E \int_{4 \pi} d \Omega \Psi(r, E, \Omega) \Sigma_{T}(r, E) K(r, E)
$$

where $K(r, E)=$ average E deposited per collision

- Analog Monte Carlo

- Faithful simulation of particle histories
- No alteration of PDFs (I.e., no biasing or variance reduction)
- At collision, particle is killed if absorption occurs
- Particle is born with weight $=1.0$
- Weight unchanged throughout history until particle is killed
- Score 1.0 when tallying events of interest
- Weighted Monte Carlo (non-analog)
- Alter the PDFs to favor events of interest
- Particle is born with weight $=1.0$
- Weight is altered if biased PDF is used
- Typically, particle always survives collision \& weight is reduced by $\mathrm{P}_{\text {surv }}$
- Weight can also be changed by Russian roulette/splitting \& other variance reduction techniques
- Score wgt when tallying events of interest
- Current tallies
- Surface crossing estimator
- Flux tallies
- Pathlength estimator
- Collision estimator
- Surface crossing estimator
- Next event estimator (point detector)
- Reaction rate tallies
- Any of the above flux estimators times a cross-section
- Energy deposition tallies
- Any of the above flux estimators times Σ_{T} times energy deposited per collision
- For each particle crossing surface, tally the particle weight
- Divide by total starting weight \& surface area to get current

$$
\mathrm{J}=\frac{1}{\mathrm{WAA}} \sum_{\substack{\text { all } \\ \text { particles } \\ \text { crossing } \\ \text { surface }}} \mathrm{wgt}_{\mathrm{j}}
$$

$\mathrm{W}=$ total starting weight

A = surface area

- Typically, keep separate tally for outward partial current for each surface of a cell
- Can get net current by combining partial currents
- For each particle flight within a cell, tally (pathlength*weight)
- Divide by cell volume \& total starting weight to get flux estimate

$$
\phi=\frac{1}{\mathrm{~W} V} \bullet \sum_{\substack{\text { all } \\ \text { particle } \\ \text { flights } \\ \text { in cell }}} \mathrm{d}_{\mathrm{j}} \bullet \mathrm{wgt}_{\mathrm{j}}
$$

W = total starting weight
$\mathrm{V}=$ cell volume

- Since $\left(\Sigma_{\top} \phi\right)$ is collision rate, for each collision, tally $\left(\mathrm{wgt} / \Sigma_{T}\right)$ to estimate flux
- Divide by total starting weight \& cell volume

$\mathrm{wgt}_{\mathrm{j}}=$ weight of particle entering collision
W = total starting weight
$\mathrm{V}=$ cell volume

Flux Tally - Surface Crossing

- Consider particles crossing a surface
- Put a "box" of thickness a around the surface
- Pathlength estimate of flux in the box

$$
\phi=\frac{1}{\mathrm{~W} a \mathrm{aA}} \bullet \sum_{\substack{\text { all } \\ \text { particles } \\ \text { crossing } \\ \text { surface }}} \mathrm{wgt}_{\mathrm{j}} \bullet \frac{\mathbf{a}}{\left|\mu_{\mathrm{j}}\right|}
$$

- Note that a cancels out
- Take the limit as $\mathbf{a}->0$
- Surface crossing estimate of flux

$$
\phi=\frac{1}{\mathrm{WA}} \bullet \sum_{\substack{\text { all } \\ \text { particles } \\ \text { crosising } \\ \text { surface }}} \frac{\mathrm{wgt}_{\mathrm{j}}}{\left|\mu_{\mathrm{j}}\right|}
$$

where $\mu_{\mathrm{j}}=\Omega_{\mathrm{j}} \bullet \overrightarrow{\mathbf{S}}$

- Complication: wgt $/ \mu_{\mathrm{j}}$ can be very large for small μ_{j}
- Usual solution, based on theory from FH Clark, "Variance of Certain Flux Estimators Used in Monte Carlo Calculations", Nucl.Sci. Eng. 27, 235-239 (1967)
- For small $|\mu|$, that is, $-\varepsilon<\mu<\varepsilon$, (where ε is small), if it is assumed that the flux is only isotropic or linearly anisotropic, then the expected value of $1 / l \mu \mathrm{l}$ is $2 / \varepsilon$.
- Actual tally procedure:
- If $|\mu|<\varepsilon$, then replace $|\mu|$ by $\varepsilon / 2$ to score an expected flux.
- This results in a reliable variance, without affecting the flux estimate significantly.
- MCNP uses $\varepsilon=.1$. Many other codes use $\varepsilon=.01$

Flux at a Point

- Los Alamos
- Instead of estimating flux for a cell or surface, it may be useful to estimate flux at a point
- Probability of a history trajectory going through a particular point is zero
- Use a "next event estimator" to get flux at a point
- Regardless of the actual outcome of simulating a collision, estimate what would happen if the particle scattered exactly in the direction of a point detector

$$
\text { Expected } \phi \text { score }=\text { wgt }^{\prime} \bullet \frac{\mathbf{p}_{\mathbf{s c}}(\mu)}{2 \pi \mathbf{R}^{2}} \bullet \exp \left\{-\int_{0}^{\mathbf{R}} \Sigma_{\mathbf{T}}\left(\mathbf{E}^{\prime}\right) \mathbf{d s}\right\}
$$

$$
\begin{aligned}
\text { where } & \text { wgt }^{\prime}=\text { weight after collision } \\
& \mathbf{p}_{\text {sc }}(\mu)=\mathbf{s c a t t e r} \text { PDF evaluated at } \mu \\
& \mathbf{E}^{\prime}=\text { energy corresponding to } \mu
\end{aligned}
$$ point detector

- Expected score has $1 / \mathrm{R}^{2}$ singularity - collisions close to detector can result in large scores
- Point detector estimator has finite mean, but infinite variance due to 1/R² singularity
- To keep variance finite:
- For collisions within radius \Re of detector, replace the factor

$$
\frac{\exp \left\{-\int_{0}^{\mathbf{R}} \boldsymbol{\Sigma}_{\mathbf{T}}\left(\mathbf{E}^{\prime}\right) \mathbf{d s}\right\}}{\mathbf{R}^{2}}
$$

by volume average assuming uniform collisions inside sphere

$$
\frac{\int_{0}^{\Re} e^{-\Sigma_{\mathrm{T}}\left(E^{\prime}\right) \mathrm{s}} \mathrm{ds}}{\int_{0}^{\mathfrak{P}} s^{2} d s}=\frac{1-e^{\Sigma_{\mathrm{T}}\left(E^{\prime}\right) \Re}}{\frac{1}{3} R^{3} \Sigma_{\mathrm{T}}\left(\mathrm{E}^{\prime}\right)}
$$

- Typically choose \Re to be \sim half a mean free path
- Tally (flux-estimator)•(cross-section)
- Example - pathlength tallies

After each flight, tally

- Flux
wgt $\bullet \mathrm{d}_{\mathrm{j}}$
- Total absorption
wgt $\bullet \mathrm{d}_{\mathrm{j}} \bullet \boldsymbol{\Sigma}_{\mathrm{A}}$
- Nu-fission $\quad \mathbf{w g t} \bullet \mathbf{d}_{\mathbf{j}} \bullet \mathbf{V} \boldsymbol{\Sigma}_{\mathrm{F}}$
- U235 absorption
wgt $\bullet \mathrm{d}_{\mathrm{j}} \cdot \mathrm{N}^{\mathrm{U}^{235}} \sigma_{\mathrm{A}}^{\mathrm{U}^{235}}$
- Mesh Tallies
- Impose a grid over the problem \& tally flux or reaction rates in each grid cell

- Fission matrix
- Impose a grid over problem
- Tally $\mathrm{F}(\mathrm{I}->\mathrm{J})$ for source in cell I causing fission in cell J
- For N cells in grid, N^{2} tallies
- Some codes (e.g., MCNP) report the mean score \& relative error

$$
\mathrm{RE}=\frac{\sigma_{\overline{\mathrm{x}}}}{\overline{\mathbf{x}}}
$$

- Some codes report a Figure-of-Merit for selected tallies

$$
\mathrm{FOM}=\frac{1}{\mathrm{RE}^{2} \bullet \mathrm{~T}}
$$

Where $\mathrm{T}=$ computer time used

- $R E^{2} \sim 1 / N$, where N is the total number of histories
- T~N
- Therefore, FOM should be roughly constant
- Used for comparing effectiveness of different variance reduction schemes
- RE should decrease smoothly with $1 / \sqrt{ } N$ dependence as more histories are run
- Tallies are reliable only if "enough" histories traverse the portions of problem phase space being tallied
- Undersampling can lead to questionable or erroneous values of the mean score \& relative error
- Indicators of undersampling:
- Large RE, RE>. 1
- RE does not decrease smoothly as $1 / \sqrt{N}$
- A few histories have very large scores
- MCNP performs statistical checks on selected tallies to try to detect undersampling effects
- Large RE
- Variance of the variance (VOV)
- Tally fluctuation charts (distribution of scores)
- Slope of tails in tally fluctuation charts
- Etc.

Combining Independent MC Results

Given N sets of (mean,std-dev) for independent Monte Carlo calculations, $\left(x_{1}, \sigma_{1}\right), \quad\left(x_{2}, \sigma_{2}\right), \ldots$, how should the results be combined?

$$
\begin{aligned}
& w_{j}=\frac{1}{\sigma_{j}^{2}} \quad W=\sum_{j=1}^{N} \frac{1}{\sigma_{j}^{2}} \\
& \bar{x}=\sum_{j=1}^{N} \frac{w_{j}}{W} x_{j} \\
& \sigma_{\bar{x}}^{2}=\sum_{j=1}^{N} \frac{w_{j}}{W^{2}}=\frac{1}{W}
\end{aligned}
$$

- Suppose 2 estimators, x and y , are correlated, such as the path \& collision estimator for Keff

$$
\begin{array}{ll}
\bar{x}=\frac{1}{N} \sum_{j=1}^{N} x_{j} & \bar{y}=\frac{1}{N} \sum_{j=1}^{N} y_{j} \\
\sigma_{x}^{2}=\frac{1}{N} \sum_{j=1}^{N} x_{j}^{2}-\bar{x}^{2} & \sigma_{y}^{2}=\frac{1}{N} \sum_{j=1}^{N} y_{j}^{2}-\bar{y}^{2}
\end{array}
$$

Minimum variance combination of $x \& y$

$$
\begin{gathered}
\alpha=\frac{\sigma_{y}^{2}-\sigma_{\mathrm{xy}}^{2}}{\sigma_{\mathrm{x}}^{2}-2 \sigma_{\mathrm{xy}}^{2}+\sigma_{\mathrm{y}}^{2}} \\
\operatorname{mean}_{\mathrm{x}, \mathrm{y}}=\alpha \overline{\mathrm{x}}+(1-\alpha) \overline{\mathrm{y}} \\
\operatorname{std}-\operatorname{dev}_{\mathrm{x}, \mathrm{y}}=\sqrt{\frac{\alpha^{2} \sigma_{\mathrm{x}}^{2}+2 \alpha(1-\alpha) \sigma_{\mathrm{xy}}^{2}+(1-\alpha)^{2} \sigma_{\mathrm{y}}^{2}}{N-1}}
\end{gathered}
$$

- Conventional Monte Carlo codes tally integral results
- Tallies summed into bins
- Zero-th order quantities
- Stepwise approximation to results

- Higher order tallies
- Represent results by high-order, orthogonal polynomial expansion within each cell
- Make tallies for expansion coefficients
- Legendre polynomial representation for continuous tallies

$$
\begin{aligned}
\Phi(x) & =\sum_{n=0}^{N} \frac{2 n+1}{2} \cdot b_{n} \cdot P_{n}\left[\frac{2}{\Delta x}\left(x-x_{\min }\right)-1\right] \\
b_{n} & =\frac{2}{\Delta x} \int_{x_{\min }}^{x_{\max }} \Phi(x) P_{n}\left[\frac{2}{\Delta x}\left(x-x_{\min }\right)-1\right] d x
\end{aligned}
$$

Continuously Varying Tallies

- Make tallies for the Legendre coefficients at each collision or flight:

$$
b_{n}=\frac{2}{\Delta x} \int_{x_{\min }}^{x_{\max }} \Phi(x) P_{n}\left[\frac{2}{\Delta x}\left(x-x_{\min }\right)-1\right] d x
$$

- At collisions, tally $\frac{w g t}{\Sigma_{T}} \cdot P_{n}\left[\frac{2}{\Delta x}\left(x-x_{\min }\right)-1\right]$ for $\mathrm{n}=1 . . \mathrm{N}$
- At flights, tally $w g t \cdot \frac{1}{\mu} \int_{x}^{x+s} P_{n}\left[\frac{2}{\Delta x}\left(x^{\prime}-x_{\min }\right)-1\right] d x^{\prime}$ for $\mathrm{n}=1, \mathrm{~N}$
- Reconstruct $\Phi(x)$ and $\sigma_{\Phi}{ }^{2}(x)$ from tallied coefficients

Figure 2a. 9x9 Legendre expansion tally for thermal neutron flux across the fuel pin obtained in a 2 million history simulation.

Figure 2b. MCNP5 20×20 mesh tally for thermal neutron flux across the fuel pin obtained in a 2 million history simulation.

References - Continuous Materials \& Tallies

- FB Brown, D Griesheimer, \& WR Martin, "Continuously Varying Material Properties and Tallies for Monte Carlo Calculations", PHYSOR-2004, Chicago, IL (April, 2004)
- FB Brown \& WR Martin, "Direct Sampling of Monte Carlo Flight Paths in Media with Continuously Varying Cross-sections", ANS Mathematics \& Computation Topical Meeting, Gatlinburg, TN (April, 2003).
- DP Griesheimer \& WR Martin, "Estimating the Global Scalar Flux Distribution with Orthogonal Basis Function Expansions", Trans. Am. Nucl. Soc. 89 (Nov, 2003)
- DP Griesheimer \& WR Martin, "Two Dimensional Functional Expansion Tallies for Monte Carlo Simulations," PHYSOR-2004, Chicago, IL (April, 2004)
- ER Woodcock, T Murphy, PJ Hemmings, TC Longworth, "Techniques Used in the GEM Code for Monte Carlo Neutronics Calculations in Reactors and Other Systems of Complex Geometry," Proc. Conf. Applications of Computing Methods to Reactor Problems, ANL-7050, p. 557, Argonne National Laboratory (1965).
- LL Carter, ED Cashwell, \& WM Taylor, "Monte Carlo Sampling with Continuously Varying Cross Sections Along Flight Paths", Nucl. Sci. Eng. 48, 403-411 (1972).
- J. Spanier, "Monte Carlo Methods for Flux Expansion Solutions of Transport Problems," Nucl. Sci. Eng., 133, 73 (1999).
\square

Eigenvalue Calculations Part I

Forrest B. Brown
Diagnostics Applications Group (X-5) Los Alamos National Laboratory

Time-dependent Transport

- Time-dependent neutron transport with (prompt) fission source

$$
\begin{aligned}
\frac{1}{v} \frac{\partial \psi(\overrightarrow{\mathbf{r}}, \mathbf{E}, \vec{\Omega}, \mathbf{t})}{\partial \mathrm{t}}=[-\vec{\Omega} \cdot & \left.\nabla-\Sigma_{\mathbf{T}}(\overrightarrow{\mathbf{r}}, \mathbf{E})\right] \psi+\iint \psi\left(\overrightarrow{\mathbf{r}}, \mathrm{E}^{\prime}, \vec{\Omega}^{\prime}, \mathbf{t}\right) \Sigma_{\mathbf{S}}\left(\overrightarrow{\mathbf{r}}, \mathrm{E}^{\prime} \rightarrow \mathbf{E}, \vec{\Omega} \cdot \vec{\Omega}^{\prime}\right) \mathrm{d} \vec{\Omega}^{\prime} \mathbf{d E} \\
& +\frac{\chi(\mathbf{E})}{4 \pi} \iint \mathrm{v} \Sigma_{\mathbf{F}}\left(\overrightarrow{\mathbf{r}}, \mathrm{E}^{\prime}\right) \psi\left(\overrightarrow{\mathbf{r}}, \mathbf{E}^{\prime}, \vec{\Omega}^{\prime}, \mathbf{t}\right) \mathrm{d} \vec{\Omega}^{\prime} \mathbf{d E ^ { \prime }}+\mathbf{S}(\overrightarrow{\mathbf{r}}, \mathbf{E}, \vec{\Omega}, \mathbf{t})
\end{aligned}
$$

This equation can be solved directly by Monte Carlo

- Simulate time-dependent transport for a neutron history
- If fission occurs, bank any secondary neutrons. When original particle is finished, simulate secondaries till done.
- Tallies for time bins, energy bins, cells, ...

Overall time-behavior $\psi(r, E, \Omega, t)=\Psi(r, E, \Omega) e^{\alpha t}$ can be estimated by

$$
\alpha \approx \frac{\ln W_{2}-\ln W_{1}}{t_{2}-t_{1}} \quad \text { where } \quad W_{j}=\sum_{k=1}^{N_{\text {particles }}} w t_{k}\left(t_{j}\right)
$$

- For problems which are separable in space \& time, it may be advantageous to solve a static eigenvalue problem, rather than a fully time-dependent problem
- If it is assumed that $\psi(r, E, \Omega, t)=\Psi_{\alpha}(r, E, \Omega) e^{\alpha t}$, then substitution into the time-dependent transport equation yields

$$
\begin{aligned}
{\left[\vec{\Omega} \cdot \nabla+\Sigma_{T}(\vec{r}, E)+\frac{\alpha}{v}\right] \Psi_{\alpha}(\vec{r}, E, \vec{\Omega}) } & =\iint \Psi_{\alpha}\left(\vec{r}, E^{\prime}, \vec{\Omega}^{\prime}\right) \Sigma_{S}\left(\vec{r}, E^{\prime} \rightarrow E, \vec{\Omega} \cdot \vec{\Omega}^{\prime}\right) \mathrm{d} \vec{\Omega}^{\prime} d E^{\prime} \\
& +\frac{\chi(E)}{4 \pi} \iint v \Sigma_{F}\left(\vec{r}, E^{\prime}\right) \Psi_{\alpha}\left(\vec{r}, E^{\prime}, \vec{\Omega}^{\prime}\right) \mathrm{d} \vec{\Omega}^{\prime} d E^{\prime}
\end{aligned}
$$

- This is a static equation, an eigenvalue problem for α and Ψ_{α} without time-dependence
- α is often called the time-eigenvalue or time-absorption
- α-eigenvalue problems can be solved by Monte Carlo methods

$\mathrm{K}_{\text {eff }}$ Eigenvalue Equations

- Another approach to creating a static eigenvalue problem from the timedependent transport equation is to introduce $\mathrm{K}_{\text {eff }}$, a scaling factor on the multiplication (v)
- Setting $\partial \psi / \partial t=0$ and introducing the $K_{\text {eff }}$ eigenvalue gives

$$
\begin{aligned}
{\left[\vec{\Omega} \cdot \nabla+\Sigma_{\mathrm{T}}(\overrightarrow{\mathrm{r}}, \mathrm{E})\right] \Psi_{\mathrm{k}}(\overrightarrow{\mathrm{r}}, \mathrm{E}, \vec{\Omega})=\iint } & \Psi_{\mathrm{k}}\left(\overrightarrow{\mathrm{r}}, \mathrm{E}^{\prime}, \overrightarrow{\Omega^{\prime}}\right) \Sigma_{\mathrm{S}}\left(\overrightarrow{\mathrm{r}}, \mathrm{E}^{\prime} \rightarrow \mathrm{E}, \vec{\Omega} \cdot \overrightarrow{\Omega^{\prime}}\right) \mathrm{d} \vec{\Omega}^{\prime} \mathrm{dE} \\
& +\frac{1}{\mathrm{~K}_{\mathrm{eff}}} \cdot \frac{\chi(\mathrm{E})}{4 \pi} \iint \nu \Sigma_{\mathrm{F}}\left(\vec{r}, \mathrm{E}^{\prime}\right) \Psi_{\mathrm{k}}\left(\vec{r}, \mathrm{E}^{\prime}, \vec{\Omega}^{\prime}\right) \mathrm{d} \vec{\Omega}^{\prime} \mathrm{dE}
\end{aligned}
$$

- This is a static equation, an eigenvalue problem for $\mathrm{K}_{\text {eff }}$ and Ψ_{k} without time-dependence
- $\mathrm{K}_{\text {eff }}$ is called the effective multiplication factor
- $\mathrm{K}_{\text {eff }}$ and Ψ_{k} should never be used to model time-dependent problems. [Use α and Ψ_{α} instead]
- $\mathrm{K}_{\text {eff }}$-eigenvalue problems can be solved by Monte Carlo methods
- Criticality

Supercritical:	$\alpha>0$	or	$\mathrm{K}_{\text {eff }}>1$
Critical:	$\alpha=0$	or	$\mathrm{K}_{\text {eff }}=1$
Subcritical:	$\alpha<0$	or	$\mathrm{K}_{\text {eff }}<1$

- $K_{\text {eff }}$ vs. α eigenvalue equations
- $\Psi_{\mathrm{k}}(\mathrm{r}, \mathrm{E}, \Omega) \neq \Psi_{\alpha}(\mathbf{r}, \mathrm{E}, \Omega)$, except for a critical system
- α eigenvalue $\&$ eigenfunction used for time-dependent problems
- $\mathrm{K}_{\text {eff }}$ eigenvalue \& eigenfunction used for reactor design \& analysis
- Although $\alpha=\left(\mathrm{K}_{\text {eff }}-1\right) / \Lambda$, where $\Lambda=$ lifetime, there is no direct relationship between $\Psi_{\mathrm{k}}(\mathrm{r}, \mathrm{E}, \Omega)$ and $\Psi_{\alpha}(\mathrm{r}, \mathrm{E}, \Omega)$
- $\mathrm{K}_{\text {eff }}$ eigenvalue problems can be simulated directly using Monte Carlo methods
- α eigenvalue problems are solved by Monte Carlo indirectly using a series of $\mathrm{K}_{\text {eff }}$ calculations

K-Eigenvalue Calculations

- Eigenvalue problems - reactor analysis \& criticality safety

$$
\Psi(p)=\int \Psi\left(p^{\prime}\right) \mathbf{R}\left(p^{\prime} \rightarrow p\right) d p^{\prime}+\frac{1}{K_{\text {eff }}} \int \Psi\left(p^{\prime}\right) F\left(p^{\prime} \rightarrow p\right) d p^{\prime}
$$

$$
\Psi=\mathrm{R} \cdot \Psi+\frac{1}{\mathrm{~K}_{\mathrm{eff}}} \mathrm{~F} \cdot \Psi
$$

Iterative solution, using power iteration method

$$
\begin{array}{ll}
\Psi^{(i+1)}=R \bullet \Psi^{(i+1)}+\frac{1}{K_{\text {eff }}^{(i)}} \mathrm{F} \bullet \Psi^{(\mathrm{i})} \\
\Psi^{(i+1)}=\frac{1}{K_{\text {eff }}^{(\mathrm{i})}}[I-R]^{-1} \mathrm{~F} \bullet \Psi^{(\mathrm{i})} & K_{\mathrm{eff}}^{\mathrm{i}}=\int F \bullet \Psi^{(\mathrm{i})} d p d p^{\prime}
\end{array}
$$

- Monte Carlo approach:
- Guess $\Psi^{(0)}, \mathrm{K}_{\text {eff }}{ }^{(0)}$
- Follow a "batch" of histories, estimate $\Psi^{(\mathrm{i})}, \mathrm{K}_{\text {eff }}{ }^{(\mathrm{i})}$
- Repeat until converged (discard tallies)
- After converging, begin tallies, iterate until variances small enough
- Random Walk for particle

Monte Carlo Solution of $\mathrm{K}_{\text {eff }}$ Problems

Note: batch $=$ cycle $=$ iteration $=$ generation

- Initialize
- Assume a value for the initial $K_{\text {eff }}$ (usually, $K_{0}=1$)
- Sample M fission sites from the initial source distribution
- For each cycle n, n=1 ... N+D
- Follow histories for all source particles in cycle
- If fissions occur, bank the sites for use as source in next cycle
- Make tallies for $\mathrm{K}_{\text {cycle }}{ }^{(\mathrm{n})}$ using path, collision, \& absorption estimators
- If $n \leq D$, discard any tallies
- If $n>D$, accumulate tallies
- Estimate $\mathrm{K}_{\text {cycle }}{ }^{(\mathrm{n})}$
- Compute final results \& statistics using last \mathbf{N} cycles

- Guess an initial source distribution
- Iterate until converged (How do you know ???)
- Then
- For Sn code: done, print the results
- For Monte Carlo: start tallies, keep running until uncertainties small enough
- Batch size? Convergence? Stationarity? Bias? Statistics?

K-Calculations - Banking Fission Sites

- During a particle random walk,

$$
\mathbf{w g t} \cdot \frac{\mathbf{v} \boldsymbol{\Sigma}_{\mathbf{F}}}{\boldsymbol{\Sigma}_{\mathbf{T}}} \quad=\text { expected number of fission neutrons } \quad \text { created at collision point }
$$

- Averaged over all collisions for all histories, the expected value for $\mathrm{wgt} \cdot \mathrm{v} \Sigma_{\mathrm{F}} /$ Σ_{T} is $\mathrm{K}_{\text {eff }}$.
- In order to bank approximately the same number of fission sites in each cycle, the current value of Keff is used to bias the selection of fission sites at a collision:

$$
R=\text { wgt } \cdot \frac{v \Sigma_{F}}{\Sigma_{T}} \cdot \frac{1}{K}, \quad n=\lfloor R\rfloor
$$

If $\xi<R-n$, store $n+1$ sites in bank with $\mathrm{wgt}^{\prime}=K$ Otherwise, store n sites in bank with $\mathrm{wgt}^{\prime}=K$

- $\mathrm{N}_{\mathrm{J}}=$ number of particles starting cycle J ,
$\mathrm{N}^{\prime}=$ number of particles created by fission in cycle J
(number of particles stored in fission bank)
- The expected value for $N^{\prime}{ }_{J}$ is: $E\left[N_{J}^{\prime}\right]=K_{\text {eff }} \cdot N_{J}$
- ($\mathrm{N}_{\mathrm{J}} / \mathrm{N}_{\mathrm{J}}$) is a single-cycle estimator for $\mathrm{K}_{\text {eff }}$
- To prevent the number of particles per cycle from growing exponentially (for $K>1$) or decreasing to 0 (for $K<1$), the particle population is renormalized at the end of each cycle:
- In some Monte Carlo codes, the number of particles starting each cycle is a constant \mathbf{N}. Russian roulette or splitting are used to sample N particles from the N' particles in the fission bank. (All particles in fission bank have a weight of 1.0)
- In other codes, the total weight W starting each cycle is constant. The particle weights in the fission bank are renormalized so that the total weight is changed from W' to W. (Particles in fission bank have equal weights, but not necessarily 1.0)
- Pathlength estimator for Keff

$$
K_{\text {path }}=\left(\sum_{\substack{\text { all } \\
\text { flights }}} \text { git }_{j} \cdot d_{j} \cdot v \Sigma_{F}\right) / W \quad \begin{gathered}
\text { W }=\text { total weight } \\
\text { starting each } \\
\text { cycle }
\end{gathered}
$$

- Collision estimator for Keff

$$
\mathrm{K}_{\text {collision }}=\left(\sum_{\substack{\text { all } \\ \text { collisions }}} \mathrm{wgt}_{\mathrm{j}} \cdot \frac{\mathbf{v} \Sigma_{\mathrm{F}}}{\Sigma_{\mathrm{T}}}\right) / \mathbf{W}
$$

- Absorption estimator for Keff

$$
\mathrm{K}_{\text {absorption }}=\left(\sum_{\substack{\text { all } \\ \text { absorptions }}} \text { wgt }_{\mathrm{j}} \cdot \frac{v \Sigma_{\mathrm{F}}}{\Sigma_{\mathrm{A}}}\right) / \mathrm{W}
$$

- The Keff estimators from each cycle ($\mathrm{K}_{\text {path }}, \mathrm{K}_{\text {collision }}, \mathrm{K}_{\text {absorption }}$) are used to compute the overall $\mathrm{K}_{\text {path }}, \mathrm{K}_{\text {collision }}$, \& $\mathrm{K}_{\text {absorption }}$ for the problem \& the standard deviations.
- The Keff estimators from each cycle ($\mathrm{K}_{\text {path }}, \mathrm{K}_{\text {collision }}, \mathrm{K}_{\text {absorption }}$) can also be combined to produce a minimum-variance combined result, $\mathrm{K}_{\text {combination }}$. This combination must account for correlations between the path, collision, \& absorption estimators

K-Calculations - Bias

- The renormalization procedure used at the end of each cycle introduces a small bias into the computed Keff
- Renormalization involves multiplying particle weights by (W/W'), where $W=$ total weight starting a cycle,

W'= total weight at the end of a cycle.

- W' is a random variable, due to fluctuations in particle random walks.
- Theoretical analysis of the MC iteration process \& propagation of history fluctuations gives

$$
\text { bias in } \mathrm{K}_{\mathrm{eff}}=-\frac{\sigma_{\mathrm{k}}^{2}}{\mathrm{~K}_{\mathrm{eff}}} \cdot\binom{\text { sum of correlation coeff's }}{\text { between batch } \mathrm{K}^{\prime} \mathrm{s}}
$$

- M = histories/cycle
- Bias in Keff ~ 1/M
- Smaller $M \Rightarrow$ larger cycle correlation \Rightarrow larger bias in Keff \& source
- Larger $M \Rightarrow$ smaller cycle correlation \Rightarrow smaller bias
- For a simple Godiva reactor calculation:

K-Calculations - Bias

- Observed PDF for single-cycle Keff, for varying M

- Bias in Keff is negative: $\mathrm{K}_{\text {calc }}<\mathrm{K}_{\text {true }}$

-	Bias is	significant	for
small	for	$M<10$	
	negligible	for	$M>100$
	0	for	$M \rightarrow \infty$

[^0]- Some number of initial cycles must be discarded
- The source distribution \& Keff are not known initially
- Guess at the source \& Keff
- Iterate, discarding tallies
- When converged, iterate to accumulate tallies
- Number of iterations to discard depends on the dominance ratio
- Dominance Ratio $=\mathrm{K}_{1} / \mathrm{K}_{\text {eff }}$
- $\mathrm{K}_{\text {eff }}=$ eigenvalue of fundamental eigenmode
- $\mathrm{K}_{1}=$ eigenvalue of first higher eigenmode, $\mathrm{K}_{1}<\mathrm{K}_{\text {eff }}$
- If DR close to 1 (e.g., .999...), 100s or 1000s of initial iterations may be required for initial source distribution errors to die away
- Most statistical tests for convergence are ex post facto tests to look for trends
- Most common practice is to examine plots of Keff vs. cycles

K-Calculations - Convergence

- Plots of single-cycle Keff vs. cycle number

- Plots of cumulative Keff vs. cycle number
soode data from file zuntpe

K-Calculations - Convergence

- Plots of cumulative Keff vs. number of initial cycles discarded
koode data from file runtpe

- Keff is an integral quantity - converges faster than source shape

Keff calculation for 2 nearly symmetric slabs, with Dominance Ratio = . 9925

K-Calculations - Convergence

- Choose the number of cycles to discard by examining convergence plots
- Then, choose the total number of cycles to be large enough so that relative errors are "small enough"
- Always run >25 cycles for tallies, to get good estimates of σ^{2}
- Always try to run a few 100 or 1000 cycles for tallies
- Statistical tests on convergence more reliable if more cycles
- Better plots for assessing convergence
- Summary
- Particles per cycle - > 1000
- Discarded cycles - varies, check plots
- Tally cycles - $\quad>100$
- Eigenvalue equation with both $\mathrm{K}_{\text {eff }}$ \& α
$-\alpha$ is a fixed number, not a variable

$$
\begin{aligned}
& {\left[\vec{\Omega} \cdot \nabla+\Sigma_{T}(\vec{r}, E)+\max \left(\frac{\alpha}{\mathrm{V}}, 0\right)\right] } \Psi_{\alpha}(\vec{r}, \mathrm{E}, \vec{\Omega}) \\
&=\max \left(\frac{-\alpha}{\mathrm{v}}, 0\right) \Psi_{\alpha}(\vec{r}, \mathrm{E}, \vec{\Omega})+\iint \Psi_{\alpha}\left(\vec{r}, \mathrm{E}^{\prime}, \vec{\Omega}^{\prime}\right) \Sigma_{\mathrm{S}}\left(\vec{r}, \mathrm{E}^{\prime} \rightarrow \mathrm{E}, \vec{\Omega} \cdot \vec{\Omega}^{\prime}\right) \mathrm{d} \vec{\Omega}^{\prime} \mathrm{dE} \\
& \\
&+\frac{1}{\mathrm{~K}_{\mathrm{eff}}} \cdot \frac{\chi(\mathrm{E})}{4 \pi} \iint v \Sigma_{\mathrm{F}}\left(\vec{r}, \mathrm{E}^{\prime}\right) \Psi_{\alpha}\left(\vec{r}, \mathrm{E}^{\prime}, \vec{\Omega}^{\prime}\right) \mathrm{d} \vec{\Omega}^{\prime} d E^{\prime}
\end{aligned}
$$

- Note on the $\max (\alpha / v, 0)$ and $\max (-\alpha / v, 0)$ terms
- If $\alpha<0$, real absorption plus time absorption could be negative
- If $\alpha<0$, move α / v to right side to prevent negative absorption,
- If $\alpha<0,-\alpha / v$ term on right side is treated as a delta-function source
- Select a fixed value for α
- Solve the K-eigenvalue equations, with fixed time-absorption α / v
- Select a different α and solve for a new Keff
- Repeat, searching for value of α which results in Keff $=1$

Special Topic - Stationarity Tests

- Plots of single-cycle Keff or cumulative Keff are difficult to interpret when assessing convergence

- The MCNP team has been investigating new stationarity tests

Progressive relative entropy

One cycle delay embedding plot of relative entropy wrt initial source

Special Topic - Stationarity Tests

- In a series of related papers, we have significantly extended the theory of Monte Carlo eigenvalue calculations, explicitly accounting for correlation effects.

LA-UR-02-0190:	T Uek, "Intergenerational Correlation in Monte Carlo K-Eigenvalue Calculations", Nucl. Sci. Eng. (2002)
LA-UR-01-6770:	T Ueki \& FB Brown, "Autoregressive Fitting for Monte Carlo K-effective Confidence Intervals", ANS Summer Meeting, (June 2002)
LA-UR-02-3783:	T Ueki \& FB Brown, "Stationarity Diagnostics Using Shannon Entropy in Monte Carlo Criticality Calculations I: F Test", ANS Winter Meeting (Nov 2002)
LA-UR-02-6228:	T Ueki \& FB Brown, "Stationarity and Source Convergence in Monte Carlo Criticality Calculations", ANS Topical Meeting on Mathematics \& Comp utation, Gatlinburg, TN (April, 2003)
LA-UR-03-0106:	T Ueki, FB Brown, DK Parsons, "Dominance Ratio Computation via Time Series Analysis of Monte Carlo Fission Sources" , ANS Annual Meeting (June 2003)
LA-UR-02-5700:	T Ueki, FB Brown, DK Parsons, \& DE Komreich, "Autocorrelation and Dominance Ratio in Monte Carlo Criticality Calculations", Nucl. Sci. Eng. (Nov 2003)
LA-UR-03-3949:	T Ueki \& FB Brown, "Informatics Approach to Stationarity Diagnostics of the Monte Carlo Fission Source Distribution", ANS W inter meeting (Nov 2003)
LA-UR-03-5823:	T Uek, FB Brown, DK Parsons, JS W arsa, "Time Series Analysis of Monte Carlo Fission Source: I. Dominance Ratio Calculation", Nucl. Sci. Eng. (Nov 2004)
LA-UR-03-????:	T Ueki \& FB Brown, "Stationarity Modeling and Informatics-Based Diagnostics in Monte Carlo Criticality Calculations," submitted to Nucl. Sci. Eng.

\square

Eigenvalue
 Calculations Part II

Forrest B. Brown

- K-eigenvalue equation
- Solution by power iteration
- Convergence of power iteration
- Stationarity Diagnostics
- Weilandt acceleration method
- Superhistory method

$$
\begin{aligned}
{\left[\vec{\Omega} \cdot \nabla+\Sigma_{\mathrm{T}}(\overrightarrow{\mathrm{r}}, \mathrm{E})\right] \Psi_{\mathrm{k}}(\overrightarrow{\mathrm{r}}, \mathrm{E}, \vec{\Omega})=\iint } & \Psi_{\mathrm{k}}\left(\vec{r}, \mathrm{E}^{\prime}, \vec{\Omega}^{\prime}\right) \Sigma_{\mathrm{s}}\left(\overrightarrow{\mathrm{r}}, \mathrm{E}^{\prime} \rightarrow \mathrm{E}, \vec{\Omega} \cdot \vec{\Omega}^{\prime}\right) \mathrm{d} \vec{\Omega}^{\prime} \mathrm{dE} E^{\prime} \\
& +\frac{1}{\mathrm{~K}_{\text {eff }}} \cdot \frac{\chi(\mathrm{E})}{4 \pi} \iint v \Sigma_{\mathrm{F}}\left(\vec{r}, \mathrm{E}^{\prime}\right) \Psi_{\mathrm{k}}\left(\overrightarrow{\mathrm{r}}, \mathrm{E}^{\prime}, \vec{\Omega}^{\prime}\right) \mathrm{d} \vec{\Omega}^{\prime} \mathrm{dE} E^{\prime}
\end{aligned}
$$

where

$$
\begin{array}{cl}
\mathrm{K}_{\text {eff }} & =\text { k-effective, eigenvalue for fundamental mode } \\
\Psi_{\mathrm{k}}(\overrightarrow{\mathrm{r}}, \mathrm{E}, \vec{\Omega}) & =\text { angular flux, for fundamental k-eigenmode }
\end{array}
$$

$$
\vec{\Omega} \cdot \nabla \Psi_{k}(\vec{r}, E, \vec{\Omega}) \quad=\text { loss term, leakage }
$$

$$
\Sigma_{\mathrm{T}}(\vec{r}, \mathrm{E}) \Psi_{\mathrm{k}}(\vec{r}, \mathrm{E}, \vec{\Omega})=\text { loss term, collisions }
$$

$\iint \Psi_{\mathrm{k}}\left(\vec{r}, \mathrm{E}^{\prime}, \vec{\Omega}^{\prime}\right) \Sigma_{\mathrm{s}}\left(\vec{r}, \mathrm{E}^{\prime} \rightarrow \mathrm{E}, \vec{\Omega} \cdot \overrightarrow{\Omega^{\prime}}\right) \mathrm{d} \vec{\Omega}^{\prime} \mathrm{dE} \mathrm{E}^{\prime} \quad=$ gain term, scatter from $\mathrm{E}^{\prime}, \Omega^{\prime}$ into E, Ω $\frac{1}{\mathrm{~K}_{\text {eff }}} \cdot \frac{\chi(\mathrm{E})}{4 \pi} \iint v \Sigma_{\mathrm{F}}\left(\vec{r}, \mathrm{E}^{\prime}\right) \Psi_{\mathrm{k}}\left(\overrightarrow{\mathrm{r}}, \mathrm{E}^{\prime}, \vec{\Omega}^{\prime}\right) \mathrm{d} \vec{\Omega}^{\prime} \mathrm{d} \mathrm{E}^{\prime}=$ gain term, production from fission
\Rightarrow Jointly find $\mathrm{K}_{\text {eff }}$ and $\Psi_{\mathrm{k}}(\mathrm{r}, \mathrm{E}, \Omega)$ such that equation balances

K-eigenvalue equation

- Los Alamos

- Use operator (or matrix) form to simplify notation

$$
(L+T) \Psi=S \Psi+\frac{1}{K_{\mathrm{eff}}} \mathrm{M} \Psi
$$

where

$$
\begin{array}{ll}
\mathrm{L}=\text { leakage operator } & \mathrm{S}=\text { scatter-in operator } \\
\mathrm{T}=\text { collision operator } & \mathrm{M}=\text { fission multiplication operator }
\end{array}
$$

- Rearrange

$$
\begin{aligned}
& (L+T-S) \Psi=\frac{1}{K_{\text {eff }}} M \Psi \\
& \Psi=\frac{1}{K_{\text {eff }}} \cdot(L+T-S)^{-1} M \Psi \\
& \Psi=\frac{1}{K_{\text {eff }}} \cdot \mathrm{F} \Psi
\end{aligned}
$$

\Rightarrow This eigenvalue equation will be solved by power iteration

Eigenvalue equation

$$
\Psi=\frac{1}{\mathrm{~K}_{\mathrm{eff}}} \cdot F \Psi
$$

1. Assume that $\mathbf{k}_{\text {eff }}$ and Ψ on the right side are known for iteration \mathbf{n}, solve for Ψ on left side (for iteration $\mathrm{n}+1$)

$$
\Psi^{(n+1)}=\frac{1}{K_{e f f}^{(n)}} \cdot F \Psi^{(n)}
$$

Note: \quad This requires solving the equation below for $\Psi^{(n+1)}$, with $\mathrm{K}_{\text {eff }}{ }^{(\mathrm{n})}$ and $\Psi(\mathrm{n})$ fixed

$$
(L+T-S) \Psi^{(n+1)}=\frac{1}{K_{e f f}^{(n)}} M \Psi^{(n)}
$$

2. Then, compute $K_{\text {eff }}{ }^{(n+1)}$

$$
K_{\text {eff }}^{(n+1)}=K_{\text {eff }}^{(n)} \cdot \frac{\int M \Psi^{(n+1)} d \vec{r}}{\int M \Psi^{(n)} d \vec{r}} \quad \text { (other norms could be used) }
$$

Power Iteration

- Los Alamos

- Power iteration procedure:

1. Initial guess for $K_{\text {eff }}$ and Ψ
$K_{\text {eff }}{ }^{(0)}, \quad \Psi^{(0)}$

Source points for $\Psi^{(0)}$
2. Solve for $\Psi^{(n+1)}$ [Monte Carlo random walk for N particles]

$$
\Psi^{(n+1)}=\frac{1}{k_{e f f}^{(n)}} \cdot F \Psi^{(n)}
$$

3. Compute new $\mathrm{K}_{\text {eff }}$

Source points for $\Psi^{(n+1)}$

$$
K_{e f f}^{(n+1)}=K_{e f f}^{(n)} \cdot \frac{\int M \Psi^{(n+1)} d \vec{r}}{\int M \Psi^{(n)} d \vec{r}}
$$

4. Repeat 1-3 until both $K_{\text {eff }}{ }^{(n+1)}$ and $\Psi^{(n+1)}$ have converged

- Power iteration for Monte Carlo k-effective calculation

Neutron

Power Iteration

Diffusion Theory or Discrete-ordinates Transport

1. Initial guess for $\mathrm{K}_{\text {eff }}$ and Ψ

$$
K_{\text {eff }}{ }^{(0)}, \quad \Psi^{(0)}
$$

2. Solve for $\Psi^{(n+1)}$

Inner iterations over space or space/angle to solve for $\Psi^{(n+1)}$

$$
(\mathrm{L}+\mathrm{T}-\mathrm{S}) \Psi^{(n+1)}=\frac{1}{K_{\mathrm{eff}}^{(n)}} M \Psi^{(n)}
$$

3. Compute new $\mathrm{K}_{\text {eff }}$

$$
\mathrm{K}_{\mathrm{eff}}^{(n+1)}=\mathrm{K}_{\mathrm{eff}}^{(n)} \cdot \frac{1 \cdot \mathrm{M} \Psi^{(n+1)}}{1 \cdot \mathrm{M} \Psi^{(n)}}
$$

4. Repeat 1-3 until both $\mathrm{K}_{\text {eff }}{ }^{(\mathrm{n}+1)}$ and $\Psi{ }^{(n+1)}$ have converged

Monte Carlo

1. Initial guess for $K_{\text {eff }}$ and Ψ

$$
\mathrm{K}_{\mathrm{eff}}{ }^{(0)}, \quad \Psi^{(0)}
$$

2. Solve for $\Psi^{(n+1)}$

Follow particle histories
to solve for $\Psi^{(n+1)}$

$$
(L+T-S) \Psi^{(n+1)}=\frac{1}{K_{\mathrm{enf}}^{(n)}} M \Psi^{(n)}
$$

During histories, save fission sites to use for source in next iteration
3. Compute new $\mathrm{K}_{\text {eff }}$

During histories for iteration ($\mathrm{n}+1$), estimate $K_{\text {eff }}{ }^{(n+1)}$

$$
K_{\mathrm{eff}}^{(n+1)}=K_{\mathrm{eff}}^{(n)} \cdot \frac{\int M \Psi^{(n+1)} d \vec{r}}{\int M \Psi^{(n)} d \vec{r}}
$$

4. Repeat 1-3 until both $\mathrm{K}_{\text {eff }}{ }^{(\mathrm{n}+1)}$ and $\Psi^{(n+1)}$ have converged
5. Continue iterating, to compute tallies

- Guess an initial source distribution
- Iterate until converged (How do you know ???)
- Then
- For S_{n} code: done, print the results
- For Monte Carlo: start tallies, keep running until uncertainties small enough
- Convergence? Stationarity? Bias? Statistics?

Power Iteration - Convergence

- Expand Ψ in terms of eigenfunctions $u_{j}(r, E, \Omega)$

$$
\begin{gathered}
\Psi=\sum_{j=0}^{\infty} \mathrm{a}_{\mathrm{j}} \overrightarrow{\mathrm{u}}_{\mathrm{j}}=\mathrm{a}_{0} \overrightarrow{\mathrm{u}}_{0}+\mathrm{a}_{1} \overrightarrow{\mathrm{u}}_{1}+\mathrm{a}_{2} \overrightarrow{\mathrm{u}}_{2}+\mathrm{a}_{3} \overrightarrow{\mathrm{u}}_{3}+\ldots . . \\
\int \overrightarrow{\mathrm{u}}_{\mathrm{j}} \overrightarrow{\mathrm{u}}_{\mathrm{k}} \mathrm{dV}=\delta_{\mathrm{jk}} \\
\mathrm{a}_{\mathrm{j}}=\int \Psi \cdot \overrightarrow{\mathrm{u}}_{\mathrm{j}} \mathrm{dV} \\
\overrightarrow{\mathrm{u}}_{\mathrm{j}}=\frac{1}{\mathrm{k}_{\mathrm{j}}} F \cdot \overrightarrow{\mathrm{u}}_{\mathrm{j}} \quad \mathrm{k}_{0}>\mathrm{k}_{1}>\mathrm{k}_{2}>\ldots \\
\mathrm{k}_{0} \equiv \mathrm{k}_{\text {effective }}
\end{gathered}
$$

- Expand the initial guess in terms of the eigenmodes

$$
\Psi^{(0)}=\sum_{\mathrm{j}=0} \mathrm{a}_{\mathrm{j}}^{(0)} \overrightarrow{\mathrm{u}}_{\mathrm{j}}
$$

- Substitute the expansion for Ψ into eigenvalue equation

$$
\begin{aligned}
\Psi^{(n+1)} & =\frac{1}{K^{(n)}} F \cdot \Psi^{(n)}=\frac{1}{k^{(n)}} \cdot \frac{1}{k^{(n-1)}} \ldots \frac{1}{k^{(0)}} \cdot F^{n} \cdot \Psi^{(0)} \\
& =\left[\prod_{m=0}^{n} \frac{k_{0}}{K^{(m)}}\right] \cdot a_{0}^{(0)} \cdot\left[\vec{u}_{0}+\sum_{j=1}\left(\frac{\mathrm{a}_{j}^{(0)}}{\mathrm{a}_{0}^{(0)}}\right) \cdot\left(\frac{\mathrm{k}_{\mathrm{j}}}{\mathrm{k}_{0}}\right)^{n+1} \cdot \overrightarrow{\mathrm{u}}_{\mathrm{j}}\right] \\
& \approx[\text { constant }] \cdot\left[\overrightarrow{\mathrm{u}}_{0}+\left(\frac{\mathrm{a}_{1}^{(0)}}{a_{0}^{(0)}}\right) \cdot\left(\frac{\mathrm{k}_{1}}{\mathrm{k}_{0}}\right)^{n+1} \cdot \vec{u}_{1}+\left(\frac{\mathrm{a}_{2}^{(0)}}{a_{0}^{(0)}}\right) \cdot\left(\frac{\mathrm{k}_{2}}{\mathrm{k}_{0}}\right)^{n+1} \cdot \overrightarrow{\mathrm{u}}_{2}+\ldots\right]
\end{aligned}
$$

Power Iteration - Convergence

- Los Alamos

$\Psi^{(n+1)} \approx$ constant $] \cdot\left[\overrightarrow{\mathrm{u}}_{0}+\left(\frac{\mathrm{a}_{1}^{(0)}}{\mathrm{a}_{0}^{(0)}}\right) \cdot\left(\frac{\mathrm{k}_{1}}{\mathrm{k}_{0}}\right)^{n+1} \cdot \overrightarrow{\mathrm{u}}_{1}+\left(\frac{\mathrm{a}_{2}^{(0)}}{\mathrm{a}_{0}^{(0)}}\right) \cdot\left(\frac{\mathrm{k}_{2}}{\mathrm{k}_{0}}\right)^{n+1} \cdot \overrightarrow{\mathrm{u}}_{2}+\ldots\right]$
$K^{(n+1)} \approx k_{0} \cdot \frac{\left[1+\left(\frac{a_{1}^{(0)}}{a_{0}^{(0)}}\right) \cdot\left(\frac{k_{1}}{k_{0}}\right)^{n+1} \cdot G_{1}+\left(\frac{a_{2}^{(0)}}{a_{0}^{(0)}}\right) \cdot\left(\frac{k_{2}}{k_{0}}\right)^{n+1} \cdot G_{2}+\ldots\right]}{\left[1+\left(\frac{a_{1}^{(0)}}{a_{0}^{(0)}}\right) \cdot\left(\frac{k_{1}}{k_{0}}\right)^{n} \cdot G_{1}+\left(\frac{a_{2}^{(0)}}{a_{0}^{(0)}}\right) \cdot\left(\frac{k_{2}}{k_{0}}\right)^{n} \cdot G_{2}+\ldots\right]}$

$$
\text { where } \quad G_{m}=\frac{\int M \vec{u}_{m} d \vec{r}}{\int M \vec{u}_{0} d \vec{r}}
$$

\Rightarrow Because $k_{0}>k_{1}>k_{2}>\ldots, \quad$ all of the red terms vanish as $n \rightarrow \infty$, thus $\quad \Psi^{(n+1)} \rightarrow$ constant $\cdot \mathrm{u}_{0}$

$$
\mathbf{K}^{(n+1)} \rightarrow \mathbf{k}_{0}
$$

- After \mathbf{n} iterations, the J -th mode error component is reduced by the factor $\left(k_{j} / k_{0}\right)^{n}$
- Since $1>k_{1} / k_{0}>k_{2} / k_{0}>k_{3} / k_{0}>\ldots$,
after the initial transient, error in $\Psi^{(n)}$ is dominated by first mode:

$$
\Psi^{(n)} \approx[\text { cons tant }] \cdot\left[\overrightarrow{\mathrm{u}}_{0}+\left(\frac{\mathrm{a}_{1}^{(0)}}{\mathrm{a}_{0}^{(0)}}\right) \cdot\left(\frac{\mathrm{k}_{1}}{\mathrm{k}_{0}}\right)^{\mathrm{n}} \cdot \overrightarrow{\mathrm{u}}_{1}+\ldots\right]
$$

- $\left(k_{1} / k_{0}\right)$ is called the dominance ratio, DR or ρ
- Errors die off as $\sim(D R)^{n}$
- To reduce 10% error \rightarrow. 1% error

DR~. $9 \rightarrow 44$ iterations
DR~. $99 \rightarrow 458$ iterations
DR~. $999 \rightarrow 2301$ iterations

Power Iteration - Convergence

Typical K-effective convergence patterns

- Higher mode error terms die out as $\left(k_{J} / k_{0}\right)^{n}$, for n iterations
- When initial guess is concentrated in center of reactor, initial $\mathrm{K}_{\text {eff }}$ is too high (underestimates leakage)

- When initial guess is uniformly distributed, initial $\mathrm{K}_{\text {eff }}$ is too low (overestimates leakage)

- The Sandwich Method uses $2 \mathrm{~K}_{\text {eff }}$ calculations one starting too high \& one starting too low.
Both calculations should converge to the same result.
$\Psi^{(n+1)} \approx$ constant $] \cdot\left[\overrightarrow{\mathrm{u}}_{0}+\left(\frac{\mathrm{a}_{1}^{(0)}}{\mathrm{a}_{0}^{(0)}}\right) \cdot\left(\frac{\mathrm{k}_{1}}{\mathrm{k}_{0}}\right)^{n+1} \cdot \overrightarrow{\mathrm{u}}_{1}+\ldots\right]$
$K^{(n+1)} \approx k_{0} \cdot \frac{\left[1+\left(\frac{a_{1}^{(0)}}{a_{0}^{(0)}}\right) \cdot\left(\frac{k_{1}}{k_{0}}\right)^{n+1} \cdot G_{1}+\ldots\right]}{\left[1+\left(\frac{a_{1}^{(0)}}{a_{0}^{(0)}}\right) \cdot\left(\frac{k_{1}}{k_{0}}\right)^{n} \cdot G_{1}+\ldots\right]} \approx k_{0} \cdot\left[1+\left(\frac{a_{1}^{(0)}}{a_{0}^{(0)}}\right) \cdot\left(\frac{k_{1}}{k_{0}}\right)^{n+1} \cdot G_{1}\right] \cdot\left[1-\left(\frac{a_{1}^{(0)}}{a_{0}^{(0)}}\right) \cdot\left(\frac{k_{1}}{k_{0}}\right)^{n} \cdot G_{1}\right]$
$\approx k_{0} \cdot\left[1+\left(\frac{a_{1}^{(0)}}{a_{0}^{(0)}}\right) \cdot\left(\frac{k_{1}}{k_{0}}\right)^{n} \cdot\left(\frac{k_{1}}{k_{0}}-1\right) \cdot G_{1}+\ldots\right]$
- For problems with a high dominance ratio (e.g., DR ~ .99), the error in $K_{\text {eff }}$ may be small, since the factor $\left(k_{1} / k_{0}-1\right)$ is small.
$\Rightarrow \mathrm{K}_{\text {eff }}$ may appear converged, even if the source distribution is not converged

Power Iteration - Convergence

- Keff is an integral quantity - converges faster than source shape

- For Monte Carlo power iteration, statistical fluctuations in source shape die out gradually over a number of successive iterations.
- Persistence of the noise over successive iterations gives correlation among source distributions in successive iterations. (Positive correlation)
- Correlation directly affects confidence intervals:

Serial correlation in the source distribution \rightarrow larger confidence intervals
\Rightarrow Most Monte Carlo codes ignore these correlation effects
\& incorrectly underestimate the confidence intervals

Power Iteration - Convergence

Summary

- Local errors in the source distribution decay as $\left(k_{J} / k_{0}\right)^{n}$
- Higher eigenmodes die out rapidly, convergence dominated by $\mathbf{k}_{1} / \mathbf{k}_{0}$
- High DR \rightarrow slow convergence
- High DR \rightarrow large correlation \rightarrow large error in computed variances
- Errors in $K_{\text {eff }}$ decay as $\left(k_{J} / k_{0}-1\right) *\left(k_{J} / k_{0}\right)^{n}$
- High DR $\rightarrow k_{J} / k_{0} \sim 1 \rightarrow$ small error
- $K_{\text {eff }}$ errors die out faster than local source errors
- $\mathrm{K}_{\text {eff }}$ is an integral quantity - positive \& negative fluctuations cancel
- High DR is common for
- Large reactors, with small leakage
- Heavy-water moderated or reflected reactors
- Loosely-coupled systems
\Rightarrow If local tallies are important (e.g., assembly power, pin power, ...), examine their convergence - not just $\mathrm{K}_{\text {eff }}$ convergence
- Plots of single-cycle Keff or cumulative Keff are sometimes difficult to interpret when assessing convergence

Keff Calculations - Stationarity Diagnostics

- Initial cycles of a Monte Carlo K-effective calculation should be discarded, to avoid contaminating results with errors from initial guess
- How many cycles should be discarded?
- How do you know if you discarded enough cycles?

Iteration, n

- Analysis of the power iteration method shows that Keff is not a reliable indicator of convergence $-\mathrm{K}_{\text {eff }}$ can converge faster than the source shape
- Based on concepts from information theory, Shannon entropy of the source distribution is useful for characterizing the convergence of the source distribution
- Divide the fissionable regions of the problem into $\mathbf{N}_{\mathbf{S}}$ spatial bins
- Spatial bins should be consistent with problem symmetry
- Typical choices: - 1 bin for each assembly
- regular grid superimposed on core

- Rule-of-thumb for number of spatial bins:
$\mathrm{N}_{\mathrm{s}} \sim$ (histories/batch)/25 or less

Why?

- Would like to have $\mathbf{> 2 5}$ fission source sites per bin to get good statistics
- If source distribution were uniform, ~ 25 sites would be in each bin
- Shannon entropy of the source distribution

$$
H(S)=-\sum_{J=1}^{N_{S}} p_{J} \cdot \ln n_{2}\left(p_{J}\right), \quad \text { where } \quad p_{J}=\frac{(\# \text { source particles in bin } J)}{(\text { total } \# \text { source particles in all bins })}
$$

$\mathrm{K}_{\text {eff }}$ Calculations - Stationarity Diagnostics

- Shannon entropy of the source distribution

$$
H(S)=-\sum_{J=1}^{N_{S}} p_{J} \cdot \ln n_{2}\left(p_{J}\right), \quad \text { where } \quad p_{J}=\frac{(\# \text { source particles in bin } J)}{(\text { total } \# \text { source particles in all bins) }}
$$

$-\mathbf{O} \leq \mathbf{H}(S) \leq \ln _{\mathbf{2}}\left(\mathbf{N}_{\mathrm{S}}\right)$

- Note that $\mathrm{p}_{\mathrm{J}} \mathrm{In}_{2}\left(\mathrm{p}_{\mathrm{J}}\right)=0$ if $\mathrm{p}_{\mathrm{J}}=0$
- For a uniform source distribution, $p_{1}=p_{2}=\ldots=p_{N s}=1 / N_{S}$, so that $H(S)=\ln _{2}\left(N_{S}\right)$
- For a point source (in a single bin), $H(S)=0$
- $H\left(S^{(n)}\right)$ provides a single number to characterize the source distribution for iteration \mathbf{n}
- As the source distribution converges in 3D space, a line plot of $H\left(\mathbf{S}^{(n)}\right)$ vs. n (the iteration number) converges

$\mathrm{K}_{\text {eff }}$ Calculations - Stationarity Diagnostics

- Example - Reactor core (Problem inp24)

- Example - Loosely-coupled array of spheres (Problem test4s)

$\mathrm{K}_{\text {eff }}$ Calculations - Stationarity Diagnostics

- Example - Fuel Storage Vault (Problem OECD_bench1)

- Basic transport equation for eigenvalue problems

$$
(L+T-S) \Psi=\frac{1}{\mathrm{~K}_{\mathrm{eff}}} \mathrm{M} \Psi
$$

$L=$ loss to leakage
$\mathrm{S}=$ gain from scatter-in
$\mathrm{T}=$ loss to collisions
$M=$ gain from fission multiplication

- Define a fixed parameter \mathbf{k}_{e} such that $\mathbf{k}_{\mathrm{e}}>\mathbf{k}_{\mathbf{0}} \quad\left(\mathrm{k}_{0}=\right.$ exact eigenvalue)
- Subtract $\frac{1}{k_{e}} \mathrm{M} \Psi$ from each side of the transport equation

$$
\left(\mathrm{L}+\mathrm{T}-\mathrm{S}-\frac{1}{\mathrm{~K}_{\mathrm{e}}} \mathrm{M}\right) \Psi=\left(\frac{1}{K_{\mathrm{eft}}}-\frac{1}{\mathrm{~K}_{\mathrm{e}}}\right) \mathrm{M} \Psi
$$

- Solve the modified transport equation by power iteration

$$
\left(L+T-S-\frac{1}{k_{e}} M\right) \Psi^{(n+1)}=\left(\frac{1}{k_{e f f}^{(n)}}-\frac{1}{k_{e}}\right) M \Psi^{(n)}
$$

Wielandt Method

- Power iteration for modified transport equation

$$
\begin{aligned}
& \left(L+T-S-\frac{1}{k_{e}} M\right) \Psi^{(n+1)}=\left(\frac{1}{K_{e f f}^{(n)}}-\frac{1}{k_{e}}\right) M \Psi^{(n)} \\
& \Psi^{(n+1)}=\left(\frac{1}{K_{e f f}^{(n)}}-\frac{1}{k_{e}}\right) \cdot\left(L+T-S-\frac{1}{k_{e}} M\right)^{-1} M \Psi^{(n)} \\
& \Psi^{(n+1)}=\frac{1}{\tilde{K}^{(n)}} \cdot \tilde{F} \Psi^{(n)} \\
& \quad \text { where } \quad \tilde{K}^{(n)}=\left(\frac{1}{K_{e f f}^{(n)}}-\frac{1}{k_{e}}\right)^{-1} \quad \text { or } \quad K_{e f f}^{(n)}=\left(\frac{1}{\tilde{K}^{(n)}}+\frac{1}{k_{e}}\right)^{-1}
\end{aligned}
$$

- How to choose $\mathbf{k}_{\text {e }}$
- \mathbf{k}_{e} must be larger than $\mathbf{k}_{\mathbf{0}}$ (but, don't know k_{0} !)
- k_{e} must be held constant for all of the histories in a batch, but can be adjusted between batches
- Typically, guess a large initial value for k_{e}, such as $k_{e}=5$ or $k_{e}=2$
- Run a few batches, keeping k_{e} fixed, to get an initial estimate of $\mathrm{K}_{\text {eff }}$
- Adjust k_{e} to a value slightly larger than the estimated $\mathrm{K}_{\text {eff }}$
- Run more batches, possibly adjusting k_{e} if the estimated $\mathrm{K}_{\text {eff }}$ changes
- Convergence
- Eigenfunctions for the Wielandt method are same as for basic power iteration
- Eigenvalues are shifted:

$$
\tilde{\mathrm{k}}_{\mathrm{J}}=\left[\frac{1}{\mathrm{k}_{\mathrm{J}}}-\frac{1}{\mathrm{k}_{\mathrm{e}}}\right]^{-1} \quad \mathrm{k}_{\mathrm{e}}>\mathrm{k}_{0}>\mathrm{k}_{1}>\ldots
$$

- Expand the initial guess, substitute into Wielandt method, rearrange to:

$$
\begin{aligned}
& \left.\Psi^{(n+1)} \approx \text { constant }\right] \cdot\left[\vec{u}_{0}+\left(\frac{a_{1}^{(0)}}{a_{0}^{(0)}}\right) \cdot\left(\frac{k_{e}-k_{0}}{k_{e}-k_{1}} \cdot \frac{k_{1}}{k_{0}}\right)^{n+1} \cdot \vec{u}_{1}+\ldots\right] \\
& K^{(n+1)} \approx k_{0} \cdot\left[1+\left(\frac{a_{1}^{(0)}}{a_{0}^{(0)}}\right) \cdot\left(\frac{k_{e}-k_{0}}{k_{e}-k_{1}} \cdot \frac{k_{1}}{k_{0}}\right)^{n} \cdot\left(\frac{k_{e}-k_{0}}{k_{e}-k_{1}} \cdot \frac{k_{1}}{k_{0}}-1\right) \cdot G_{1}+\ldots\right]
\end{aligned}
$$

- Additional factor $\left(k_{e}-k_{0}\right) /\left(k_{e}-k_{1}\right)$ is less than 1 and positive, so that the red terms die out faster than for standard power iteration

Wielandt Method

- The dominance ratio for this modified power iteration is

$$
\mathrm{DR}^{\prime}=\frac{\tilde{\mathrm{k}}_{1}}{\tilde{\mathrm{k}}_{0}}=\frac{\left[\frac{1}{\mathrm{k}_{1}}-\frac{1}{\mathrm{k}_{\mathrm{e}}}\right]^{-1}}{\left[\frac{1}{\mathrm{k}_{0}}-\frac{1}{\mathrm{k}_{\mathrm{e}}}\right]^{-1}}=\frac{\mathrm{k}_{\mathrm{e}}-\mathrm{k}_{0}}{\mathrm{k}_{\mathrm{e}}-\mathrm{k}_{1}} \cdot \frac{\mathrm{k}_{1}}{\mathrm{k}_{0}}=\frac{\mathrm{k}_{\mathrm{e}}-\mathrm{k}_{0}}{\mathrm{k}_{\mathrm{e}}-\mathrm{k}_{1}} \cdot \mathrm{DR}
$$

- Since $k_{e}>k_{0}$ and $k_{0}>k_{1}, \quad D R^{\prime}<D R$
- DR of Wielandt method is always smaller than standard power iteration
- Wielandt acceleration improves the convergence rate of the power iteration method for solving the k-eigenvalue equation

Iteration, \mathbf{n}
\Rightarrow Weilandt method converges at a faster rate than power iteration

- Monte Carlo procedure for Wielandt acceleration

$$
\left(L+T-S-\frac{1}{k_{e}} M\right) \Psi^{(n+1)}=\left(\frac{1}{k_{e f f}^{(n)}}-\frac{1}{k_{e}}\right) M \Psi^{(n)}
$$

- For standard Monte Carlo (power iteration) in generation $\mathbf{n + 1}$
- When a collision occurs, the expected number of fission neutrons produced is

$$
\mathrm{n}_{\mathrm{F}}=\left\lfloor\mathrm{wgt} \cdot \frac{\nu \Sigma_{\mathrm{F}}}{\Sigma_{\mathrm{T}}} \cdot \frac{1}{\mathrm{~K}^{(n)}}+\xi\right\rfloor
$$

- Store n_{F} copies of particle in the "fission bank"
- Use the fission bank as the source for the next generation ($\mathrm{n}+2$)
- For Monte Carlo Wielandt method in generation $\mathbf{n + 1}$
- When a collision occurs, compute 2 expected numbers of fission neutrons

$$
\mathrm{n}_{\mathrm{F}}^{\prime}=\left\lfloor\mathrm{wg} \cdot \frac{\mathrm{v} \Sigma_{\mathrm{F}}}{\Sigma_{\mathrm{T}}} \cdot\left(\frac{1}{\mathrm{~K}^{(\mathrm{nn}}}-\frac{1}{\mathrm{k}_{\mathrm{e}}}\right)+\xi\right\rfloor \quad \mathrm{n}_{\mathrm{e}}^{\prime}=\left\lfloor\mathrm{wg} \cdot \frac{\nu \Sigma_{\mathrm{F}}}{\Sigma_{\mathrm{T}}} \cdot \frac{1}{\mathrm{k}_{\mathrm{e}}}+\xi\right\rfloor
$$

- Note that $E\left[n_{F}^{\prime}+n_{e}^{\prime}\right]=E\left[n_{F}\right]$
- Store n_{F} copies of particle in the "fission bank"
- Follow n_{e}^{\prime} copies of the particle in the current generation ($n+1$)
- Use the fission bank as the source for the next generation ($\mathrm{n}+2$)

Wielandt Method

- Power iteration for Monte Carlo k-effective calculation

Source particle generation
Monte Carlo random walk

Neutron

- Wielandt method for Monte Carlo k-effective calculation

Source particle generation
Monte Carlo random walk

Neutron
Additional Monte Carlo random walks within generation due to Wielandt method

Wielandt Method

Summary

- Wielandt Method has a lower DR than power iteration
- Faster convergence rate than power iteration \Rightarrow fewer iterations
- Some of the particle random walks are moved from the next generation into the current generation \Rightarrow more work per iteration
- Same total number of random walks \Rightarrow no reduction in CPU time

- Advantages

- Reduced chance of false convergence for very slowly converging problems
- Reduced inter-generation correlation effects on variance
- Fission source distribution spreads more widely in a generation (due to the additional particle random walks), which should result in more interactions for loosely-coupled problems
- Standard generation model, solved by power iteration

$$
\Psi^{(n+1)}=\frac{1}{K_{e f f}^{(n)}} \cdot F \Psi^{(n)}
$$

- Superhistory method
- Follow several generations (L) before recomputing $K_{\text {eff }}$ and renormalizing

$$
\Psi^{(n+1)}=\frac{1}{\tilde{K}^{(n)}} \cdot \tilde{\mathrm{F}} \Psi^{(n)}, \quad \text { with } \quad \tilde{\mathrm{F}}=F^{\mathrm{L}}, \quad \tilde{K}^{(n)}=\left(\mathrm{K}_{\mathrm{eff}}^{(\mathrm{n})}\right)^{\mathrm{L}}
$$

- Convergence
- Same eigenfunctions as standard power iteration
- Eigenvalues are $k_{0}{ }^{L}, k_{1}{ }^{L}, k_{2}{ }^{L}, \ldots$
- DR' = DR', where $\mathrm{DR}=$ dominance ratio for power iteration
- Fewer iterations, but L generations per iteration \Rightarrow same work as power iteration
- Same convergence rate as power iteration
- Advantages
- Reduced correlation between iterations
- Fewer renormalizations
- Superhistory Method for Monte Carlo k-effective calculation

Source particle generation
Monte Carlo random walk
∇ Neutron

Monte Carlo k-effective Calculations

J. Lieberoth, "A Monte Carlo Technique to Solve the Static Eigenvalue Problem of the Boltzmann Transport Equation," Nukleonik 11,213 (1968).
M. R. Mendelson, "Monte Carlo Criticality Calculations for Thermal Reactors," Nucl. Sci Eng. 32, 319-331 (1968).
H. Rief and H. Kschwendt, "Reactor Analysis by Monte Carlo," Nucl. Sci. Eng., 30, 395 (1967).
W. Goad and R. Johnston, "A Monte Carlo Method for Criticality Problems," Nucl. Sci. Eng. 5, 371-375 (1959).

Superhistory Method

R.J. Brissenden and A.R. Garlick, "Biases in the Estimation of Keff and Its Error by Monte Carlo Methods," Ann. Nucl. Energy, Vol 13, No. 2, 63-83 (1986).

Wielandt Method

T Yamamoto \& Y Miyoshi, "Reliable Method for Fission Source Convergence of Monte Carlo Criticality Calculation with Wielandt's Method", J. Nuc. Sci. Tech., 41, No. 2, 99107 (Feb 2004).
S Nakamura, Computational Methods in Engineering and Science, R. E. Krieger Pub. Company, Malabar, FL (1986).

Sandwich Method

J Yang \& Y. Naito, "The Sandwich Method for Determining Source Convergence in Monte Carlo Calculations", Proc. 7th Int. Conf. Nuclear Criticality Safety, ICNC2003, Tokaimura, Iburaki, Japan, Oct 20-24, 2003, JAERI-Conf 2003-019, 352 (2003).

References

Stationarity Diagnostics \& Correlation in Monte Carlo k-effective Calculations

T. Ueki, "Intergenerational Correlation in Monte C arlo k-Eigenvalue C alculation," Nuc. Sci. Eng., 141, 101 (2002).
T. Ueki and F.B. Brown, "Autoregressive Fitting for Monte C arlo K-effective Confidence Intervals", Trans. Am. Nuc. Soc. 86, 210 (2002).
T. Ueki and F.B. Brown, "Stationanty Diagnostics Using Shannon Entropy in Monte C arlo C riticality Calculation I: F test," Trans. Am. Nuc, 87, 156 (2002).
T. Ueki and F.B. Brown, "Stationarity and Source Convergence Diagnostics in Monte Carlo C riticality Calculation," proceedings of M\&C 2003, ANS Topical Meeting, Gatlinb urg, Tennessee (April, 2003).
T. Ueki, F.B. Brown and D.K. Parsons, "Dominance Ratio Comp utation via Time Series Analysis of Monte Carlo Fission Sources," Trans. Am. Nuc, 88, 309 (2003).
T. Ueki and F.B. Brown, "Informatics Approach to Stationarity Diagnostics of the Monte Carlo Fission Source Distrib ution," Trans. Am. Nuc, 89, 458 (2003).
T. Ueki, F.B. Brown, D.K. Parsons, and D.E. Komreich, "Autocorrelation and Dominance Ratio in Monte Carlo Criticality Calculations," Nuc. Sci. Eng., 145, 279 (2003).
T. Ueki, F.B. Brown, D.K. Parsons, and J.S. W arsa, "Time Series Analysis of Monte Carlo Fission Sources: I. Dominance Ratio Computation," Nuc. Sci. Eng., 148, 374 (2004).
T. Ueki, "Entropy and Undersampling in Monte C arlo Criticality Calculations," Trans. Am. Nuc, 91, 119 (2004).
T. Ueki, "Time Series Modeling and MacMillan's Formula for Monte C arlo Iterated-Source Methods," Trans. Am. Nuc, 90, 449 (2004)
T. Ueki, "Princip al Component Analysis for Monte C arlo C niticality/Eigenvalue C alculations," Trans. Am. Nuc, 90, 461 (2004).
T. Ueki and F.B. Brown, "Stationarity Modeling and Informatics-Based Diagnostics in Monte Carlo Criticality Calculations," Nuc. Sci. Eng., 149, 38 (2005).
T. Ueki, "Asymptotic Equip artition Property and Undersampling Diagnostics in Monte Carlo Criticality Calculations," proceedings of MC 2005, ANS Topical Meeting in Monte C arlo, Chattanooga, TN (2005).
T. Ueki, "Information Theory and Undersampling Diagnostics for Monte C arlo Simulation of Nuclear Criticality," Nuc. Sci. Eng., in press.
T. Ueki, "Time Series Analysis of Monte Carlo Fission Sources: II. k-effective Confidence Interval," Nuc. Sci. Eng., sub mitted
\square

Lecture 9

Variance Reduction

Forrest B. Brown
Diagnostics Applications Group (X-5) Los Alamos National Laboratory

Geometry

- Which cell is particle in?
-What will it hit next?
- How far to boundary?
-What's on other side?
- Survival?

| \quad Physics |
| :--- | :--- | :--- | :--- |
| - How far to collision? |
| - Which nuclide? |
| - New E, direction? |
| - Secondaries? |
| - Survival? |

mcnp, rcp, vim, racer, sam-ce, tart, morse, keno, tripoli, mcbend, monk, o5r, recap, andy,.....

- Variance reduction
- Modify the PDFs for physics interactions to favor events of interest
- Use splitting/rouletting to increase particles in certain geometric regions
- Kill particles in uninteresting parts of problem
- May be necessary in order to sample rare events
- More samples (with less weight each) \rightarrow smaller variance in tallies

Given a function $R(x)$, where x is a random variable with PDF $f(x)$,

- Expected value of $R(x)$ is

$$
\mu=\int R(x) f(x) d x
$$

- Variance of $R(x)$ is

$$
\sigma^{2}=\int R^{2}(\mathbf{x}) f(\mathbf{x}) \mathbf{d x}-\mu^{2}
$$

Monte Carlo method for estimating μ

- make N random samples $\hat{\mathbf{x}}_{\mathrm{j}}$ from $f(x)$
- Then

$$
\begin{aligned}
& \bar{R} \approx \frac{1}{N} \sum_{j=1}^{N} R\left(\hat{x}_{j}\right) \\
& \sigma_{R}^{2} \approx \frac{1}{N-1} \cdot\left(\frac{1}{N} \sum_{j=1}^{N} R^{2}\left(\hat{\mathbf{x}}_{j}\right)-\bar{R}^{2}\right)
\end{aligned}
$$

-Expected mean score is not changed by variance reduction

-Variance is changed due to altered sampling scheme
$\sigma^{2}=\int[R(x)]^{2} f(x) d x-\mu^{2} \quad \sigma^{2}=\int\left[R(x) \frac{f(x)}{g(x)}\right]^{2} g(x) d x-\mu^{2}$
Goal: Choose $g(x)$ such that variance is reduced

- Given a set of random samples, $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{N}}$,
- Mean

$$
\overline{\mathbf{x}}=\frac{1}{\mathbf{N}} \sum_{\mathrm{j}=1}^{\mathrm{N}} \mathrm{x}_{\mathrm{j}}
$$

- Variance of the mean

$$
\sigma_{\bar{x}}^{2}=\frac{1}{N-1} \cdot\left(\frac{1}{N} \sum_{j=1}^{N} x_{j}^{2}-\bar{x}^{2}\right)
$$

- Relative Error

$$
\mathrm{RE}=\frac{\sigma_{\overline{\mathrm{x}}}}{\overline{\mathbf{x}}}
$$

- Figure of Merit

$$
\mathrm{FOM}=\frac{1}{\mathrm{RE}^{2} \cdot \mathrm{~T}}
$$

- Variance reduction: Reduce RE or T, to increase FOM

Analog vs. Weighted Monte Carlo

- Analog Monte Carlo
- Faithful simulation of particle histories
- No alteration of PDFs (i.e., no biasing or variance reduction)
- Particle is born with weight $=1.0$
- Weight unchanged throughout history until particle is killed
- Scores are weighted by $\mathbf{1 . 0}$ when tallying events of interest
- Weighted Monte Carlo (non-analog)
- Alter the PDFs to favor events of interest
- Particle is born with weight $=1.0$
- Weight, wgt, is altered if biased PDF is used
- Weight can also be changed by Russian roulette/splitting \& other variance reduction techniques
- Scores are weighted by wgt when tallying events of interest
- Truncation
- Remove particles from parts of phase space that do not contribute significantly to the tallies
- Population control
- Use particle splitting and Russian rouletting to control the number of samples taken in various regions of phase space
- Modified sampling
- Modify the PDFs representing problem physics, to favor tallies of interest
- Deterministic methods
- Replace portions of a particle random walk by the expected results obtained from a deterministic calculation

Typical Variance Reduction Techniques

- MCNP has 14 variance reduction techniques

1. Time and energy cutoffs
2. Geometry splitting \& roulette
3. Weight windows
4. Exponential transform
5. Forced collisions
6. Energy splitting \& roulette
7. Time splitting \& roulette
8. Point and ring detectors
9. DXTRAN
10. Implicit capture
11. Weight cutoff
12. General source biasing
13. Secondary particle biasing
14. Bremsstrahlung energy biasing

- Also called implicit absorption or non-absorption weighting
- Modify collision process according to expected outcome
- Particle always survives collision
- Tally expected absorption,
wgt $\cdot\left(\sigma_{A} / \sigma_{T}\right)$
- Reduce weight of surviving particle,
$w^{\prime} t^{\prime}=w g t \cdot\left(1-\sigma_{A} / \sigma_{T}\right)$
- Extends particle history so that more particles reach events which occur after many collisions
- Most effective for thermal reactor problems, but doesn't hurt in other types of problems
- Must also use some form of low-weight cutoff to eliminate particles with very low weight
- Increase the number of particles in "important" regions, decrease the number of particles in "unimportant" regions
- Assign each cell an importance, $I_{\text {cell }}$
- Arbitrary, use best guess or adjoint fluxes from deterministic calculation
- Could use one value for all energies or separate values for different energy ranges
- Higher value $->$ more important
- $I_{\text {cell }}>0$
- $I_{\text {cell }}=0$ is a way to declare regions as not in physical problem
- Values of $\mathrm{I}_{\text {cell }}$ must not change during Monte Carlo calculation
- Modify random walk simulation at surface crossings:
- If $\left(I_{\text {enter }} / I_{\text {leave }}\right)>1$, perform splitting
- If $\left(I_{\text {enter }} / l_{\text {leave }}\right)<1$, perform Russian roulette
- Let

$$
\begin{aligned}
& r=I_{\mathrm{B}} / \mathrm{I}_{\mathrm{A}} \\
& \mathrm{n}=\lfloor\mathrm{r}\rfloor
\end{aligned}
$$

- If $n>1$, split into n particles with weight ($\mathrm{wgt} / \mathrm{n}$)
- All of the \mathbf{n} particles emerging from splitting have identical attributes (e.g., $x, y, z, u, v, w, E)$ including wgt' = wgt/n
- All of the \mathbf{n} particles from a splitting are part of the same history, and their tallies must be combined
- Typically, ($\mathrm{n}-1$) particles are banked, 1 particle is followed until its death, then a particle is removed from the bank \& followed, etc.
- Avoid over-splitting
- Splitting into a large number of particles can increase CPU-time \& lead to (apparent) bias in results
- Typically, choose cell importances to split 2-for-1 or 3-for-1
- Typically, can limit the splitting to n-for- 1 or less
- Total particle weight is exactly conserved in splitting

Geometry Splitting \& Russian Roulette

- Let
$r=I_{B} / I_{A}$

- If $r<1$, play Russian roulette
- With probability \mathbf{r}, keep the particle \& alter its weight to (wgt/r)
- With probability (1-r), kill the particle (set its weight to 0)

$$
\begin{aligned}
& \text { if } \begin{array}{l}
\xi<\mathrm{r}, \\
\text { wgt' }=\mathrm{wgt} / \mathrm{r} \\
\text { else } \\
\quad \mathbf{w g t}^{\prime}=0
\end{array}
\end{aligned}
$$

- Russian roulette effectively merges a number of low-weight particles into one with higher weight
- Total particle weight is only conserved statistically (expected value)
- Specify a cutoff weight, $\mathrm{W}_{\text {low }}$, and a survival weight, $\mathrm{W}_{\text {ave }}$
- If particle weight drops below $\mathrm{W}_{\text {low }}$, play Russian roulette with weight of $\mathrm{W}_{\text {ave }}$ for survivors
- Probability of surviving $R R=\mathrm{wgt} / \mathrm{W}_{\text {ave }}$
- Probability of being killed $=1-\mathrm{wgt} / \mathrm{W}_{\text {ave }}$

$$
\text { If wgt }<\mathrm{W}_{\text {low }},
$$

if $\xi<\mathbf{w g t} / W_{\text {ave }}$,
$\mathbf{w g t}^{\prime}=\mathbf{W}_{\text {ave }}$
else

$$
\text { wgt' = } 0
$$

- Expected value of surviving weight is conserved, $\left(\mathrm{wg} / / \mathrm{W}_{\text {ave }}\right) \bullet \mathrm{W}_{\text {ave }}$

Weight Cutoff

- In some codes (e.g., MCNP), the weight cutoff parameters are functions of cell importance
- Let $\quad R_{j}=$ (importance of source cell) / (importance of cell j)
- Then, $\quad W_{\text {ave }}(j)=W_{\text {ave }} \cdot R_{j}$

$$
\mathrm{W}_{\text {low }}(\mathrm{j})=\mathrm{W}_{\text {low }} \cdot \mathrm{R}_{\mathrm{j}}
$$

- Weight cutoffs reduce computing time, not variance
- Weight cutoffs can be applied anytime the particle weight changes - after collisions, after boundary crossings, ...

- Prevent particle weights from getting too large or too small
- Weight too large $->$ splitting
- Weight too small \rightarrow Russian Roulette

Weight Windows

- Large fluctuations in particle weights contributing to a tally lead to larger variance
- Weight windows eliminate large or small weights (outside the window) by creating or destroying particles
- Weight windows can be applied any time - after collisions, after surface crossings, ...

If $w g t>W_{h i}$ splitting
Elseif $\mathrm{wgt}<\mathrm{W}_{\text {low }}$ roulette

- MCNP weight window scheme

Input: $\quad W_{\text {low }}$ for each cell (can be energy or time dependent), $\left[\mathrm{W}_{\text {ave }} / \mathrm{W}_{\text {low }}\right], \quad\left[\mathrm{W}_{\text {hi }} / \mathrm{W}_{\text {low }}\right], \quad m x s p l n$

If $w g t>W_{h i}$
$\mathrm{n}=\min \left(\mathrm{mxspln}, 1+\mathrm{wgt} / \mathrm{W}_{\mathrm{hi}}\right) \quad<-\max$ splitting is mxspln-to-1
$\mathrm{wgt}=\mathrm{wg} / \mathrm{n}$
bank n - 1 copies of particle $<-n$-to- 1 splitting

Elseif wgt $<\mathrm{W}_{\text {low }}$
$P=\max \left(1 / m x s p l n\right.$, wgt/W $\left.W_{a v e}\right) \quad<-$ limits survivor to $m x s p l n * w g t$
if $\xi<P$
wgt $=\mathrm{wgt} / \mathrm{P} \quad<-$ particle survives
else
wgt $=0 \quad<-$ particle killed

- Bias the PDFs used to select the angle, energy, or position or source particles
- Produce more source particles (with lower weights) in desired parts of phase space

True source:
$f(R, E, \Omega)$

Sample ($\mathrm{R}^{\prime}, \mathrm{E}^{\prime}, \Omega^{\prime}$) from
$g(R, E, \Omega)$
\& assign weight $f\left(R^{\prime}, E^{\prime}, \Omega^{\prime}\right) / g\left(R^{\prime}, E^{\prime}, \Omega^{\prime}\right)$ to source particle

Choose $g(R, E, \Omega)$ to favor directions more important to tallies

- Particles entering specified cells are split into collided \& uncollided parts
- For distance-to-boundary d
$\operatorname{Prob}($ no collision $)=\exp \left(-\Sigma_{\mathrm{T}} \mathrm{d}\right)$
Prob(collision) $=1-\exp \left(-\Sigma_{T} d\right)$

9-19

- Sampling the flight distance sfor a forced collision with max flight distance d

Sampling from a truncated exponential PDF:

$$
\begin{aligned}
& f(s)=\Sigma_{T} \cdot \frac{e^{-\Sigma_{T} s}}{1-e^{-\Sigma_{T} d}}, \quad 0 \leq s \leq d \\
& F(s)=\frac{1-e^{-\Sigma_{T} S}}{1-e^{-\Sigma_{T} d}}
\end{aligned}
$$

Solve for s: $\boldsymbol{\xi}=\mathrm{F}(\mathbf{s})$

$$
\mathbf{s}=\frac{-\ln \left[1-\left(1-\mathbf{e}^{-\Sigma_{\mathrm{T}} \mathrm{~d}}\right) \xi\right]}{\Sigma_{\mathbf{T}}}
$$

- Encourage particles to head in a certain preferred direction, Ω_{0}

- Replace Σ_{T} by $\Sigma^{*}=\Sigma_{T}\left[1-p \Omega \cdot \Omega_{0}\right]$
- $\mathrm{p}=$ a parameter, $0<\mathrm{p}<1$
- $\Omega_{0}=$ unit vector from particle position to detector
- $\Omega=$ actual particle direction
- Sample flight distance \mathbf{s}^{\prime} from $\quad \mathrm{g}(\mathrm{s})=\Sigma^{\star} \exp \left(-\Sigma^{*} \mathrm{~s}\right)$
- Adjust weight by factor:

$$
\mathrm{f}\left(\mathrm{~s}^{\prime}\right) / \mathrm{g}\left(\mathrm{~s}^{\prime}\right)=\exp \left(-\mathrm{p} \Omega \cdot \Omega_{0} \Sigma_{\mathrm{T}} \mathrm{~s}^{\prime}\right) /\left[1-\mathrm{p} \Omega \cdot \Omega_{0}\right]
$$

- Paths toward detector are stretched
- Paths away from detector are shortened $\quad\left(\Sigma^{*}>\Sigma_{T}\right)$
- Maximize FOM - either reduce RE or T
- Keep the number of particles per cell roughly constant from source to detector
- Reduce the number of particles in unimportant regions
- Achieve adequate sampling of all portions of phase space
- Avoid over-biasing (e.g., over-splitting)
- Ensure that tallies pass statistical checks
- T.E. Booth, "A Sample Problem for Variance Reduction in MCNP", LA-10363-MS, LANL Report (Oct 1985)
- X-5 Monte Carlo Team, "MCNP - A General Monte Carlo N-Particle Transport Code, Version 5", LA-UR-03-1987 (April 2003)
- L.L. Carter \& E.D. Cashwell, "Particle Transport Simulation with the Monte Carlo Method", TID-26607, National Technical Information Service (1975)

Lecture 10

Parallel Monte Carlo

Forrest B. Brown
Diagnostics Applications Group (X-5)
Los Alamos National Laboratory

- Parallel Computing
- Parallel Computers
- Message Passing
- Threads
- Amdahl's Law
- Parallel Monte Carlo
- Parallel Algorithms
- Histories, Random Numbers, Tallies
- Load Balancing, Fault Tolerance, ...
- Parallel Monte Carlo Performance
- Performance Measures \& Limits
- Parallel Scaling
- MCNP5 Parallel Processing
- MCNP5 parallelism
- MPI or PVM + Threads
- Run Commands \& Input Options
- Performance on ASCI Tera-scale systems
- Parallel Processing for Large-scale Calculations

Parallel Computing

- Fast desktop computers

1980s super: 200 MHz
Today, PC: 2000 MHz
1000 MB
10 GB
\$ 20 M
Today, PC
1000 MB
100 GB
\$ 2 K

- Linux clusters + MPI
- Cheap parallel computing
- Everyone can do parallel computing, not just national labs
- Mature Monte Carlo codes
- MCNP, VIM, KENO, MCBEND, MONK, COG, TART, RACER, RCP, ...
- New generation of engineers/scientists
- Less patience for esoteric theory \& tedious computing procedures
- Computers are tools, not to be worshipped
- What's a slide rule ???
\rightarrow More calculations with Monte Carlo codes
- Commodity chips
- Microprocessor speed $\quad \rightarrow \quad \sim 2 x$ gain / 18 months
- Memory size $\quad \rightarrow \quad \sim 2 x$ gain / 18 months
- Memory latency $\quad \rightarrow \quad \sim$ no change (getting worse)
- High-end scientific computing
- Key driver (or limit) $\quad \rightarrow \quad$ economics: mass production of desktop PCs \& commercial servers
- Architecture $\quad \rightarrow \quad$ clusters: with small/moderate number of commodity microprocessors on each node
- Operating systems
- Desktop \& server $\quad \rightarrow \quad$ Windows, Linux
- Supercomputers $\quad \rightarrow \quad$ Unix, Linux

CPU performance on supercomputer $\quad \rightarrow$ same as desktop PC High-performance scientific computing \rightarrow parallel computing

- Characterize computers by:
- CPU:
- Memory:
- Interconnects:
scalar, vector, superscalar, RISC,
shared, distributed, cache, banks, bandwidth, bus, switch, ring, grid,
- Basic types:

Traditional

Shared Memory Parallel

Distributed Memory Parallel

Approaches to Parallel Processing

High-level • Independent programs + message-passing

- Distribute work among processors
- Loosely-coupled
- Programmer must modify high-level algorithms

Mid-level • Threads (task-level)

- Independent tasks (subprograms) + shared memory
- For shared memory access, use locks on critical regions
- Compiler directives by programmers

Low-level • Threads (loop-level)

- Split DO-loop into pieces, compute, synchronize
- Compiler directives by programmers

Low-level - Pipelining or vectorization

- Pipelined execution of DO-loops
- Automatic vectorization by compilers \&/or hardware, or compiler directives by programmers
 via messages
- Independent programs
- Separate memory address space for each program (private memory)
- All control information \& data must be passed between programs by explicit messages (SENDs \& RECEIVEs)
- Can run on distributed or shared memory systems
- Efficient only when $T_{\text {computation }} \gg T_{\text {messages }}$
- Standard message-passing:
- MPI
- PVM

Threading (task-level)

- Single program, independent sections or subprograms
- Each thread executes a portion of the program
- Common address space, must distinguish private \& shared data
- Critical sections must be "locked"
- Can run only on shared memory systems, not distributed memory
- Thread control by means of compiler directives
- Standard threading:
- OpenMP
$\left.\begin{array}{|l|l|}\hline \begin{array}{l}\text { \$\$omp do parallel } \\ \text { do } k=1, n \\ c(k)=a(k)+b(k) \\ \text { enddo }\end{array}\end{array} \longrightarrow \begin{array}{l}\begin{array}{l}\text { do } k=1, n, 2 \\ c(k)=a(k)+b(k) \\ \text { enddo }\end{array}\end{array} \begin{array}{|l}\text { do } k=2, n, 2 \\ c(k)=a(k)+b(k) \\ \text { enddo }\end{array}\right]$
- Single DO-loop within program
- Each loop iteration must be independent
- Each thread executes different portion of DO-loop
- Invoked via compiler directives
- Standard threading:
- OpenMP

Domain Decomposition

Decompose
Computational Problem

Analyze
Subdomains
In parallel

Collect Problem Results

- Coarse-grained parallelism, high-level
- For mesh-based programs:

1. Partition physical problem into blocks (domains)
2. Solve blocks separately (in parallel)
3. Exchange boundary values as needed
4. Iterate on global solution

- Revised iteration scheme may affect convergence rates
- Domain decomposition is often used when the entire problem will not fit in the memory of a single SMP node

If a computation has fast (parallel) and slow (scalar) components, the overall calculation time will be dominated by the slower component
Overall System $\quad=\quad$ Single CPU
Performance $\frac{1}{1-F+F / N}$

where \quad| F | $=$ fraction of work performed in parallel |
| ---: | :--- |
| N | $=$ number of parallel processors |
| Speedup | $=1 /(1-F+F / N)$ |

For $\mathrm{N}=10$	For $\mathrm{N}=$ infinity						
$\underline{\mathrm{F}}$	$\underline{\mathrm{S}}$	$\underline{\mathrm{F}}$	$\underline{\mathrm{S}}$	\underline{S}	\underline{S}	\underline{F}	$\underline{\mathrm{~S}}$
20%	1.2	90%	5.3	20%	1.3	90%	10
40%	1.6	95%	6.9	40%	1.7	95%	20
60%	2.2	99%	9.2	60%	2.5	99%	100
80%	3.6	99.5%	9.6	80%	5	99.5%	200

Amdahl's Law

My favorite example

Which system is faster?

System A: (16 processors)•(1 GFLOP each) = 16 GFLOP total

System B: (10,000 procs)•(100 MFLOP each) $=\mathbf{1 , 0 0 0}$ GFLOP total

Apply Amdahl's law, solve for F:

$$
1 /(1-F+F / 16)=.1 /(1-F+F / 10000)
$$

\rightarrow System A is faster, unless $\mathbf{> 9 9 . 3 \%}$ of work is parallel

- In general, a smaller number of fatter nodes is better
- For effective parallel speedups, must parallelize everything

Parallel Monte Carlo

- Possible parallel schemes:
- Jobs run many sequential MC calculations, combine results
- Functional sources, tallies, geometry, collisions,
- Phase space space, angle, energy
- Histories Divide total number of histories among processors
- All successful parallel Monte Carlo algorithms to date have been history-based.
- Parallel jobs always works, variation on parallel histories
- Some limited success with spatial domain decomposition
- Master task: control + combine tallies from each slave
- Slave tasks: Run histories, tallies in private memory
- Initialize:

Master sends problem description to each slave (geometry, tally specs, material definitions, ...)

- Compute, on each of N slaves:

Each slave task runs $1 / \mathrm{N}$ of total histories.
Tallies in private memory.
Send tally results back to Master.

- Combine tallies:

Master receives tallies from each slave \& combines them into overall results.

- Concerns:
- Random number usage
- Load-balancing
- Fault tolerance (rendezvous for checkpoint)
- Scaling

Master / Slave Algorithm (Simple)

Control + Bookkeeping Computation

! Done print_results() save_files()

- Linear Congruential RN Generator

$$
S_{k+1}=\mathrm{g}_{\mathrm{k}}+C \bmod 2^{\mathrm{M}}
$$

- RN Sequence \& Particle Histories

•..		
1	2	3

MCNP stride for new history: 152,917

- To skip ahead k steps in the RN sequence:

$$
S_{k}=\mathrm{g}_{\mathrm{k}-1}+C \bmod 2^{\mathrm{M}}=\mathrm{g}^{\mathrm{k}} \mathrm{~S}_{0}+\mathrm{C}\left(\mathrm{~g}^{\mathrm{k}}-1\right) /(\mathrm{g}-1) \bmod 2^{\mathrm{M}}
$$

- Initial seed for n-th history

$$
S_{0}{ }^{(n)}=g^{n \star 152917} S_{0}+C\left(g^{n^{*} 152917-1}\right) /(g-1) \bmod 2^{M}
$$

This is easy to compute quickly using exact integer arithmetic

- Each history has a unique number
- Initial problem seed \rightarrow initial seed for $n^{\text {th }}$ particle on $\mathrm{m}^{\text {th }}$ processor
- If slave knows initial problem seed \& unique history number, can initialize RN generator for that history

Fault Tolerance

- Los Alamos

- On parallel systems with complex system software \& many CPUs, interconnects, disks, memory, MTBF for system is a major concern.
- Simplest approach to fault tolerance:
- Dump checkpoint files every M histories (or XX minutes)
- If system crashes, restart problem from last checkpoint
- Algorithm considerations
- Rendezvous every M histories.
- Slaves send current state to master, master saves checkpoint files
- Parallel efficiency affected by M.

- For efficiency, want (compute time) \gg (rendezvous time)
- Compute time: Proportional to \#histories/task
- Rendezvous time: Depends on amount of tally data \& latency+bandwidth for message-passing

Master / Slave Algorithm, with Rendezvous

- Initialize:

Master sends problem description to each slave (geometry, tally specs, material definitions, ...)

- For rendezvous $=1, \mathrm{~L}$
- Compute, on each of N slaves:

Each slave task runs $1 / \mathrm{N}$ of (total histories)/L.
Tallies in private memory.
Send tally results back to Master.

- Combine tallies:

Master receives tallies from each slave \& combines them into overall results.

- Checkpoint:

Master saves current tallies \& restart info in file(s)

- Time per history may vary significantly
- For problems using variance reduction:
- Particles headed in "wrong" direction may be killed quickly, leading to a short history.
- Particles headed in "right" direction may be split repeatedly. Since the split particles created are part of the same history, may give a very long history.
- For problems run on a workstation cluster:
- Workstation nodes in the cluster may have different CPU speeds
- Workstations in the cluster may be simultaneously used for interactive work, with highly variable CPU usage on that node.
- Node performance effectively varies continuously over time.
- Naïve solution
- Monitor performance per node (e.g., histories/minute)
- Periodically adjust number of histories assigned to each node, according to node performance
\# histories assigned to node $\mathrm{n} \sim$ measured speed of node n
- Better solution: self-scheduling

Load Balancing - Self-Scheduling

- For a problem with N slave processors, divide histories into more than N chunks.
- Let $\mathrm{L}=$ number of chunks, $\mathrm{L}>\mathrm{N}$
- Typically, $\mathrm{L} \sim 20 \mathrm{~N}$ or $\mathrm{L} \sim 30 \mathrm{~N}$
- Histories/chunk $=$ (total histories) $/ \mathrm{L}$
- Slave: If idle, ask master for work. Repeat until no more work.
- Master: Send chunk of work to idle slave. Repeat until no more work.
- On average, imbalance in workload should be < 1/L
- Additional gains:
- Naïve master/slave algorithm is synchronous
- Self-scheduling master/slave algorithm is asynchronous. More overlap of communication \& computation \rightarrow reduced wait times \& better performance

- Much more communication with Master, but only minimal amount of control info needed ($1^{\text {st }} \&$ last history in chunk)
- Need to handle stopping condition carefully avoid "dangling" messages

Load Balancing - Self-Scheduling

! Done print_results()
save_files()

- For clustered SMPs,
- Use message-passing to distribute work among slaves ("boxes")
- Use threading to distribute histories among individual processors on box

- Only the master thread (thread 0) on each slave uses MPI send/recv's

Parallel Monte Carlo Performance

Parallel MC Computational Characteristics

- For master/slave algorithms (with self-scheduling, fault tolerance, \& threads):
- No communication among slave tasks
- Occasional communication between master \& slaves (rendezvous)
- Slave tasks are compute-intensive
- Few DO-loops
- 40% of ops are test+branch (IF... GOTO...)
- Irregular memory access, no repetitive patterns
- For fixed-source problems:
- Only 1 rendezvous is strictly necessary, at end of calculation
- More rendezvous used in practice, for fault tolerance
- For eigenvalue problems (K-effective):
- Must have a rendezvous every cycle (cycle $=$ batch $=$ generation)
- Master controls iteration \& source sampling
- Common-sense approach to performance:

Fewer rendezvous \rightarrow better parallel performance

- Metrics
- Speedup
$\mathrm{S}_{\mathrm{N}}=\mathrm{T}_{1} / \mathrm{T}_{\mathrm{N}}$
N = \# processors
- Efficiency
$E_{N}=S_{N} / N$
- Fixed overall work
(fixed problem size)
- Efficiency decreases with N
- Speedup (eventually) drops as N increases
- Why?

As N increases, same communication/processor, but less work/processor (fewer histories/processor) \rightarrow (computation/communication) decreases

- Fixed work per processor
(scaled problem size)
- Efficiency approx. constant with N
- Speedup approx. linear with N
- Why?

As N increases, same communication/processor, same work/processor
(\# histories $\sim \mathrm{N}$) $\boldsymbol{\rightarrow}$ (computation/communication) stays approx. same

- Called scaled speedup

Parallel MC Performance Limits

- Another way to determine efficiency

Parallel Efficiency $=\quad T_{C} /\left(T_{C}+T_{M}\right)$
$\mathrm{T}_{\mathrm{C}}=$ computing time
$\mathrm{T}_{\mathrm{M}}=$ time for messages, not overlapped with computing

- Slaves can send messages in parallel

- Master receives \& processes messages serially

If enough messages are sent to master, extra wait time will limit performance

$\mathrm{N}=$ \# processors
$\mathrm{T}_{1}=\mathrm{CPU}$ time for M histories using 1 processor
(Depends on physics, geometry, compiler, CPU speed, memory, etc.)
$L=$ amount of data sent from 1 slave each rendezvous
$T_{S}=0 \quad$ negligible, time to distribute control info
$T_{R}=s+L / r \quad \mathbf{s}=$ latency for message, $\mathbf{r}=$ streaming rate
$T_{C}{ }^{\text {fix }}=T_{1} / N \quad$ fixed problem size, M histories/rendezvous
$T_{C}{ }^{\text {scale }}=T_{1} \quad$ scaled problem size, $N M$ histories/rendezvous

Parallel MC Performance Scaling

- Scaling models, for master/slave with serial rendezvous
- "fixed" = constant number of histories/rendezvous, M (constant work)
- "scaled" = M histories/slave per rendezvous, NM total (constant time)

Histories/rendezvous Speedup

fixed	$S=N /\left(1+c N^{2}\right)$
scaled	$S=N /(1+c N)$

N = number of slaves
$\mathrm{c}=(\mathrm{s}+\mathrm{L} / \mathrm{r}) / \mathrm{T}_{1}$
$T_{1} \sim M, \quad$ more histories/rendezvous \rightarrow larger T_{1}, smaller c
$\mathrm{S}+\mathrm{L} / \mathrm{r}$, fixed, determined by number of tallies,

As $\mathrm{M} \rightarrow$ infinity, $\mathrm{c} \rightarrow 0, \quad \mathrm{~S} \rightarrow \mathrm{~N} \quad$ (limit for 1 rendezvous)

Fixed size, serial messages

$$
S=N /\left(1+c N^{2}\right)
$$

Scaled size, serial messages

$$
S=N /(1+c N)
$$

$\mathrm{N}=$ number of slaves

$$
c=(s+L / r) /\left(M_{1} t_{h}\right)
$$

Parallel MC Performance Scaling

VIM Monte Carlo - Example of Estimating Performance

- TREAT reactor, continuous-energy neutron transport
- Per slave: $\quad M_{1}=400$ histories,

L =.341 MB of tally data

- Communications:

Workstation network, P4 + ethernet: $s \approx .001 \mathrm{sec}, \mathrm{r} \approx .8 \mathrm{MB} / \mathrm{sec}$

IBM-SP1,
IBM-SP1,

P4 + ethernet: $\quad s \approx .001 \mathrm{sec}, r \approx .8 \mathrm{MB} / \mathrm{sec}$
$\mathrm{P} 4+$ EUI-H: $\quad \mathrm{s} \approx 50 \mu \mathrm{sec}, \mathrm{r} \approx 8.5 \mathrm{MB} / \mathrm{sec}$
c

Sun Sparc2	.25 sec	100 sec	.43 sec	.004
rs6000/350	.10 sec	40 sec	.43 sec	.011
SP1 - ethernet	.075 sec	30 sec	.43 sec	.014
SP1 - EUIH	.075 sec	30 sec	.04 sec	.001

Note: $\quad \mathrm{T}_{1}$ - very repeatable \& predictable.
T_{r} - difficult to measure on busy machine

VIM Monte Carlo - Measured Performance on SP1 - TREAT reactor

Scaled Speedup

$$
\begin{array}{ll}
\text { SP1 - P4 + EUIH } & \mathrm{S}=\mathrm{N} /(1+.0056 \mathrm{~N}) \\
+\mathrm{SP} 1-\mathrm{P} 4+\text { ethernet } & \mathrm{S}=\mathrm{N} /(1+.028 \mathrm{~N})
\end{array}
$$

Measured message passing on SP1 is 2-3 times slower than specs (busy machine; experimental software; flaky hardware)

Parallel MC Performance Scaling

Parallel Eigenvalue Calculations - scaled size, serial messages
$S=N /(1+c N)$
$S_{\text {max }}=1 / c$
$N_{1 / 2}=1 / c$

$$
\begin{aligned}
& N=\text { number of slaves } \\
& c=(s+L r) /\left(M_{1} t_{h}\right)
\end{aligned}
$$

Examples:

- VIM, TREAT problem

Sun Sparc2 workstation cluster

$$
\begin{array}{ll}
\mathrm{c}=.0043 & \mathrm{~S}_{\max }=233 \\
\mathrm{c}=.011 & \mathrm{~S}_{\max }=93 \\
\mathrm{c}=.014 & \mathrm{~S}_{\max }=70 \\
\mathrm{c}=.00134 & \mathrm{~S}_{\max }=748
\end{array}
$$

rs6000/350 workstation cluster
SP1, using ethernet
SP1, using EUIH comm.

- RACER, "typical" large problem

100 K histories/min, 20 K histories/slave
32 MB tally data, $r \sim 1800 \mathrm{MB} / \mathrm{sec}$
Cray-C90, using SSD for messages
c~. $001 \quad S_{\max } \sim 1000$
(16 processors, max)

- Master/slave algorithms work well
- Load-balancing: Self-scheduling
- Fault-tolerance: Periodic rendezvous
- Random numbers: Easy, with LCG \& fast skip-ahead algorithm
- Tallies:

Use OpenMP "critical sections"

- Scaling:
- Hierarchical: Master/slave MPI, OpenMP threaded slaves
- Portability: MPI/OpenMP, clusters of anything
- Remaining difficulties
- Memory size: Entire problem must fit on each slave
- Domain-decomposition has had limited success
- Should be OK for reactor problems
- May not scale well for shielding or time-dependent problems
- For general 3D geometry, effective domain-decomposition is unsolved problem
- Random access to memory distributed across nodes gives huge slow dow \mathbf{n}
- May need functional parallelism with "data servers"

MCNP5 Parallel Calculations

Hierarchical Parallelism

- Use message-passing to distribute work among slaves ("boxes")
- Use threading to distribute histories among individual cpus on box

- We routinely test MCNP5 on:
- ASCI Bluemountain -
- ASCI White -
- ASCI Q -
- Linux clusters
- Windows PC cluster
- 1,000 processor jobs are "routine"
- Threading
- Individual histories are handled by separate threads
- No thread synchronization is needed during a history
- Implemented by OpenMP compiler directives
- Tallies, RN data, \& some temporary variables for history are in thread-private memory

Example:
common/RN_THREAD/ RN_SEED, RN_COUNT, RN_NPS
!\$OMP THREADPRIVATE (/RN_THREAD/)
save /RN_THREAD/

- OpenMP critical sections are used for some tallies or variable updates Example:
!\$OMP CRITICAL (RN_STATS)
RN_COUNT_TOTAL = RN_COUNT_TOTAL + RN_COUNT \$!OMP END CRITICAL (RN_STATS)
- Message-passing \& file I/O are executed only from thread-0 (master thread) for each MPI task

Parallelism in MCNP5

- Los Alamos

- Message-passing
- In MCNP5, all message-passing is handled by calls to the dotcomm package, a communications layer which contains an interface to either MPI or PVM
- Recommend using MPI - PVM is obsolete \& won't be supported in future

- Either MPI or PVM message-passing is selected in dotcomm at compile-time
- Using the dotcomm package \& either MPI or PVM, MCNP5 can run in parallel without source code changes on
- Parallel supercomputers (e.g., ASCI tera-scale computers)
- COWs (clusters of workstations)
- Linux clusters
- PC clusters

$$
\begin{aligned}
& \mathrm{N}=\text { total number of MPI tasks, master }+(\mathrm{N}-1) \text { slaves } \\
& \mathrm{M}=\text { number of OpenMP threads/slave }
\end{aligned}
$$

- Running on parallel systems with MPI only
mpirun -np N mcnp5.mpi $\mathrm{i}=\mathrm{inp} 01 \ldots$.
- Running with threads only
mcnp5 tasks M i=inp01
- Running on parallel systems with MPI \& threads

ASCI Bluemountain (SGI)
mpirun -np N menp5.mpi tasks M i=inp01
ASCI Q (HP/Compaq)
prun -n \mathbf{N}-c M mcnp5.mpi tasks $\mathrm{M} \quad \mathrm{i}=\ldots$
If submitting jobs through a batch system (e.g., LSF),
$\mathrm{N} \& \mathrm{M}$ must be consistent with LSF requested resources

MCNP5 Parallel Calculations

- How many threads ?
- Max number of threads = \# CPUs per node
- ASCI Bluemountain
- ASCI Q:
- Laptop PC cluster:

128 cpus / node
4 cpus /node
$1 \mathrm{cpu} /$ node

- Experience on many systems has shown that a moderate number of threads per slave is efficient; using too many degrades performance
- ASCI Bluemountain:
- ASCI Q:

4-12 threads/slave usually effective
>16 threads/slave usually has bad performance
4 threads/slave is effective

- Rules-of-thumb vary for each system
- Thread efficiency is strongly affected by operating system design
- Scheduling algorithm for threads used by operating system is generally designed to be efficient for small number of threads (<16)
- For large number of threads, context-switching \& cache management may take excessive time, giving poor performance
- Other jobs on system (\& their priority) affect thread performance
- No definite rules - need to experiment with different numbers of threads
- Parallel performance is sensitive to number of rendezvous
- Can't control number of rendezvous directly
- The following things cause a rendezvous:
- Printing tallies
- Dumping to the RUNTPE file
- Tally Fluctuation Chart (TFC) entries
- Each cycle of eigenvalue problem
- Use PRDMP card to minimize print/dump/TFC
PRDMP ndp ndm mct ndmp dmmp
ndp = increment for printing tallies \leftarrow use large number
ndm = increment for dump to RUNTPE \leftarrow use large number
mct $=$ flag to suppress time/date info in MCTAL
ndmp = max number of dumps in RUNTPE
dmmp = increment for TFC \& rendezvous use large number
For fixed-source problems, increments are in particles
For eigenvalue problems, increments are in cycles
- Keff calculations: Use KCODE card for hist/cycle
- Want to reduce the number of cycles
- More histories in each cycle
- Should run hundreds of cycles or more for good results

KCODE nsrck rkk ikz kct
nsrck $=$ histories / cycle \leftarrow use a large number
rkk = initial guess for Keff
ikz = number of initial cycles to discard
kct $=$ total number of cycles to run

Suggested: nsrck \sim (thousands) x (number of processors)

MCNP5 Parallel Calculations

- Los Alamos

MCNP Speed vs. Number of Processors BNCT Model w/ NPS $=100,000$ on a Linux Cluster w/ MPICH

Parallel Processing For Large Monte Carlo Calculations

If a Monte Carlo problem is too large to fit into memory of a single processor

Decompose problem into spatial domains

Follow histories in each domain in parallel, move particles to new domains as needed

Collect Problem Results

- Need periodic synchronization to interchange particles among nodes
- Use message-passing (MPI) to interchange particles
\rightarrow Domain decomposition is often used when the entire problem will not fit in the memory of a single SMP node
- Inherent parallelism is on particles
- Scales well for all problems
- Domain decomposition
- Spatial domains on different processors
- Scales OK for Keff or α calculations, where particle distribution among domains is roughly uniform
- Does not scale for time-dependent problems due to severe load imbalances among domains
- Domain decomposition - scaling with N processors
- Best: performance $\sim \mathbf{N}$ (uniform distribution of particles)
- Worst: performance~1 (localized distribution of particles)

- Data is distributed by domain decomposition, but parallelism is on particles
- Solution?

Parallel on particles + distributed data

- Particle parallelism + Data Decomposition
- Existing parallel algorithm for particles
- Distribute data among processor nodes
- Fetch the data to the particles as needed (dynamic)
- Essentially same approach as used many years ago for CDC (LCM) or CRAY (SSD) machines
- Scales well for all problems (but slower)

Parallel Monte Carlo

- Particle parallelism + data decomposition - logical view:

Parallel
Calculation

Data
Layer

- Mapping of logical processes onto compute nodes is flexible:
- Could map particle \& data processes to different compute nodes
- Could map particle \& data processes to same compute nodes
- Can replicate data nodes if contention arises
- Particle parallelism + data decomposition

Entire physical problem
Local copies of data for particle neighborhood

Parallel Monte Carlo

- History modifications for data decomposition source
while wgt >cutoff
compute distances \& keep minimum:
dist-to-boundary
dist-to-time-cutoff
dist-to-collision
dist-to-data-domain-boundary
move particle
pathlength tallies
if distance == dist-to-data-domain-boundary
fetch new data
collision physics
roulette \& split
- Data windows \& algorithm tuning
- Defining the "particle neighborhood" is an art
- Anticipating the flight path can guide the pre-fetching of blocks of data
- Tuning parameters:
- How much data to fetch?
- Data extent vs. particle direction ?

Entire physical problem

- Examples

- Point detector tallies are non-local
- Every collision contributes an expected score
- At every collision, "pseudo-particles" are tracked along the path from collision to detector
- Scores from all "pseudo-particles" (including from all split particles) must be tallied together into a single score for the history

Entire physical problem

For Monte Carlo problems which can fit in memory:

- Concurrent scalar jobs - ideal for Linux clusters
- Master/slave parallel algorithm (replication) works well
- Load-balancing: Self-scheduling
- Fault-tolerance: Periodic rendezvous
- Random numbers: Easy, with LCG \& fast skip-ahead algorithm
- Tallies: Use OpenMP "critical sections"
- Scaling: Simple model, more histories/slave + fewer rendezvous
- Hierarchical: Master/slave MPI, OpenMP threaded slaves
- Portability: MPI/OpenMP, clusters of anything

For Monte Carlo problems too large to fit in memory:

- Spatial domain decomposition (with some replication) can work for some problems
- Particle parallelism + data decomposition is a promising approach which should scale for all problems

References

1. S. MATSURA, F. B. BROWN, R. N. BLOMQUIST, "Parallel Monte Carlo Eigenvalue Calculations," Trans. Am. Nucl. Soc. (Nov. 1994).
2. F.B. BROWN, "Random Number Generation with Arbitrary Strides," Trans. Am. Nud. Soc. (Nov., 1994)
3. F.B. BROWN \& Y. NAGAYA, "The MCNP5 Random Number Generator", Trans. Am. Nucl. Soc. (Nov., 2002)
4. X-5 MONTE CARLO TEAM, "MCNP - A General Monte Carlo N-Particle Transp ort Code, Version 5, Volume I: Overview and Theory," LA-UR-03-1987, Los Alamos National Lab oratory (April, 2003).
5. F. B. BROW N, J. E. SWEEZY, J. T. GOORLEY, "MCNP5 Parallel Processing W orkshop," LA-UR-032228, Los Alamos National Lab oratory (2003).
6. A. MAJUMDAR and W. R. MARTIN, "Performance Measurement of Monte Carlo Photon Transport on Parallel Machines," PHYSOR 2000: ANS Int. Topical Meeting, Pittsb urgh (May 2000).
7. S. R. LEE, S. D. NOLEN, F. B. BROWN, "MC++ Monte Carlo Code for ASCI," Los Alamos National Laboratory report (1998).
8. R. PROCASSINI, et al., "Design, Implementation and Testing of MERCURY, a Parallel Monte C arlo Transp ort Code," Proc. ANS Math. \& Comp. Topical, Gatlinb urg, TN, Ap ril 6-11 (2003)
9. H.J. ALME, G.H. RODRIGUE, G.B. ZIMMERMAN, "Domain Decomposition Models for Parallel Monte C arlo Transport", J. Supercomp uting, 18, 5-23 (2001).
10. "MPI: A Message Passing Interface", http://www-unix.mcs.anl.gov/mpi/index.html
11. "PVM: Parallel Virtual Machine", http://www.epm.oml.gov/pvm
12. "OpenMP Fortran Application Program Interface", http://www.openmp.org
\square

References

I. Monte Carlo Methods for Particle Transport Problems

A. First Known Reference for Using Monte Carlo Methods to Solve Particle Transport Problems

- J. von Neumann, letter to R.D. Richtmyer, in "Statistical Methods in Neutron Diffusion," LANL report LAMS-551 (1947).

B. Highly Recommended

- L. L. Carter and E. D. Cashwell, Particle Transport Simulation with the Monte Carlo Method, ERDA Critical Review Series, TID-26607, National Technical Information Service, Springfield MA (1975).

C. Introductory References

- M. H. Kalos and P. A. Whitlock, Monte Carlo Methods. Volume I: Basics, John Wiley \& Sons, NY (1986).
- E. E. Lewis and W. F. Miller, Jr., Computational Methods of Neutron Transport, American Nuclear Society, Inc., LaGrange Park, IL (1993).
- S. Nakamura, Computational Methods in Engineering and Science, R. E. Krieger Pub. Company, Malabar, FL (1986).
- S.A. Dupree \& S.K. Fraley, A Monte Carlo Primer - A Practical Approach to Radiation Transport, Kluwer Academic, NY (2002).
- S.A. Dupree \& S.K. Fraley, A Monte Carlo Primer - Volume 2, Kluwer Academic, NY (2004).
- J. Wood, Computational Methods in Reactor Shielding, Pergamon Press, Oxford (1982).

D. Advanced References

- Lux \& L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations, CRC Press, Boston (1991).
- J. J. Duderstadt and W. R. Martin, Transport Theory, John Wiley \& Sons, NY (1979).
- G. Goertzel and M. H. Kalos, "Monte Carlo Methods in Transport Problems," in Progress in Nuclear Energy, Series I, Physics and Mathematics, Vol. 2, (1958).
- E. D. Cashwell and C.J. Everett, A Practical Manual on the Monte Carlo Method for Random Walk Problems, Pergamon Press, London (1959).
- J.M. Hammersley \& D.C. Handscomb, Monte Carlo Methods, John Wiley \& Sons, NY (1964).
- Y. A. Schreider, The Monte Carlo Method, Pergamon Press, NY (1966).
- J. Spanier and E. M. Gelbard, Monte Carlo Principles and Neutron Transport Problems, AddisonWesley, Reading, MA (1969).
- X-5 Monte Carlo Team, "MCNP - A General N-Particle Transport Code, Version 5 - Volume I: Overview and Theory", LA-UR-03-1987 (April, 2003).
- X-5 Monte Carlo Team, "MCNP - A General N-Particle Transport Code, Version 5 - Volume II: User's Guide", LA-CP-03-0245 (April, 2003).
- X-5 Monte Carlo Team, "MCNP - A General N-Particle Transport Code, Version 5 - Volume III: Developer's Guide", LA-CP-03-0284 (April, 2003).
- F.B. Brown, "Fundamentals of Monte Carlo Particle Transport," LA-UR-04-8817 (Dec, 2004).

II. General References on the Monte Carlo Method

- G.S. Fishman, Monte Carlo Concepts, Algorithms, and Applications, Springer-Verlag, NY (1996).
- R. Y. Rubinstein, Simulation and the Monte Carlo Method, John Wiley \& Sons, NY (1981).
- J. H. Halton, "A Retrospective and Prospective Survey of the Monte Carlo Method," SIAM Rev 12,1, (1970).
- C.P. Robert \& G. Casella, Monte Carlo Statistical Methods, Springer (2004).

III. Random Number Generation and Random Sampling Methods

- L. Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, NY (1986).
- D. E. Knuth, The Art of Computer Programming, Vol. 2: Semi-numerical Algorithms, $3^{\text {rd }}$ Edition, Addison-Wesley, Reading, MA (1998).
- J. von Neumann, "Various Techniques Used in Conjunction with Random Digits," J. Res. Nat. Bur. Stand. Appl. Math Series 3, 36-38 (1951).
- C. J. Everett and E. D. Cashwell, "A Third Monte Carlo Sampler," LA9721-MS, Los Alamos National Laboratory, Los Alamos, NM (1983).
- H. Kahn, "Applications of Monte Carlo," AECU-3259, Rand Corporation, Santa Monica, CA (1954).
- E. J. McGrath and D. C. Irving, "Techniques for Efficient Monte Carlo Simulation," ORNL-RSIC38, Vols. I-III, Oak Ridge National Laboratory, Oak Ridge, TN (1975).
- J.E. Gentle, Random Number Generation and Monte Carlo Methods, Springer, NY (2003).
- F.B. Brown \& Y. Nagaya, "The MCNP5 Random Number Generator", Trans. Am. Nucl. Soc. [also, LA-UR-02-3782] (November, 2002).
- F. B. Brown, "Random Number Generation with Arbitrary Strides," Trans. Am. Nucl. Soc. 71,202 (1994).
- F.B. Brown \& W.R. Martin, "Direct Sampling of Monte Carlo Flight Paths in Media with Continuously Varying Cross-sections", ANS Topical Meeting on Mathematics \& Computation, Gatlinburg, TN April 6-11, 2003 [also, LA-UR-02-6530] (September, 2002).
- F. B. Brown \& W. R. Martin, "Monte Carlo Particle Transport in Media with Exponentially Varying Time-dependent Cross-sections", Trans. Am. Nucl. Soc [also, LA-UR-01-675] (June 2001).
- F. B. Brown and J. L. Vujic, "Comparison of Direct and Rejection Sampling Methods," Trans.Am. Nucl. Soc. 69, 223 (Nov. 1993).

IV. Monte Carlo Methods for the Solution of Reactor Eigenvalue Problems

- J. Lieberoth, "A Monte Carlo Technique to Solve the Static Eigenvalue Problem of the Boltzmann Transport Equation," Nukleonik 11,213 (1968).
- M. R. Mendelson, "Monte Carlo Criticality Calculations for Thermal Reactors," Nucl. Sci Eng. 32, 319-331 (1968).
- H. Rief and H. Kschwendt, "Reactor Analysis by Monte Carlo," Nucl. Sci. Eng., 30, 395 (1967).
- R. C. Gast and N. R. Candelore, "Monte Carlo Eigenfunction Strategies and Uncertainties," in Proc. NEACRP Meeting of a Monte Carlo Study Group, ANL-75-2, Argonne National Laboratory, Argonne, IL (1974).
- M. H. Kalos, F. R. Nakache, and J. Celnik, "Monte Carlo Methods in Reactor Computations," in Computing Methods in Reactor Physics, Gordon and Breach, NY (1968).
- D. C. living, R. M. Freestone, and F. B. K. Kam, "O5R, A General Purpose Neutron Monte Carlo Code," ORNL-3622, Oak Ridge National Laboratory (1965).
- E. R. Woodcock, et al, "Techniques Used in the GEM Code for Monte Carlo Neutronics Calculations in Reactors and Other Systems of Complex Geometry," in Proc. Conf Applications of Computing Methods to Reactor Problems, ANL-7050, Argonne National Laboratory, Argonne, IL (1965).
- W. Goad and R. Johnston, "A Monte Carlo Method for Criticality Problems," Nucl. Sci. Eng. 5, 371-375 (1959).
- R.J. Brissenden and A.R. Garlick, "Biases in the Estimation of Keff and Its Error by Monte Carlo Methods," Ann. Nucl. Energy, Vol 13, No. 2, 63-83 (1986).
- T. Yamamoto and Y. Miyoshi, "Reliable Method for Fission Source Convergence of Monte Carlo Criticality Calculation with Wielandt's Method," J. Nucl. Sci. Technol. 41, No. 2, 99-107 (2004).
- F.B. Brown, W.R. Martin, W. Ji, J.L. Conlin, \& J.C. Lee, "Stochastic Geometry and HTGR Modeling for MCNP5", submitted to ANS Monte Carlo 2005 Topical Meeting, Chattanooga TN, April 17-21, 2005, [also LA-UR-04-8668] (Dec, 2004).
- F.B. Brown \& W.R. Martin, "Stochastic Geometry Capability in MCNP5 for the Analysis of Particle Fuel", Annals of Nuclear Energy, Vol 31, Issue 17, pp 2039-2047 [also LA-UR-04-5362] (Nov, 2004).
- F.B. Brown \& R.D. Mosteller, "MCNP5 Workshop - PHYSOR-2004", LA-UR-04-2647 (April, 2004).
- T. Ueki \& F.B. Brown, "Stationarity Modeling and Informatics-Based Diagnostics in Monte Carlo Criticality Calculations", Nucl. Sci. Eng. 149, No. 1, 38-50 [also LA-UR-03-8343] (Jan, 2005).
- T. Ueki, F.B. Brown, D.K. Parsons, \& J.S. Warsa, "Time Series Analysis of Monte Carlo Fission Sources: I. Dominance Ratio Computation", Nucl. Sci. Eng. 148, No. 3, 374-390 [also LA-UR-035823] (Nov, 2004).
- T. Ueki \& F.B. Brown, "Informatics Approach to Stationarity Diagnostics of the Monte Carlo Fission Source Distribution," Trans. Am. Nucl. Soc. [also LA-UR-03-3949] (Nov, 2003).
- T. Ueki, F.B. Brown, \& D.K. Parsons, "Dominance Ratio Computation via Time Series Analysis of Monte Carlo Fission Sources", Trans. Am. Nucl. Soc. [also LA-UR-03-0106] (June, 2003).
- Y. Nagaya \& F.B. Brown, "Implementation of a Method to Estimate Change in Eigenvalue Due to Perturbed Fission Source Distribution Into MCNP", LA-UR-03-1387 (Feb. 2003).
- Y. Nagaya \& F.B. Brown, "Estimation of Change in Keff Due to Perturbed Fission Source Distribution in MCNP", ANS Topical Meeting on Mathematics \& Computation, Gatlinburg, TN April 6-11, 2003 [also, LA-UR-02-6879] (September, 2002).
- T. Ueki \& F.B. Brown, "Stationarity and Source Convergence in Monte Carlo Criticality Calculations", ANS Topical Meeting on Mathematics \& Computation, Gatlinburg, TN April 6-11, 2003 [also, LA-UR-02-6228] (September, 2002).
- T. Ueki, F.B. Brown, D.K. Parsons, \& D.E. Kornreich, "Autocorrelation and Dominance Ratio in Monte Carlo Criticality Calculations", Nucl. Sci. Eng. [also, LA-UR-02-5700] (September, 2002).
- T. Ueki \& F.B. Brown, "Stationarity Diagnostics Using Shannon Entropy in Monte Carlo Criticality Calculations I: F Test", Trans. Am. Nucl. Soc. [also, LA-UR-02-3783] (November, 2002).
- F.B. Brown, R.C. Little, A. Sood, \& D.K. Parsons, "MCNP Calculations for the OECD/NEA Source Convergence Benchmarks", Trans. Am. Nucl. Soc. [also, LA-UR-02-3987] (November, 2002).
- T. Ueki \& F.B. Brown, "Autoregressive Fitting for Monte Carlo K-effective Confidence Intervals", Trans. Am. Nucl. Soc. [also, LA-UR-01-6770] (June, 2002).
- F.B. Brown, R.C. Little, A. Sood, D.K. Parsons, T.A. Wareing, "MCNP Calculations for the OECD/NEA Source Convergence Benchmarks for Criticality Safety Analysis", LA-UR-01-5181 (Sept. 2001)
- D. J. Kelly, "Depletion of a BWR Lattice Using the RACER Continuous-Energy Monte Carlo Code," Proceedings of the ANS Intl. Conf on Mathematics \& Computation, Reactor Physics, \& Environ. Analyses, April 30-May 4, Portland, Oregon (1995).
- T. M. Sutton and F. B. Brown, "Parallel Monte Carlo for Reactor Calculations," Proceedings of the ANS Topical Meeting on Advances in Reactor Physics, April 11-15, 1994, Knoxville, TN (April 1994).
- F. B. Brown, K. L. Derstine, and R. N. Blomquist, "Distributed Computing and Nuclear Reactor Analysis," Proceedings of the ANS Topical Meeting on Advances in Reactor Physics, April 11-15, 1994, Knoxville, TN (April 1994).
- R. N. Blomquist and F.B. Brown, "Parallel Monte Carlo Reactor Neutronics," Proceedings of the Society for Computer Simulation Meeting on High Performance Computing '94, April 11-15, 1994, La Jolla, CA (April 1994).
- E.M. Gelbard, F. B. Brown, and A. G. Gu, "Estimation of Fission Source Bias in Monte Carlo Eigenvalue Calculations," Trans. Am. Nucl. Soc. 69,201 (Nov. 1993).
- F. B. Brown and T. M. Sutton, "Reproducibility and Monte Carlo Eigenvalue Calculations," Trans. Am. Nucl. Soc. 65,235 (June 1992).
- F. B. Brown and F. G. Bischoff, "Computational Geometry for Reactor Applications," Trans.Am. Nucl. Soc. 57, 112 (1988).
- F. B. Brown and M. R. Mendelson, "Vectorized Monte Carlo Applications in Reactor Physics Analysis," Trans. Am. Nucl. Soc. 46, 727 (June 1984).
- F. B. Brown, "Vectorized Monte Carlo Methods for Reactor Lattice Analysis," Proceedings ANS Topical Meeting on Advances in Reactor Computations, Salt Lake City, Utah, 108-123 (March 1983).
- F. B. Brown, "Vectorized Monte Carlo Methods for Reactor Lattice Analysis," KAPL-4163, Knolls Atomic Power Laboratory, Schenectady, NY (March 1983).
- F. B. Brown, "Development of Vectorized Monte Carlo Algorithms for Reactor Lattice Analysis," Trans.Am. Nucl. Soc. 43, 377 (1982).
- J.E. Sweezy, et al., "Automated Variance Reduction for MCNP5 using Deterministic Methods", Proc. Int. Conf. on Radiation Shielding (ICRS-10) and the ANS Radiation Protection and Shielding Division Topical Meeting, Madeira, Portugal [also LA-UR-04-2956] (April, 2004).
- F.B. Brown, J.E. Sweezy, R. Hayes, "Monte Carlo Parameter Studies and Uncertainty Analysis with MCNP5", PHYSOR-2004, ANS Reactor Physics Topical Meeting, Chicago, April 25-29 [also LA-UR-04-0499] (April, 2004).
- F.B. Brown, D. Griesheimer, W.R. Martin, "Continuously Varying Material Properties and Tallies for Monte Carlo Calculations", PHYSOR-2004, ANS Reactor Physics Topical Meeting, Chicago, April 25-29 [also LA-UR-04-0732] (April, 2004).
- T. M. Sutton \& F. B. Brown, "Unresolved Resonance Treatment for the RACER Monte Carlo Code", Proceedings of Intl. Conf. on Physics of Nuclear Sci. \& Tech., Long Island, NY, Oct. 5-8, 1998 (1998).
- C. T. Ballinger, "The Direct S(a,b) Method for Thermal Neutron Scattering," Proceedings of the ANS Intl. Conf on Mathematics \& Computation, Reactor Physics, \& Environ. Analyses, April 30May 4, Portland, Oregon (1995).
- R. G. Gamino, F. B. Brown, and M. R. Mendelson, "A Monte Carlo Green's Function Method for 3-D Neutron Transport," Trans. Am. Nucl. Soc 65,237 (June 1992).

V. Vector and Parallel Monte Carlo

- S. Matsuura, F. B. Brown, and R. N. Blomquist, "Parallel Monte Carlo Eigenvalue Calculations," Trans. Am. Nucl. Soc. 71, 199 (1994).
- F.B. Brown \& W.R. Martin, "High Performance Computing and Monte Carlo", Trans. Am. Nucl. Soc. 91 [also LA-UR-04-4532] (Nov, 2004).
- F.B. Brown, J.T. Goorley, \& J.E. Sweezy, "MCNP5 Parallel Processing Workshop", LA-UR-032228 (April, 2003).
- H.J. Alme, G.H. Rodrigue, G.B. Zimmerman, "Domain Decomposition Methods for Parallel Monte Carlo Transport," J. Supercomputing, 18, 5-23 (2001).
- W. R. Martin, J. A. Rathkopf, and F. B. Brown, "The Impact of Advances in Computer Technology on Particle Transport Monte Carlo," Proceedings of the ANS Topical Meeting on New Horizons in Radiation Protection and Shielding, Richland WA (April 1992).
- F. B. Brown, W. R. Martin, and J. A. Rathkopf, "Particle Transport Monte Carlo and Parallel Computers," Proceedings of the Argonne Theory Institute on Parallel Monte Carlo Simulations, Argonne National Laboratory (August 1991).
- W. R. Martin and F. B. Brown, "Monte Carlo Methods for Particle Transport," Trans. Am. Nucl. Soc. 60, 336 (1989).
- F. B. Brown, "Present Status of Vectorized Monte Carlo," Trans.Am. Nucl. Soc. 55, 323 (1987).
- W. R. Martin and F. B. Brown, "Present Status of Vectorized Monte Carlo for Particle Transport Analysis," International Journal of Supercomputer Applications, Vol. 1, No. 2, 11-32 (June 1987).
- F. B. Brown, "Vectorization of 3-D General-Geometry Monte Carlo," Trans. Am. Nucl. Soc. 53, 283 (1986).
- F. B. Brown and W. R. Martin, "Monte Carlo Methods for Vector Computers," J. Progress in Nuclear Energy, Vol. 14, No. 3,269-299 (1984).
- F. B. Brown, "Vectorized Monte Carlo," Ph. D. dissertation, University of Michigan, Ann Arbor, Michigan (1981).
- F. B. Brown, W. R. Martin, and D. A. Calahan, "Investigation of Vectorized Monte Carlo Algorithms," Trans. Am. Nucl. Soc. 39, 755 (1981).
- F. B. Brown, W. R. Martin, and D. A. Calahan, "A Discrete Sampling Method for Vectorized Monte Carlo Algorithms," Trans. Am. Nucl. Soc. 38, 354 (1981).
- F. B. Brown, D. A. Calahan, W. R. Martin, et al, "Investigation of Vectorized Monte Carlo Algorithms" working paper presented at the DOE Conference on High Speed Computing, Gleneden Beach, Oregon (April 1981).

[^0]: - Recommendation: Always use 1000 or more particles/cycle, preferably 5000, 10000, or more

