Calibration of Sprayers (Also Seeders)

Robert N. Klein, Extension Cropping Systems Specialist

Various methods for calibrating sprayers and seeders and related application information.

Applying the correct rate of a product is an important part of obtaining good results with both seeders and pesticide sprayers. With seeders too little seed reduces crop yields and increases weeds while too much seed increases costs and may reduce yields. With a pesticide application, too little product can mean poor control, while too much can mean crop injury, extra costs, and possible residue on the crop and/or carryover.

Many methods can be used to calibrate sprayers, including the ounce calibration and formula-based methods. With the ounce calibration method, $1 / 128$ of an acre is sprayed and the spray is collected. When measured in ounces the amount collected would be equal to the number of gallons applied per acre since there are 128 ounces in a gallon. Other methods involve using formulas which need to be remembered or recorded for easy use. These methods also may require converting some of the information you have.

The methods discussed in this NebGuide are simple relationships and do not require remembering formulas. However, you do need a general understanding of cross multiplication. The important thing is to be consistent: if you put an item on top of an equation on one side, the same item also goes on the top on the other side.

Three factors determine sprayer application rate:

1. Speed
2. Nozzle spacing
3. Nozzle output (determined by orifice size, pressure, and density of spray solution)
Where:
Speed = Length or distance covered divided by time
Nozzle spacing = Width
Nozzle output = The quantity applied/unit time
The following diagram shows how these three factors are related:

Speed = length or distance covered divided by time

Nozzle spacing (width)
Nozzle output = the quantity applied/unit time

For example, to determine speed:
1 mile per hour (mph) is:
1 mile ($5,280 \mathrm{ft}$) in 1 hour (60 minutes)
Or $1 \mathrm{mph}=\underline{5,280 \mathrm{ft} / \text { hour }}=88 \mathrm{ft} / \mathrm{min}$
$60 \mathrm{~min} /$ hour

Problem 1. Determine speed in mph.

If we travel 440 feet (ft) in 30 seconds (sec), what is our speed in mph?

The objective is to determine the distance traveled in 60 seconds (1 minute) and divide by 88 (88 feet/minute is equal to 1 mph).
for $\frac{30 \mathrm{sec}}{440 \mathrm{ft}}=\frac{60 \mathrm{sec}}{\mathrm{D}} \quad \begin{aligned} & \text { (} \mathrm{D} \text { is the distance we are solving } \\ & \text { in the equation) }\end{aligned}$

We cross multiply to find the value of D
$30 \mathrm{D}=60 \times 440$
$30 \mathrm{D}=26,400$
$D=\frac{26,400}{30}$
D $=880 \mathrm{ft} / 60 \mathrm{sec}$
Since every 88 ft traveled/60 sec (1 min) is equal to 1 mph , we divide 880 by 88 to get 10 mph

Problem 2. Determine speed in mph.

If we travel 297 feet in 27 seconds, what is our speed?

$$
\begin{aligned}
& \frac{27 \mathrm{sec}}{297 \mathrm{ft}}=\frac{60 \mathrm{sec}}{\mathrm{D}} \\
& 27 \mathrm{D}=60 \times 297 \\
& 27 \mathrm{D}=17,820 \\
& \mathrm{D}=\frac{17,820}{27} \\
& \mathrm{D}=660 \mathrm{ft} / 60 \text { sec } \\
& \text { Divide by } 88 \text { since } 1 \mathrm{mph}=88 \mathrm{ft} / 60 \mathrm{sec}(1 \mathrm{~min}) \\
& \frac{660}{88}=7.5 \mathrm{mph}
\end{aligned}
$$

Problem 3. Determine speed in mph.

If we travel 660 feet in 1 minute and 15 seconds, what is our speed?

First, convert 1 minute and 15 seconds to seconds: $60+15=75$ seconds

$$
\begin{aligned}
& \frac{75(\mathrm{sec})}{660(\mathrm{ft})}=\frac{60(\mathrm{sec})}{\mathrm{D}} \\
& 75 \mathrm{D}=39,600 \\
& \mathrm{D}=528
\end{aligned}
$$

$$
\frac{528}{88}=6 \mathrm{mph}
$$

Problem 4. Determine rate/acre.

If the sprayer is moving at 6 mph , the distance covered in one minute is 528 feet ($6 \mathrm{mph} \times 88 \mathrm{ft} / \mathrm{min}=528$ feet).

To determine the area you cover with one nozzle in one minute if your sprayer has a 30 -inch nozzle spacing:

30 in (2.5 ft) \qquad
Area sprayed $=1,320$ sq. ft. $(2.5 \mathrm{ft} \times 528$
$\mathrm{ft} / \mathrm{min}$)
Collect the output of several nozzles and determine the average output per nozzle. All nozzles should be within 10 percent of the manufacturer's rating for that nozzle. For example an XR11003 delivers 0.3 gpm at 40 psi. If it delivers more than 0.33 gpm or 42.24 (128 x . 33) ounces/min at 40 psi , the nozzle should be replaced. Any nozzle delivering 5 percent above or below the average delivery rate for all the nozzles should be replaced.

For this example, the average nozzle output is 32 oz per minute or

$$
32(\mathrm{oz} / \mathrm{min}) \div 128(\mathrm{oz} / \text { gallon })=0.25 \mathrm{gpm}
$$

What is the rate per acre? One way to calculate application rate without remembering a formula is to use a relationship: The amount applied and the area sprayed per minute are the same as the amount applied and the area sprayed per acre. R = gals/acre

Problem 5. Determine the acres sprayed per minute.
Travel distance in one minute $=616 \mathrm{ft}$
Nozzle spacing $=30$ in (20 nozzles on sprayer)
Nozzle output $=64 \mathrm{oz} /$ minute
What is travel speed? $\quad 616 \div 88=7 \mathrm{mph}$ (Remember 88 $\mathrm{ft} / \mathrm{min}=1 \mathrm{mph}$)
What is sprayer width? 20 nozzles x 2.5 ft (30-inch spacing) per nozzle $=50 \mathrm{ft}$
What is application rate? $\frac{64 \mathrm{oz} / \text { minute }}{128 \mathrm{oz} / \text { gallon }}=0.5 \mathrm{gpm}$

$$
\begin{aligned}
\frac{0.5}{1,540} & =\frac{R}{43,560} \\
1540 \mathrm{R} & =21,780 \\
\mathrm{R} & =14.14 \text { gals/acre }
\end{aligned}
$$

To determine the area covered by the sprayer in one minute:

1,540 sq ft/nozzle/minute
20 nozzles $1,540 \times 20 \div 43,560 \mathrm{sq} \mathrm{ft} / \mathrm{A}=0.71$ acre $/ \mathrm{min}-$ ute

Problem 6. Determine nozzle size needed to achieve the operational goal.

Sprayer speed $=7 \mathrm{mph}$
Nozzle spacing = 20 inches
Application rate desired = 17 gpa
Nozzle flow rate $=F$

If we need 0.40 gpm , by design an XR8005* will give 0.5 gpm at 40 psi . Output varies by the square root of the pressure.
For example: $\sqrt{40 p s i}=6.32 \mathrm{psi}$

$$
\sqrt{10 p s i}=3.16 \mathrm{psi}
$$

Raising the pressure from 10 to 40 psi (4 times $\sqrt{4}=2$) doubles output.
Therefore we need to reduce output to 0.40 gpm which is 80 percent of the 0.5 gpm that an XR8005 puts out at 40 psi.

$$
\begin{aligned}
& \sqrt{40}=6.32 \times 0.8=5.056 \\
& \sqrt{P} \\
& \text { To solve for "P" take the result multiplied by itself. } \\
& 5.056 \times 5.056=25.6 \text { psi } \\
& \text { an XR8005 at } 25.6 \text { psi will give you } 0.40 \mathrm{gpm}
\end{aligned}
$$

*Selected from TeeJet Nozzle Booklet by Spraying Systems.

Problem 7. Calibrating a hand sprayer.

First fill sprayer with water to a known level, a mark you can later refill to accurately. (Tip: It's best to spray a test area over concrete so you can see the evenness of application.)
$\begin{aligned} \text { Spray test area } & 100 \mathrm{sq} \mathrm{ft} & =10 \mathrm{ft} \times 10 \mathrm{ft} \\ \text { or } & 250 \mathrm{sq} \mathrm{ft} & =10 \mathrm{ft} \times 25 \mathrm{ft} \\ \text { or } & 500 \mathrm{sq} \mathrm{ft} & =10 \mathrm{ft} \times 50 \mathrm{ft} \text { or } 20 \mathrm{ft} \times 25 \mathrm{ft}\end{aligned}$
Refill sprayer to same level as before, measuring amount of water it takes to refill sprayer.

If the pesticide recommendation is for 2 liquid ounces of product per $1,000 \mathrm{sq} \mathrm{ft}$, the amount to include per $1,000 \mathrm{sq}$ ft would be $1 / 4$ cup or 4 tablespoons or 12 teaspoons. (See Weights and Measures Conversions on page 4.)
If during the test, 28 oz of water were applied over 250 sq ft , how much water and pesticide should be added to a 3 gallon sprayer?

The amount of water	$28 \mathrm{oz}=\mathrm{V}$ for volume	How much water you will
you applied in	$250 \mathrm{sq} \mathrm{ft} 1,000 \mathrm{sq} \mathrm{ft}$	apply per
test area		1,000 sq ft

$$
\begin{aligned}
250 \mathrm{~V} & =28,000 \\
\mathrm{~V} & =112 \text { ounces or } \div 32(\text { ounces/qt) }=
\end{aligned}
$$

3.5 qt of water per $1,000 \mathrm{sq} \mathrm{ft}$

This indicates that 2 oz of pesticide should be added for every 3.5 qt of sprayer capacity.

With a 3-gallon sprayer, 12 qt (3×4 qt/gal) of water should be added to the sprayer tank.
$\frac{2 \mathrm{oz}}{3.5 \mathrm{qt}}=\frac{\mathrm{P} \text { for Pesticide }}{12 \mathrm{qt}}$

$3.5 \mathrm{P}=$	24
$\mathrm{P}=$	6.86 oz or 0.86 cup (8 oz/cup)

$6.86 / 8=0.86 \mathrm{cup} \quad$| The amount of pesticide to |
| :--- |
| add to a 3-gallon sprayer |

Problem 8. Determining the density of spray solution.

The rate at which a fluid flows through a spray orifice varies with its density. Since all the tabulations are based on spraying water, which weighs 8.34 lbs per U.S. gallon, conversion factors must be used when spraying solutions which are heavier or lighter than water. To determine the proper size nozzle for the solution to be sprayed, first multiply the desired GPM or GPA of solution by the water rate conversion factor. The conversion factors are the square root of specific gravity. (See Weights and Measures Conversion chart on page 4 for some common fertilizers).

For example, the specific gravity of 28% nitrogen, which weighs $10.65 \mathrm{lbs} / \mathrm{gal}$, is:

$$
\frac{10.65(\mathrm{Wt} \text { of } 28-0-0 / \mathrm{gal})}{8.34(\mathrm{Wt} \text { of water/gal) }} \quad=1.28 \text { specific gravity }
$$

Conversion factor for 28-0-0 fertilizer or 28% nitrogen is

$$
\sqrt{1.28}=1.13
$$

Weight of Solution	Specific Gravity	Conversion Factors
7.0 lbs per gallon	0.84	0.92
8.0 lbs per gallon	0.96	0.98
8.34 lbs per gallon - Water	1.00	1.00
9.0 lbs per gallon	1.08	1.04
10.0 lbs per gallon	1.20	1.10
10.65 lbs per gallon -28% nitrogen	1.28	1.13
11.0 lbs per gallon	1.32	1.15
11.06 lbs per gallon -32% nitrogen	1.33	1.15
12.0 lbs per gallon	1.44	1.20
14.0 lbs per gallon	1.68	1.30

Example of using the conversion factor:
Desired application rate is 20 GPA of $28 \% \mathrm{~N}$.
GPA (solution) x Conversion factor = GPA (water)
20 GPA (28\%) x $1.13=22.6$ GPA (water)
A nozzle size should be selected to supply 22.6 GPA of water at the desired pressure, speed, and nozzle spacing.

Problem 9. Determining the density of a spray solu-

 tion.In this example, the following has been recommended for an ecofallow corn field:

75 lbs of nitrogen from 28\% UAN
Density of $28 \% \mathrm{~N}=10.65 \mathrm{lbs} / \mathrm{gal}$
10.65 x $.28=2.982 \mathrm{lbs} \mathrm{N} / \mathrm{gal}$
$\frac{75 \mathrm{lbs} \mathrm{N}}{2.982 \mathrm{lbs} \mathrm{N} / \mathrm{gal}}=25.15 \mathrm{gal}$ of 28% solution

Ingredient	Amount		Gallons
28% Nitrogen		75 lb N	
Balance Pro	2.0 oz	0.016	
Fultime	2.25 qt	0.563	
Gramoxone Extra	2 pt		0.250
Crop Oil Concentrate	1 qt		0.250
2,4-D 6 LVE	$1 / 2 \mathrm{pt}$		0.063
			26.293
or 26.3 gal/acre			

To determine how this will spray out and what gallonage of water is needed to get $26.3 \mathrm{gal} /$ acre of this spray solution, three steps are required:

1. To determine specific gravity weigh an equal amount of the spray solution and an equal amount of water.

Determine specific gravity weight of spray solution:

13.08 lbs (wt of spray solution) $=1.27$ specific gravity 10.3 (wt of water)

2. Determine conversion factor $\sqrt{1.27}=1.13$
3. Determine the quantity of water to calibrate sprayer: Spray Rate x Conversion Factor = Water Amount Equivalent
$26.3 \mathrm{gal} /$ acre x 1.13 = $29.6 \mathrm{gal} /$ acre
Now you need to calibrate the equipment to apply 29.6 gallons of water per acre.

Problem 10. To calibrate a seeder.

How may pounds of seed are needed to plant 18 seeds/ft in a row with $10-$ in spacing. Seed size is 15,000 seeds/lb and seed is collected for 500 ft .

To determine pounds of seed needed per acre:
$12 \mathrm{in} / \mathrm{ft}=1.2 \quad 1.2 \times 43,560 \mathrm{ft}^{2} / \mathrm{A}=52,272 \mathrm{ft}$ of row/acre 10 in/row

52,272 x 18 seeds/ft row $=940,896$ seeds/acre $\div 15,000$ seeds/lb $=62.7 \mathrm{lb} / \mathrm{A}$

Determine area seeded with one opener on one acre:
Then cross multiply:

10 in per row or		$\begin{gathered} \text { Test Box } \\ \hline 500 \mathrm{ft} \text { long } \end{gathered}$		Acre Box
$\frac{10 \mathrm{in}}{12 \mathrm{in} / \mathrm{ft}}$	$=0.83 \mathrm{ft}$	Wt for weight of seed calibrated	$=$	$\begin{gathered} 62.7 \mathrm{lb} \\ \text { seed/acre } \end{gathered}$
		$\begin{gathered} 415 \mathrm{sq} \mathrm{ft} \\ (500 \mathrm{x} .83) \end{gathered}$		43,560 sq ft

$$
\begin{aligned}
\frac{\mathrm{Wt}}{415} & =\frac{62.7}{43,560} \\
43,560 \mathrm{Wt} & =26,020.5(62.7 \times 415) \\
\mathrm{Wt} & =0.6 \mathrm{lb} / \text { opener or } 9.6 \text { oz/opener }
\end{aligned}
$$

Reference to commercial products or trade names is made with the understanding that no discrimination is intended of those not mentioned and no endorsement by University of Nebraska-Lincoln Extension is implied for those mentioned.

Weights and Measures Conversion

This publication has been peer reviewed.

UNL Extension publications are available online at http://extension.unl.edu/publications.
Spraying Systems Droplet Size in Microns
Very Fine = 153 and less

Medime 242-358
Very coarse $=452-740$
Extensively coarse = $741+$
$1 \mathrm{ppm}=1$ second in 12 days or 0.013 ounces in 100 gallons or about $8 / 10$ of 1 teaspoon in 1,000 gallons
$1 \mathrm{ppb}=1$ second in 32 years or 0.013 ounces in 100,000 gallons or about $8 / 10$ of 1 teaspoon in $1,000,000 \mathrm{gal}$
$1 \mathrm{ppt}=1$ second in 320 centuries
pint of water in ocean $=5,000$ molecules in any pint of water
$\mathrm{psi}=2.31 \mathrm{ft}$
1 foot of lift of water $=0.433 \mathrm{psi}$
452 gpm $=1 \mathrm{in} / 1$ acre $/ 1 \mathrm{hr}$
$\mathrm{Cu} \mathrm{ft} \times 0.8=$ bushel of grain
u ft x 0.4 = bushel of ear corn
= $33,000 \mathrm{ft}$ lbs
$=746$ watts

Common Abbreviations and Terms Used
GPM = gallons per minute
GPA = gallons per acre
psi = pounds per square inch
$\mathrm{mph}=$ miles per hour
RPM = revolutions per minute
GPH = gallons per hour
FPM $=$ feet per minute
$\mathrm{T}=$ Tablespoon
$\mathrm{t}=$ teaspoon
Circles
Diameter x 3.1416 = circumference
Radius ${ }^{2}$ x $3.1416=$ area

