

The global dimensions of bioenergy markets, trade and sustainable development.

International Conference: Biofuels for Transportation – Global Potential and Implications for Sustainable Agriculture, Energy and Security in the 21st Century *Washington DC, United States, June 7, 2006.*

André Faaij

Copernicus Institute - Utrecht University

Universiteit Utrecht

Issues covered

- Global biomass resource potentials...
- International bio-energy market developments, trade and sustainability.
- Agenda and need for international collaboration.

Bioenergy production potential in 2050 for different levels of change in agricultural management

Universiteit Utrecht

Sustainable Development and Innovation Management

B1-2010

Universiteit Utrecht

Integrated assessment modelling using IMAGE (RIVM) for assessing land-use and production potentials of biomass for energy

Universiteit Utrecht

Universiteit Utrecht

rest land Abandoned cropland low-productive Land Other

Universiteit Utrecht

Universiteit Utrecht

Cuotamano Dovolopmont ana intovation managomont

Universiteit Utrecht

B2 2050

Universiteit Utrecht

rest land Abandoned cropland low-productive Land Other

Sustainable Development and Innovation Management

Universiteit Utrecht

Land-use pattern changes

Basics energy crop options (EU)

Сгор		Typical yield ranges	Energy inputs (GJprim/ha*yr	Typical net energy yield	Production cost ranges European
		(odt/ha*yr)		(GJ/ha*yr)	context (Euro/GJ)
Rape	Short term	2.9 (rapeseed)	11	110 (total)	20
		2.6 (straw)			
	Longer term	4 (rapeseed)	12	180 (total)	12
		4.5 (straw)			
Sugar	Short term	14	13	250	12
Beet	Longer term	20	10	370	8
SRC-	Shorter term	10	5	180	3-6
Willow	Longer term	15	5	280	<2
Poplar	Shorter term	9	4	150	3-4
	Longer term	13	4	250	<2
Miscant	Shorter term	10	13-14	180	3-6
hus	Longer term	20	13-14	350	~2

Miscanthus - different genotypes

C₄ photosynthetic pathway

Sustainable Development and Innovation Management

Global cost-supply curve for energy crops for four scenarios for the year 2050

Overall picture 2050

Universiteit Utrecht

Biomass	Main assumptions and remarks	Potential bio-
category		energy supply
		up to 2050.
Agricultural	Potential land surplus: 0-4 Gha (more average: 1-2 Gha).	0 - 700 EJ
land		(average: 100 –
		300 EJ)
Marginal lands.	On a global scale a maximum land surface of 1.7 Gha could be	(0) 60 – 150 EJ
	involved.	
Residues	Estimates from various studies	15 – 70 EJ
agriculture		
Forest residues	Low value: figure for sustainable forest management. High	(0) 30 - 150 EJ
	value: technical potential. Figures include processing residues.	
Dung	Use of dried dung. Low estimate based on global current use.	(0) 5 – 55 EJ
	High estimate: technical potential.	
Organic wastes	Figures include the organic fraction of MSW and waste wood.	5-50 (+) EJ
-	Higher values possible by more intensive use of bio-materials.	
Total	Most pessimistic scenario: no land available for energy farming;	40 – 1100 EJ
	only utilisation of residues. Most optimistic scenario: intensive	
_	agriculture concentrated on the better quality soils.	(250 - 500 EJ)
	agriculture concentrated on the better quality soils.	(250 - 500 EJ)

Copernicus Institute

Sustainable Development and Innovation Management

International bio-energy logistics not a showstopper when organized rightly

Sustainable Development and Innovation Management

Universiteit Utrecht

Mozambique...

[Batidzirai & Faaij, 2005]

Potential surplus agricultural land in 2015 in Mozambique, dependant on the level of advancement of agricultural technology

Copernicus Institute Sustainable Development and Innovation Management [Batidzirai & Faaij, 2005]

Universiteit Utrecht

Regional biomass annual production potential in Mozambique/PJ_{нн} (2015)

tta mS

🖸 MS

⊠S

∎VS

Total 7 EJ; 2.5 times the **Total primary Energy demand** of the Netherlands

[Batidzirai & Faaij, 2005]

Comparison of bioenergy growing costs by region type (€/GJ)

Copernicus Institute Sustainable Development and Innovation Management [Batidzirai & Faaij, 2005]

Range of costs for FT fuel delivered at Rotterdam Harbour

Sustainable Development and Innovation Management

[Batidzirai & Faaij, 2005]

Universiteit Utrecht

Bioenergy halfway this century...

- 100 EJ from forest & Ag. residues & organic wastes
- 100 EJ from restoration schemes degraded lands
- 200 EJ from good quality land released due to higher efficiency in agriculture (DC's, Eastern Europe...)

Bioenergy halfway this century...

- ~ 400 EJ is an expected 1/3 of the world's future energy needs; the key alternative for mineral oil!
- Represents 1-3 TRILLION U\$ market value worldwide; larger than agriculture...
- Involves some 10% of the worlds land surface / one fifth of agricultural/pasture lands.

International bio-energy markets developing fast...

• Excitement:

- Solid biofuels trading develops in bilateral setting; bioethanol entered first phases of commodity market trading; "wild west phase"
- Growing bio-energy demand and international supply chains create unique opportunities for biomass producing regions.
- Investments in large scale conversion capacity now more secure.
- Ultimately, a real alternative for mineral oil...
- Concerns:
 - Overexploitation (water, land competition) should be avoided and fair trading principles implemented.

Copernicus Institute

Sustainable Development and Innovation Management

Universiteit Utrecht

The key linkages...

- Agriculture the key for bio-energy...
- Bio-energy could be the key lever for rural development.
- Bio-energy is (and will be) propelled by sound economics; market almost unlimited (and uncontrolled)
- Sustainability to be secured in a global setting.

Areas of concern relevant for sustainability of the biomass production and trading chains

General criteria

•e.g. Traceability

•Avoidance of leakage effects

Social criteria

e.g. Labor conditions Human safety and health

Economic criteria

e.g. Viability of the business

Yields

Ecological criteria

e.g. Preservation of existing sensitive ecosystems

Conservation of ground and surface water

⇒Many criteria, but quantitative and measureable

indicators are often missing

Copernicus Institute Sustainable Development and Innovation Management

[Lewandowski & Faaij, 2004]

Operationalisation of sustainability criteria Criteria

Copernicus Institute Sustainable Development and Innovation Management

[Smeets et al., 2005]

Universiteit Utrecht

Indicative cost impacts of applying sustainability criteria...

[Smeets et al., 2005]

Quickscan of PROALCOOL-Brazil

Issue		Remarks
Water use	$\overline{}$	Dependant on local situation
Water pollution		Dependant on local situation; criteria available
Biodiversity		Indirect impacts?; research required
Erosion	\bigcirc	Dependant on local situation
GM cane	\bigcirc	No GM cane is used
Cane burning	•	Complex issue: link with employment, erosion, GHG
GHG/emission	•••	Soil carbon is crucial
Competition with food		Indirect impacts?; research required
Employment	•••	Indirect impacts?; research required
Wages/working conditions		
Child labour		Easy to check; limited impact

Big impact and/or important issue and/or difficult to tackle and/or no indicators present Limited impact and/or unimportant issue and/or easy to tackle and/or indicators present

Universiteit Utrecht

Closing remarks (I)

- Large, economic, biomass potentials (but needs complex, sustainable, development and a working international market; 1/3 of global energy demand seems feasible!)
- Integration of biomass production into agriculture (implying integrated rural development schemes targeting traditional agriculture)
- Competitive biomass-technology combinations within reach for the world market (but needs serious, consistent development and market introduction).

Closing remarks (II)

- Sustainable biomass production achieving multiple benefits is possible (but needs strong frameworks and control of market forces).
- Diversity in ecological and socio-economic conditions to be recognized (asking for regional approaches in a global setting; stakeholder approaches (PIA) seem best model).
- Sense of urgency is needed; market forces are already steering development of international bio-energy markets.

Closing remarks (III)

- Flagship projects (to demonstrate multiple benefits and framework(s) under different conditions; solid fuels... multiple markets with international focus...
- Promising future; but policy needs to choose and coordinate (agriculture, trade, climate, energy and development are interlinked here).
- Strong need for international collaboration and action: IBEP, Biofuels Init., IEA, G8 partnership, WTO, etcetc.

Internat. network: IEA Task 40

- **Members:** Netherlands (T.L.; Copernicus & Essent), Sweden, Norway, Brazil, Finland, Canada, UK, Italy, Belgium; Germany just came on board
- Affiliated international bodies
 - FAO, World Bank; (interest: UNCTAD, WWF int., UNEP)

www.bioenergytrade.org:

- Detailed activities
- Results (e.g. country reports, analyses)
- Events
- Partner for collaboration