APPENDIX II

Acoustic Bottom Classification Data Analysis and Results.
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Data Collection

The QTCView™ System

QTCView is a seabed classification system consisting of hardware and software
developed by Quester Tangent Corp. (www.questercorp.com). The system uses acoustic
information provided by a standard echo sounder to infer the properties of the seabed.
Acoustic seabed classification involves the organization of sea floor echoes into “classes”
based on a characteristic acoustic response. In the normal operation of a depth sounder,
the acoustic pulse generated by an echo sounder travels through the water column,
reflects from the seabed and returns to the transducer. There it is converted back into
electrical energy and, after amplification and signal conditioning, recorded as a gray scale
mark on paper or as colors of different hue and intensity on a video display. The data can
also be stored as a digital time series (a set of numbers representing the amplitude of the
signal in volts sampled at a regular time interval). QTCView “taps into” the electrical
path between the transducer and the sounder. The detection of the transmitted signal
going to the transducer is taken as the start of each record: the system then digitizes all of
the data received by the transducer until such time as the signal associated with the sea
bed has passed. This information constitutes a digital version of the echo trace.

Sophisticated signal processing algorithms are applied to the digitized echo, separating it
into fundamental components (e.g., energy, frequency etc.). These components vary
relative to each other as the signal reflects from differing sea beds. Sets of about 5
digitized traces are analyzed in this way, checked for consistency, averaged, and saved as
a 166 element Full Feature Vector (FFV). These data are collected and saved during the
data collection process, which occurs in tandem with grab sampling operations. The
FFVs are input into a post-processing scheme that assumes echoes with similar
component values come from sea beds with similar characteristics. Similar echoes are
grouped into classes that may be related to the physical seabed characteristics by
comparison with grab sampling results.

The Acoustics

The acoustic system used for this project is the ships echo sounder, a dual frequency
SITEX CVS-108DF system. The transducer is a hull-mounted 50kHz/200kHz dual
frequency unit. QTCView uses the 200 kHz signal: the half-power beam-width of the
transducer at this frequency is 7°, and the beam is conical.

The Survey Area

The ABC survey covered the same area as the grab-sampling program, and in fact was
carried out at the same time as the grab sampling.

The Survey Plan and Parameter Selection

The grab sampling plan covered areas with depths ranging from 5 meters to just over
100m. One of the parameters that must be defined for QTCView is the “reference
depth”, which is meant to be the average depth over a survey area. However, results are
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best if the maximum range of depths in a survey is less than 100m. Accordingly,
although some of the expected depths at the outer edge of the sampling area were slightly
greater than 100 meters, ABC data collection was restricted to areas with depths less than
100 meters, and used the parameters shown in Table A2-1.

e o System
_Base Gain (dB) [T -5

. Reference Depth (m) | .45

i Minimum Depth (m) ] 5

| Maximum Depth (m) ] 100
I Sounder
| Power e 25W (RMS)
| Pulse Length o _ 648us

i Maximum Range(m) | 80

Table A2-1: QTCVIEW parameters

Survey Operations

Details of the survey operations are detailed in Table A2-2.

. 23/8/2000 | 149.0 . 8,804 -
| 24/8/2000 | 1414 | 22,789
25/8/2000 | 99.9 { 14,246
. 30/8/2000 ; 56.6 | 7,653
31/8/2000 | 383 3503
__1/9/2000 |- 386 | 4958
2/9/2000 | 147 | 1,310
L .3/9/2000 [ 736 [T Tgmag T
'..5/9/2000 | 728 T TTgmyy T
6/9/2000 | 78.7 9,718
7/9/2000 | 77.6 9,784
._.8/9/2000 | 265 [ 2307
1..10/9/2000 | " 404 [ 3381
~11/9/2000 | 398 | 3,964
_ Total [ 8479 | 111,678

Table A2-2: Survey details.

Data Analysis

Data quality assessment and filtering

There are literally thousands of ABC records collected during a typical survey, and not

all records are suitable for analysis. Records that are outside of the depth range specified
by the system parameter settings must be removed, as well as “garbage” data. The most
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common problem is faulty depth picks. These occur when the QTCView system loses
track of the bottom and then enters a search mode to find the bottom. F aulty depth picks
are obvious in a plot of depth vs. time, and are easily removed. Faulty depth picks are
rare overall, but are more common in deeper water, because of the attenuation of the
acoustic signal with depth.

There were unique data quality problems with this particular survey. During the first few
days of the survey in August, there were problems with the QTCVIEW “Blue Box”
ceasing operations intermittently and having to be restarted during surveys. This
behavior was unusual, and after discussions with Quester Tangent the problem was traced
to some electrical equipment on the vessel. After the use of this equipment was
discontinued the problems ceased. However, on analyzing data collected during this
period, several data sets were found to be too noisy to be used. As a result, 23,949
records covering 89.5 km (10.6% of the total survey track) were discarded from the final
data set. Fortunately most of these survey lines were in the northwest portion of the
study area and away from the areas of greatest interest — e, & Peacock Spit, Clatsop Spit,
dredge disposal sites and the proposed deep water site. Details of record removal during
quality assessment are shown in Table A2-3.

| Starting number | mes
_Removed due to noise problem f 23,949
Faulty depth picks, too shallow or deep E ‘ 493

Final number of records E 87,236 .

Table A2-3: Records removed during data assessment.

Unsupervised Classification

Classification may be either supervised or unsupervised. In supervised classification,
local knowledge of the available bottom types specifies the classifications that will exist.
The acoustic properties of these known bottom types are measured and used to form a
catalogue that is employed in subsequent survey operations to classify the area.
Unsupervised classification was applied to this project. An unsupervised classification is
one in which no a priori judgments are made about the diversity of bottom types present
in the survey area. FFVs are collected and analyzed after the fact to determine a
reasonable division of the survey area into bottom type classes. Because a large number
of bottom grab samples are collected as part of the Sediment Trend Analysis work,
unsupervised classification is ideal for such projects. Nevertheless, some bottom types
will classify out as different from others, although the associated grab samples may
appear almost identical. This is because the properties of the acoustic return from the
bottom depend on many factors, not all of which may be apparent from grab samples.
The gross morphology of the bottom is a good example of how this can occur. Given a
beam angle of 7° and a depth of 30m, the “acoustic footprint” on the bottom is roughly
3.7m in diameter. Two bottom types composed of exactly the same sediments, one
perfectly flat and one with small sand waves due to, say, bottom currents, will have
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different acoustic returns. Although the grab samples may appear identical, the two
regions may separate into distinct classes. Another example might be the presence of
biota on the bottom. Two regions on the bottom composed of identical sediments may
differ in that one is empty of biota and the other may have starfish or some other
invertebrates scattered about. These invertebrates may not be evident in the grab
samples, but will show up in the acoustic return.

Principal Component Analysis

The first stage in data analysis is to reduce the dimensionality of the FFV data. Principal
Components Analysis (PCA), a mathematical procedure (see Murtagh & Heck 1987) that
transforms a number of (possibly) correlated variables into a (smaller) number of
uncorrelated variables called principal components is used to do this. The first principal
component accounts for as much of the variability in the data as possible, and each
succeeding component accounts for as much of the remaining variability as possible.
Usually, principal component analysis is performed on a square symmetric correlation
matrix (sums of squares and cross products from standardized data). The data are
standardized because the elements of any FFV can differ by several orders of magnitude.
Standardizing the data ensures that all element of the FFV are equally important in the
PCA procedure. The objectives of principal component analysis are:
e To discover or to reduce the dimensionality of the data set.
® To identify new meaningful underlying variables.

The mathematical technique used in PCA is called eigen-analysis: one solves for the
eigenvalues and eigenvectors of a Square symmetric matrix with sums of squares and
cross products. The eigenvector associated with the largest eigenvalue has the same
‘direction as the first principal component; the eigenvector associated with the second
largest eigenvalue determines the direction of the second principal component; and so on.
The sum of the eigenvalues equals the trace of the square matrix (which is the number of
variables; in our case 166) and the maximum number of eigenvectors equals the number
of rows (or columns) of this matrix. Using the first three principal components has been
found to be adequate for the purposes of ABC. The eigenvalues are examined to
determine the effectiveness of the first three principal components in accounting for the
variance in the data.

Using the results of the PCA the 166-element FFV for each data point in the cluster
analysis can be replaced by the three-element PCA vector which approximates the FFV.

The Clustering Algorithm

K-means clustering (see Hartigan 1975) is used to partition the data into several classes
or “clusters”. There are several variants of the k-means clustering algorithm, but most
variants involve an iterative scheme that operates over a fixed number of clusters, while
attempting to satisfy the following properties:
1. Each cluster has a center that is the mean position of all the samples in that cluster.
2. Each sample is in the cluster to whose center it is closest.

The algorithm works by first selecting N samples (where N is the chosen number of
clusters) randomly as cluster centers. It then moves samples into the closest cluster,
meanwhile recalculating the mean center of the cluster. This partition of samples into
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new clusters is repeated until any further movement of samples does not improve the
mean square error of the partition. The space in which the classification takes place is
that spanned by the three principal components, and the distance measure is Euclidean.

Determining the number of clusters to use is somewhat of an art. There is of course a
practical limit to the number of clusters that can be reasonably represented in a region,
based on the number of ABC records, the area covered, the assumed diversity of the
environment, and the number of “ground-truth” records available. One method to
determine the number of clusters is to keep track of the mean square error of the partition
as the number of clusters is increased, and stop when it is judged that the mean square
error of the partition does not decrease significantly with the addition of another cluster.
Another method, the one used in this report, is to keep track of the Clustering
Performance Index Rate (CPIR - see Kirlin and Desaji, 2000) and look for peaks. The
results of this approach are shown in Figure A2-1, and show a small peak at 8 classes.
The 8-cluster classification is the solution presented in this document.
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Figure A2-1: CPIR vs. number of classes.
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Confidence Estimation

A means of assessing the confidence with which a datum is assigned to a cluster is
required. Since all records are within a data space spanned by the three chosen principal
components, and since the clustering algorithm uses a distance metric to assign data to
clusters, a comparison of distances can be used to define confidence level. For each
datum the distance D, to its cluster center and its distance D, to the center of the next
closest cluster are calculated. Then the confidence level C, defined as a percentage, is
given by:

D -D
C=1r 4

=———<.100
D, + D,

Therefore, a datum that is at the center of its cluster is 100% confident, and a datum
which is equally close to the next closest cluster center has a confidence level of 0%.
This measure is intuitively conservative: a datum which is twice as close to its cluster
center as to the next nearest cluster center has a confidence level of only 33%. To have a
confidence level of 50%, a datum must be three times as close to its cluster center as to
the center of the next nearest cluster.

Comparison with Collected Samples

A large number of grab samples were collected in the region surveyed for ABC, and
these data can be used to help understand the meaning of the results of the unsupervised
classification. To do this, the locations of all the ABC samples are compared with the
locations of the grab samples and all of the ABC samples that are within a certain
distance of a grab sample are selected. These ABC samples are then associated with that
grab sample; this process is called blending. The radius within which the search for ABC
samples is carried out is a variable that relates to the depth, being smaller in shallow
water than in deep. In shallow water, the acoustic footprint is smaller than at deeper
depths. In addition, pitch and roll of the vessel causes uncertainty in the location of the
acoustic footprint on the bottom, and this uncertainty is greater in deep water than in
shallow. In this project a radius of 20 meters was used.

Once the list of all the ABC samples that are close enough to the location of a grab
sample to be considered is found, the statistics of that set of data can be examined. Are
they all classified the same? How do the confidence levels of the classifications
compare? Then some statistics of the grab samples that are in regions that are classified
identically can be calculated: for example, the mean and standard deviations of the grain-
size parameters (mean, sorting and skewness) of the samples. The average percentage of
mud, gravel and sand, the average confidence level of the classification, and the average
depth of the samples are also calculated. In addition, the anecdotal descriptions of the

samples in the field records can be examined to see if there is anything consistently
different among the clusters.

Appendix II ABC Analysis and Results Page 8



Results

Statistics

After noisy data removal and filtering there were 87 ,729, or 78.1% of the original number
of FFVs suitable for input into the classification process. The results of the principal
component analysis are shown in Table A2-4: nearly 60% of the variance of the data set
1s included in the first three eigenvectors.

E 1 |

3
H
i
H

1
i

% Variance 435 {109 |37 |s81 |

Table A2-4: Results of PCA of ABC data.

The data were then analyzed using k-means clustering: the results are shown in Table A2-
5. Based on practical considerations, examination of the cluster sizes and the CPIR

changes, a classification using 8 clusters was chosen.
{ cluster [ 1 | 2 ‘ 7 ~ Sum of
Squares

2 ][58198 ][25038 || I | N | S | | 110 J[11392]
L3 I0sers7]Zzoze](@337i ] 1L L L 1 [ 8119
L4 (30745 ][39348 [ 18637 |[18506 | [ ]| 1L Il [ 4643
[ 5 1[28333 ][ 19068 |[ 14960 114949 ][ 9926 |[ I I [ 33550}
[ e |[ 24549 ][18657 ][ 13237 |[12028 ][ 11765 (7000 ][ [ I [ 2972
L7 1[19367 ][15466 ][ 13068 ][ 11653 || 11331 ][ 9565 ][ 6786 || L [ 27184
[ 8 ][ 18803 |[ 15369 ][ 10861 |[ 10799 ][ 10564 ][ 9544 || 9374 |[2422 [ [ 1876 ]
9 [ 15504 |[ 15244 ][ 10144 | 9652 |[ 9319 ][(8979 ][ 8901 |[ 7795 || 1698 |[ 1,641 |

Table A2-5: Numbers of samples in each cluster, and sum of squares for shallow data. The cluster
numbers in this table are not the actual class numbers used in the following descriptions; they are
arranged in decreasing order by number of records.

The number of records in each class and the cluster centers in eigenvector space are
shown in Table A2-6, where the columns refer to the eigenvector numbers (column 1 is
the cluster center location on the eigenvector 1 axis). Table A2-7 shows the normalized
(largest inter-cluster difference is set equal to 1) inter-cluster separations in eigenvector
space. Note that class 6 has both the largest positive and the largest negative value, and
appears to be a nodal point for the second and third eigenvector.

Appendix 1T ABC Analysis and Results Page 9



| ciass | recoras | vector 1 | vector 2 | vector 3 |
| . HB 2a22 || +0808 || +0.067 il -o.44ﬂ:
L 2 TL 9374 ]L +o.82nL +o.29;H -0.459 |
L 3 ]L 1079ﬂL +o.79?lL +0.467]L -o.s1ﬂ
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Table A2-6: Number of records in each class and cluster center locations in eigenvector space.

_ 1 | 2 | 3 | a5 [ 6] 7] 8|
L1 I ol 23 a1l e[ s 100 ][ e2 ][ 78]
l 2 | 23 ]| o]l 18] 39 _eo][ 78 71 ][ 0]
[ a1 18 ][ ol 21 ][ at][ 60 [ _54][ a6
L JL_ 62 391 201 ol a1 [ 39 ][ 370 36 ]
L L8] 6ol a1l 21] ol 1ol 231 34]
L6 1 100l 78] e0][ 391 9] o] 20 _40]
L7z T el 71 sl _371[ 23 [ 20 0j[ 21
L I %I el =l el sell ozl o]

Table A2-7: Normalized inter-cluster distance in eigenvector space, shown as a percentage.

uilhflw

The largest separations are between clusters 1 and 6, and clusters 1 and 7. Clusters 2 and
3 and clusters 5 and 6 are the closest together in eigenvector space, although there are
several other pairs almost equally close together. Cluster 6, which is the cluster with the
most records, is the furthest away from another cluster (Cluster 1) and also almost the
closest to another (Cluster 5).

The space spanned by the first three ei genvectors is an artificial space: in order to geta
feeling for what these classifications mean, it is necessary to look at some measured or
observed characteristics of the sediments in areas classified differently. The results of
blending can be used to do this.

The Data File

Data are provided in an ASCII format, as a comma-separated variable (CSV) file that can
be read by any text editor or spreadsheet program, such as Microsoft Excel. The first line
in the file is a header line that describes the content of each record. The first two records
on each line are the position of the ABC record in meters of Easting and Northing in
UTM Zone 10 co-ordinates (WGS84 datum). The next record is the depth of the ABC
record in meters, and the next is the classification of the point, a number from 1 to 8. The
final record in each line is the confidence of the classification in percent.
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Blending

There were 1,238 grab sample grain-size results and 586 anecdotal descriptions available

to match up with the ABC data. Using a radius of 20m and a minimu
confidence level of 50%
to 525 grab samples. The results of that anal

Table A2-10 and Table A2-11.

records

[ 1 I 10 || 99.7+1.0 ]|_o.3¢1.ﬂL 7.oioﬂg
L 2 ][ 45 [ es2:28] 0828  9.8:09]
R J[ 996+25] 0as25)[ 125:07 |
| 4 ]l 24 ﬁL%Jﬂ.ﬂL 3.3:7.9]L 193£51]
L 5 ] 20 [ 96469 36x69][ 20.9£2.0 |
L 6 [ 60 [ 96852 32%52] 353+52]
| 7 R 54 i 86.6110.6]u3.4iloT|L 67.6+7.5 |

Ls L

jL79.; + 13.ﬂL20.8 i/.137”% 90.4 9.1 |

m acceptable

for the ABC classification, 6,506 ABC records were connected
ysis are shown in Table A2-8, Table A2-9,

Table A2-8: Mean textural properties and depth of each class, shown with the 95% confidence level

of the mean.

The data in Table A2-8 show that the classes are numbered by mean depth, Class 1 being

the shallowest and Class 8 the deepest. The sediments are sandy: Classes 1,2 and 3 are

nearly pure sands, Classes 4,5, and 6 have a trace of mud, and only classes 7 and 8§ have
__any appreciable amount of mud.

orin

L 1] 10

l

198 0.227[3.54 +0.04 ][ 0.00+ 0.04 |

[ 2 I = 1[2.09%0.227)[0:60 £ 0.15 || 0.11 % 0.38 |
L 3 [ 32 218+ 0.25][0.59 + 0.14 ][ 0.04 % 0.27 |
| 4 [ 24 ~|[2.34 %039 [[0.72 % 038] o0.11= 0.32 |
L 5 ][ 20  J[248%036 |[0.71£0.27 ][ 014 % 0.33 |
L 6 [ 60 ][ 252+ 0.41 ][ 0.64 £ 0.15 | o028= 0.53 |
L7 54 271 = 0.52 |[ 1.13 % 0.48 | 1.69 * 0.59 |
L 8 [ 45 ][308x065 149z 057 ][ 133062

Skewness

Table A2-9: Mean grain-size parameters (in Phi units) for each class, with standard deviations.
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Table A2-10: Significance (“0” = not significant, “*” = 95%, “*** = 99%) from t-tests of differences
in mean/sorting/skewness of each class. The table is symmetrical, so the bottom half is not filled in.

Some comments can be made about the classes based on the textural properties. The
mean grain size becomes uniformly finer (mean phi becomes bigger) with class number
(and mean depth). Sorting becomes generally poorer with class number, and skewness
becomes generally more positive. The tests of significance of differences in textural
properties show that adjacent class numbers are not si gnificantly different in terms of
their textural properties. Of the adjacent pairs only 6/7 and 7/8 are significantly different.
Class 8 is the only one that is significantly different at the 99% confidence level from all
other classes for all three textural properties. Classes 1 through 6 have very similar

textural properties: for example the sorting and skewness of classes 1 through 5 are
statistically identical.

In order to try and differentiate these classes using some objective measure, the anecdotal
reports must be used. A summary of the analysis of these data is shown in Table A2-11.

% % % % %

I I N P
1 J[10][0 [0 ™ 0o I o || o ]
(2 ]8]I 35 J s ][ e [
13 [ w00 J[ e [ & [ o [ v
(4 J[9][ es 168 J[ 52 | o || 15
15 0] o5 [ o0 I 78 [ 6 [ 1w
16  [59) 9& ][ 88 [ s w7 [ s
(z__J[54 5o 76 [ s [ 22 || >
L8 J[ss)lee e & J 3 o

D
~N

E—J,J“—J%T-J“—J—-JA

Table A2-11: Descriptive properties of the classes. The numbers are percentages, and ‘N’ is the
number of anecdotal descriptions available for each class.
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Table A2-11 shows the utility of adding the descriptive properties to the interpretation of
the classes. The results in Table A2-8 indicate that Classes 1 through 6 are virtually
1dentical insofar as some of their textural properties are concerned, but the descriptive
data show that these classes differ in other ways. For example, Class 1 is the only class
in which no biota were found. Class 2 is the only one of the shallowest 4 classes to have
any shells or shell debris present, and had a very high incidence of live mollusks. Some
general trends can be seen in the data: Classes 1 through 6 are firm in texture, likely
because they contain very little mud, and Classes 7 and 8 are commonly loose in texture.
Biota tend to be most common at intermediate depths; worms or worm tubes were the
most common biota to be noted; mollusks are most common in shallower depths, and
shells and shell debris is most common at depth.

Maps

Figure A2-2 is a map showing the classification of areas along the vessel track over the
entire study area, and Figure A2-3 is a closer view of the river mouth. The colors of the
classes are given in Table A2-12. The points plotted in the map are those for which the
confidence of the classification is greater than 50%. Regions in which classification
points are sparse are usually found at the boundary between two classes where

confidence levels are low. Such regions are more common between deeper classes (e.g. 6
and 7 and 7 and 8).

The pattern of depth-dependence of the classes is clear in Figure A2-2. Note how the
classification bands follow the bulge of the contour lines around the river mouth. Some

of the deeper classes (4, 5 and 6) are found in the dredged channel and south of Jetty ‘A’
where depths are deeper due to dredging and scour.

There does not seem to be any ABC “signature” associated with material in the dredge
disposal sites: no anomalous patterns are seen associated with these sites, and there is no
evidence in the ABC of any difference between sediment at those sites and the
surrounding sediments.

Class Number

L 1 Jlres |
L 2 ” Orange I
[ 3 “Yelloﬂ
L 4 W[ Green I
l 5 jl&yan l
| 6 mﬂue W
L 7 viowe ]
L5 Jloupe]

Table A2-12: Colors used to identify classes in the maps.

Figure A2-2: (Overleaf)Classification map of the study area.
Figure A2-3: (Overleaf)Classification map of the area around the river mouth.
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Figure A2-2: Classification map of the study area.
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Figure A2-3: Classification map of the area around the river mouth.

ABC Class
®

\ :
,-N-'.

a5 0060

Oeesn Dradged
E[ Matarial Disposal Sibe

Mavigalion Channels

Bathymelry
e
&
12
18
—3(F
— BO
120
160
240
o ] a0 1B Melers ;GE(]SE (1= — 500




Summary

The following are descriptions of each of the eight classes.

Class 1: Medium pure sand, well sorted, un-skewed. The texture is firm, with no biota
present. Found close inshore near Peacock Spit, on the northern edge of Clatsop Spit,
and up the channel to Ilwaco.

Class 2: Medium to fine pure sand, well sorted and un-skewed: the grain-size parameters
for this class are statistically identical to those of class 1. Generally firm in texture with
biota sometimes found: worms/worm tubes and live mollusks are about equally common.
Shell debris found occasionally. Found inshore between the North J etty and Jetty ‘A”,
along the western edge of Clatsop spit, and in shallow areas north and south of the South
Jetty.

Class 3:. Medium to fine pure sand, well sorted and un-skewed: the grain-size
parameters for this class are statistically identical to those of class 2. Biota slightly more
common than class 2, but almost exclusively worms and/or worm casings; mollusks
occasionally present. Found along the edges of the dredged channel between the North
Jetty and Jetty ‘A’ and north of the South J etty, and in a depth-related band along the
western edge of Clatsop and Peacock Spits.

Class 4: Fine sand with a trace of mud, well sorted and un-skewed: the grain-size
parameters for this class are statistically identical to those of class 3. Firm in texture,
two-thirds of samples had biota present, almost entirely worms and/or worm casings with
occasional mollusks.

Class 5: Fine sand with a trace of mud, well sorted and un-skewed: the grain-size
parameters for this class are statistically identical to those of class 4. Generally firm in
texture; 90 percent of the samples contained biota, with worms and/or worm casings
common, and occasional mollusks and shell debris. Found in the dredged channel and in
a band spanning the study area from north to south, roughly following the depth contours
and just offshore (and therefore slightly deeper) of the locations of Class 4.

Class 6: Fine sand with a trace of mud, well sorted and un-skewed: the grain-size
parameters for this class are statistically identical to those of class 5. Almost all samples
were firm in texture, and biota was present in 88 percent of samples. Worms and worm
casings were most common, followed by shells and shell debris and lastly live mollusks.
Found in a small area just south of J etty A’ and in a band spanning the study area from
north to south, following the depth contours and offshore and deeper than Class 5.

Class 7: Fine sand with more than 10% mud. Less well sorted than the previous six
classes, and positively skewed. Half the samples were loose in texture and half firm, and
biota were less common than in Classes 5 and 6, Almost all samples with biota contained
worms and worm casings, with occasional shells and/or shell debris. Found in a depth-
related band near the western margin of the study area.

Class 8: Very fine sand with more than 10% mud. Not well sorted, and positively
skewed. More than half the samples were loose in texture and the rest firm, and biota
were slightly less common than in Class 7. Almost all samples with biota contained
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worms and worm casings, with occasional shells and/or shell debris. Found in a depth-
related band at the western margin of the study area.
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