Algal Physiology; a catch all

Dr. Richard Sayre Dept. Plant Cellular & Molecular Biology Ohio State University

Dr. Hangsik Moon Dr. Shayani Pieris Zoee Gohkale Jessica Winburn

Current Projects

- Development of *Chlorella protothecoides* chloroplast and nuclear transformation vectors.
- Genetic manipulation of photosynthetic efficiency and lipid production.
- Development of phase-shifting dyes to enhance PAR.
- Development of novel lipid extraction technologies.

Outline

- Choosing the right algae; biomass and oil potential.
- Heterotrophic growth boosts oil yield.
- Metabolic strategies for ameliorating stress
- Growth inhibitors; the need for waste product removal.
- Non-destructive oil extraction from continuous cultures.

Optimizing biofuel production from microalgae

- Fast: Identify the best algal strains for each locale.
- Fat: Enhance lipid accumulation in microalgae having high biomass production capabilities.
- Facile: Continuous (24/7), non-destructive harvesting of oils from live cultures. Development of closedloop production systems

Why Chlorella protothecoides?

- 1. C. protothecoides has a high growth rate and high maximum culture cell density (10⁸ cells/mL)
- 2. C. protothecoides is able to grow heterotrophically on glucose. Allows for growth at night (no CO_2 fixed) and greater oil production.

• With glucose, *C.* protothecoides has 5X the growth rate of Chlamydomonas.

• Biomass yields > 30 g/L have been achieved under heterotrophic conditions.

J. Biotechnol (2006) 126: 499-507

Initial doubling time is 4 times faster with glucose

C. protothecoides growth is enhanced by glycerol; a byproduct of biodiesel

Days of Growth

Oil yield is also enhanced by glycerol

Nile Red Fluorescence measurement at 585 nm captured upon 490 nm excitation

Glycerol is more efficiently converted into biomass, but glucose yields the most oil

Relative total lipid yield

<u>Growth</u> No addition	<u>Lipid content</u> 5 NRU*	<u>Dry weight</u> 0.4 g/L	<u>Lipid yield</u> 2 (1X)
Glycerol [20 mM]	18	1.7 g/L	30 (15X)
Glucose [15 mM]	55	1.9 g/L	105 (52X)

*NRU = Nile red units/cell

Metabolic strategies for ameliorating stress

 Selenoprotreins as redox mediators, engineering selenocysteine into proteins.

• Proline, a general ROS scavenger.

Selenocysteine proteins in green algae; super redox catalysts

Selenocysteine can replace cysteine in proteins of certain organisms.

The replacement of serine or cysteine with selenocysteine in the active site of many enzymes often results in substantial increases (100-500 fold) in catalytic activity.

Amino Acid	рКа (рН)	E _M (mV)
Selenocysteine	5.7	- 488
Cysteine	8.3	-270

Selenocysteine has a more physiological ionization potential (pKa) and is a stronger nucleophile than cysteine.

Selenocystein	e proteins in Chlam	ydomonas and	l Humans			
Gene	Function	Species	SECIS Type and length (nt)	Sec residue/ protein total length (residue)	Distance between Sec and SECIS (nt)	Stop codon used. Distance between stop codon and SECIS (nt)
TRI	Thioredoxin reductase	С. г.	I (57) (105)*	532/533	687 (528)*	UAA 681 (522)*
TRI	Thioredoxin reductase 1	H. s.	105	498/499	213	UAA (207)
MsrA1	Methionine-S- sulfoxide reductase	<i>C. r.</i>	II (60)	20/160	557	UGA (134)
PHGPx1	Phospholipid hydroperoxide Glutathione peroxidase	С. г.	II (107)	75/201	1055	UAA (674)
PHGPx2	Phospholipid hydroperoxide glutathione peroxidase	С. г.	II (114)	100/267	855	UAG (351)
SELK1	Selenoprotein K	<i>C. r.</i>	I (93)	91/92	396	UAA (390)
SELK	Selenoprotein K	<i>H. s.</i>	(103)	92/94	120	UAA (111)
SELM1	Selenoprotein M	<i>C. r.</i>	II (100)	46/140	328	UGA (43)
SELM2	Selenoprotein M	<i>C. r.</i>	II (64)	33/138	421	UAG (103)
SELW1	Selenoprotein W	<i>C. r.</i>	II (100)	14/88	406	UAA (181)
SELW2	Selenoprotein W	<i>C. r.</i>	II (94)	16/80	676	UGA (481)
SELW	Selenoprotein W	<i>H. s.</i>	(96)	13/87	256	UAA (31)
GPX1	Glutathione peroxidase 1	H. s.	(95)	49/203	505**	UAG (40)

Expressing selenoproteins in Chlamydomonas

Expression of recombinant, FLAG-tagged, Feal selenoprotein (yield = 2 mg/L).

Proline Accumulation Induction of Oxidative Stress

- **1. Drought Stress**
- 2. Salinity Stress
- 3. Cold Stress
- 4. Heavy Metal Stress
- 5. Oxidative Stress

Proline

Siripornadulsil et al. Plant Cell, 2002

Free proline content of wild-type and transformed *Chlamydomonas* cells expressing foreign *P5CS* gene

Growth of wild-type (CC-425) and transformed *Chlamydomonas* expressing the *P5CS* gene

GSH:GSSG ratio is 4-fold higher in transgenic algae under stress

Growth inhibitors secreted by algae

• *Chlorellin*, first described from media filtrate in 1940.

- Soluble in organic solvents.
- Inactivated by 2 hr boiling.

• Chlorellin is a mixture of linoleic and linolinc acids.

Am. J. Bot. 27, 52 (1940) Am. J. Bot. 51, 581 (1964)

Fig. 1. Assay of filtrates of Chlorella.

Sensitivity of algal growth to chlorellin

Fig. 3 – Dependence of P. subcapitata growth rate on the chlorellin concentration p. Comparison between experimental data and the exponential function $f_1(\bar{S}) e^{-\gamma p}$ where $\gamma = 7.81$ (µg/l).

Hydrobiologia 356: 143–148, 1997

ECOLOGICAL MODELLING 208 (2007) 205-214

Growth inhibition by chlorellin is reduced by media dilution or by activated charcoal

Algae were either grown in media (1, 2) or in dialysis bags placed in 5 volumes of external media (3, 4).

The external media (4) was either renewed (50%/day) or activated charcoal (5g/L) was added (3).

Fig. 1. Growth of *Chlorella vulgaris* in collodion sacs under different experimental conditions. Arrow in curve 3 indicates time at which Norite A was added to external solution. (See text for full explanation.)

Reducing the costs of harvesting oils from algae

Harvesting, rupturing, drying and extracting oils from algae <u>accounts for 40-60% of</u> <u>the cost of producing biodiesel</u> and places additional demands on culture replenishment.

There is a need for a low cost oil extraction technology

Non-destructive lipophile extraction: "milking" algae

Figure 3. Growth (A) and total volumetric production of β -carotene (B) by *D. salina* in the presence of organic biocompatible solvent. Error bars show 95% confidence interval of triplicate samples taken from the bioreactor.

Figure 1. Schematic representation of a flat panel two-phase bioreactor used in the milking process of *Dunaliella salina* for β -carotene production. An organic phase is continuously re-circulated through the aqueous phase, resulting in extraction of the product.

Cell survival after solvent extraction

Total cells/mL x 10⁻⁵.

Richard Sayre and Suzette Pereira, patent pending

Incubation with bio-compatible organic solvents results in complete oil extraction from live cells

GC-MS analysis

Ten minutes incubation, +/-2 sec sonication

Repetitive solvent extraction yields more oil

Trait	Continuously extracted cultures, 3 day total	Batch extracted cultures; 3 day total
Biomass harvested	208 mg/L 2.4X	85 mg/L
Total lipids produced	175 mg/gdw 1.14 X	154 mg/gdw
Solvent extracted lipids	71 mg/gdw 1.39X	51 mg/gdw
% lipids solvent extracted	41%	33%

50% inoculum of continuously extracted cultures

Optimizing solvent extraction; repetitive solvent extractions with 10% inoculums

Time (Hours)

In contrast to a 50% inoculum, growth recovers with a 10% inoculum

Optimizing oil yield by solvent extraction, growth inhibition versus stress-induced oil production

• The use of large (50%) solventextracted inoculums reduces culture growth.

- Solvent extraction elevates algal oil production.
- The optimal inoculum concentration for solvent extraction systems remains to be determined.
- Solvent extraction may be used to harvest other non-polar molecules.
- Up to 40% of oils can be harvested without dewatering.
- Large inoculums can reduced contamination.

