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Complex Utilization of Algal Biomass 
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COMPARISON BETWEEN CROP EFFICIENCIES: 
 
THE BIODIESEL EXAMPLE 
 

Plant Source Biodiesel 
L/Hect/Year 

Area required to match 
current global oil demand 

million hectares 

Area required as a 
percentage of global 

land mass 

Soybean 446 10932 72.9 
Rapeseed 1190 4097 27.3 
Mustard 1300 3750 25.0 
Jatropha 1892 2577 17.2 
Palm Oil 5950 819 5.5 

Algae Low 1% 45000 108 0.7 
Algae High 4% 137000 36 0.2 

•	 LOW ALGAE ESTIMATES BASED ON GREENFUELS TUBULAR BIOREACTOR DESIGN; EQUAL TO 
1% OF AVERAGE SUNLIGHT ENERGY CONVERSION TO BIODIESEL. 

•	 HIGH ALGAE ESTIMATES BASED ON NRELS PEAK ALGAE PERFORMANCE, THIS WOULD BE 
EQUAL TO 4% OF AVERAGE SUNLIGHT ENERGY CONVERTED TO BIODIESEL. 

•	 ONLY 13.3% OF THE WORLDS LAND MASS IS ARABLE, ALGAE BIOREACTORS OR RACEWAYS DO 
NOT REQUIRE ARABLE LAND. 

•	 Source data Chisti 2007 
•	 www1.eere.energy.gov/biomass/pdfs/biodiesel_from_algae.pdf 
•	 http://www.greenfuelonline.com/technology.htm 

Slide credit , B. Hankamer 



Light Curve of Photosynthesis 
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Acclimation of Plants occurs via σPSII 
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Optimizing algal biomass production in an 

outdoor pond: a simulation model*
 

Model consisting of photoadapation, gross photosynthesis
& respiration under wide irradiance levels. 

Model gives reliable predictions of: 
• 	 yearly averaged production rate = 10 g C m-2 d– 1  

• 	 yearly averaged chlorophyll areal density = 0.65 g m-2 for 
the maximal production rate. 

• 	 under optimal operational conditions, the diurnal
respiration losses averaged 35% of gross
photosynthesis 

*Sukenik , Levy , Levy, Falkowski , Dubinsky; 


Journal of Applied Phycology 3: 191-201, 1991 
 

Marine alga Isochrysis galbana 



Light-saturated photosynthesis – 
limitation by electron transport or carbon fixation? 

Central Paradox of plant and algal photosynthesis 
(Emerson & Arnold, J. Meyer ): 
The greater the Chl content (eg. growth at low light) the slower the e- transfer rate 

of photosynthesis 
Explanation* 
•	 As cells adapt to lower growth irradiance levels, the minimal turnover time 

of photosynthesis τ, H2OÆCO2, increases from 3.5 to 14.5 ms, in parallel
with increases in the thylakoid surface density and the contents of the 
photosynthetic units (all pigments, Photosystem II, PQ, cytochrome b-6-f, 
Photosystem I). 

•	 Thus, at all growth irradiance levels, the relative proportion of these 
membrane-bound electron-transport components remains constant. 

•	 By contrast, the cellular pool size of ribulose-l,5-bisphosphate 
carboxylase/oxygenase is independent of growth irradiance. 

•	 Hence, ratio of [RUBISCO]/[ET-chain] varies between 4.8 and 1.2 as a
function of growth irradiance levels. Identical to τ! 

Conclusion 
• 	 under nutrient saturated conditions the absolute rate of light-saturated 

photosynthesis is limited by carbon fixation rather than electron transport 

*Sukenik, Bennett & Falkowski et al. BBA, 1986 
 



Light Curves of Photochemical and 
non-Photochemical Quenching 

Chlorella, 
Ananyev & Falkowski 
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Decreasing Chlorophyll Antenna Size and Improving Light Utilization Efficiency 

RNAi technology to down-regulate the entire LHC gene family in Chlamydomonas r. * 

*Mussgnug et al Plant Biotechnology Journal (2007) 5, pp. 000–000
 

Mutant Stm3LR3 had significantly reduced levels of LHCI and LHCII mRNAs and 
proteins while chlorophyll and pigment synthesis was functional. 

Stm3LR3 also exhibited …reduced sensitivity to photoinhibition, resulting in an 
increased efficiency of cell cultivation under elevated light conditions. 

Photoinhibition Mixotrophic growth rates under high-light 
at high light in TAP medium. 

Conclusions from multiple studies 
On truncated antennas: 
•The reduced optical cross section 
provides better growth at high 
light only. 
•Reduced energy conversion to 
ATP + NADPH limits cell growth at 
ambient light intensity. 



Low Photosynthetic Quantum Efficiency at High Light Intensity 
 

PSII Quantum Efficiency is Limiting 
Photosystem II Quantum Efficiency at Zero Light Flux(1) at Maximum Solar Flux in Green Algae 
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Dehydrated lichens, germ cells-etiolated leaves 

Exolithic cyanobacteria, eg. Gloeobacter violaceus,
 Chl-d-containing phototrophs, eg. Acaryochloris m. 

Most cyanobacteria and hydrated lichens

 Microalgae: Chlorella, Euglena, Chlamydomonas 
& carbonate-requiring cyanobacteria 
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-1Photon Flux Density, μE m-2 s 
Ananyev, Hamilton, Nixon, Dismukes (200Solution: 


•Reduce the size of the antenna (less Non-photochemical Quenching) 
•Increase the number of the plastoquinone electron acceptors in the pool 
eg., Plants and algae have 6-8 PQ/pool vs. Cyanobacteria at 3-5x larger pool 
Ananyev & Dismukes 



PSII turnover in vivo can be monitored via Fv/Fm : 

Period-four oscillations reveal WOC cycle 
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Conclusions: 
Arthrospira maxima cells have the fewest misses and double turnovers 

In vivo Cyanobacterial PSII turn over time (2-3 
ms) approaches the maximun in vitro rate! 

Ananyev & Dismukes, 2005 



Arthrospira m. Conclusions 
• Highest PSII photochemical quantum efficiency of all 

cyanobacteria: light stored as charge separation 

• The fastest WOC yet observed in vivo with fewest 
misses: highest turnover efficiency 

• has the largest PQ pool 3-5x vs green algae 

• Bicarbonate is an essential cofactor for fastest WOC
 



           

O2 pressure does NOT slow or reverse PSII turnover 
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Illumination at elevated O2 pressure 
kills PSII due to the PSI Mehler reaction 

Athrospira maxima 

Effect of Light Exposure on Variable Fluorescence 
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Death by O2 Induced Photo-inactivation 
Lifetimes at 10 bar O2 
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*extrapolated 
%showed slow decay under 1 bar air 

plants algae 

Conclusions: 
•Protect against O2 during daylight 
•Eukaryotes, including algae, are very 
sensitive 
•Arthrospira maxima is far more 
tolerant (other cyanobacteria?) 
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GMO of fermentation pathway improves dark H2 yield: 
Bryant (Penn State) and Dismukes (Princeton) 

Bottom Line: 2-3 X H2 yield 



Algal culturing do list 
 
• Micro- & macro-nutrients requirements for 

photosynthesis, respiration & fermentation 
differ 

• Mixing w/o shearing is critical 
• CO2 fixation is rate limiting 
• Protect against O2 during daylight 
• Reduce antenna size for light efficiency 
• Metabolic GMOs help fermentation yields 
 



• Solid-state lasers enable: 
• λ = UV, blue, green, red, NIR 
• pulse trains of variable duration & rep. rate: ≥  50 

ns 
• digital noise suppression at the pulse rep. freq. 

0-20 MHz 

single turnover flash cluster 
50 ns to CW 

0.1 µs to ∞ 

dark
Princeton Fast Repetition Rate 
Fluorometer 

G. Ananyev 
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