Skip navigation to main content. National Renewable Energy Laboratory (NREL)NREL HomeInnovation for Our Energy Future
About NRELScience and TechnologyTechnology TransferApplying TechnologiesLearning About Renewables
Learning About Renewable Energy
Learning About Renewable Energy Home Renewable Energy Basics Biomass Geothermal Solar Concentrating Solar Passive Solar Photovoltaics Solar Hot Water Solar Process Heat Wind Using Renewable Energy Energy Delivery and Storage Basics Advanced Vehicles and Fuels Basics Student Resources

Solar Process Heat

Photo of a transpired collector installed on a building.

A transpired collector is installed at a FedEx facility in Denver.

Commercial and industrial buildings may use the same solar technologies—photovoltaics, passive heating, daylighting, and water heating—that are used for residential buildings. These nonresidential buildings can also use solar energy technologies that would be impractical for a home. These technologies include ventilation air preheating, solar process heating, and solar cooling.

Many large buildings need ventilated air to maintain indoor air quality. In cold climates, heating this air can use large amounts of energy. A solar ventilation system can preheat the air, saving both energy and money. This type of system typically uses a transpired collector, which consists of a thin, black metal panel mounted on a south-facing wall to absorb the sun's heat. Air passes through the many small holes in the panel. A space behind the perforated wall allows the air streams from the holes to mix together. The heated air is then sucked out from the top of the space into the ventilation system.

Solar process heating systems are designed to provide large quantities of hot water or space heating for nonresidential buildings. A typical system includes solar collectors that work along with a pump, a heat exchanger, and/or one or more large storage tanks. The two main types of solar collectors used—an evacuated-tube collector and a parabolic-trough collector—can operate at high temperatures with high efficiency. An evacuated-tube collector is a shallow box full of many glass, double-walled tubes and reflectors to heat the fluid inside the tubes. A vacuum between the two walls insulates the inner tube, holding in the heat. Parabolic troughs are long, rectangular, curved (U-shaped) mirrors tilted to focus sunlight on a tube, which runs down the center of the trough. This heats the fluid within the tube.

The heat from a solar collector can also be used to cool a building. It may seem impossible to use heat to cool a building, but it makes more sense if you just think of the solar heat as an energy source. Your familiar home air conditioner uses an energy source, electricity, to create cool air. Solar absorption coolers use a similar approach, combined with some very complex chemistry tricks, to create cool air from solar energy. Solar energy can also be used with evaporative coolers (also called "swamp coolers") to extend their usefulness to more humid climates, using another chemistry trick called desiccant cooling.

Find out about NREL solar technologies research for nonresidential buildings from its Advanced Desiccant Cooling & Dehumidification Program and High Performance Buildings Research Program.

The U.S. Department of Energy's Consumer Guide has in-depth information on Active Solar Heating.

For more information, you might want to see Advanced Buildings Technologies and Practices.