# **NEMS Integrating Module Documentation Report**

May 2, 1995

Office of Integrated Analysis and Forecasting Energy Information Administration U.S. Department of Energy Washington, DC 20585

## Contents

| 1. Introduction                                  | 1  |
|--------------------------------------------------|----|
| Scope of This Document                           | 1  |
| Model Archival Citation                          | 2  |
| Report Organization                              | 2  |
|                                                  | _  |
| 2. Overview of the Structure of NEMS             | 3  |
| NEMS Objectives                                  | 3  |
| Regional Detail                                  | 4  |
| Time Horizon                                     | 5  |
| Major Assumptions                                | 6  |
| NEMS Modular Structure                           | 6  |
| Modularity                                       | 6  |
| Coordination of Modules and Data                 | 7  |
| Data Structure                                   | 9  |
| Environment                                      | 9  |
| Alternative Approaches                           | 10 |
| Approaches to an Integrating Methodology         | 11 |
| Conclusions                                      | 16 |
|                                                  |    |
| 3. Summary of NEMS Modules                       | 19 |
| System Integration Module                        | 19 |
| Supply Modules                                   | 20 |
| Oil and Gas Supply Module                        | 20 |
| Natural Gas Transmission and Distribution Module | 21 |
| Coal Market Module                               | 21 |
| Renewable Fuels Module                           | 21 |
| Domand Modulos                                   | 21 |
| Defination Modules                               | 22 |
| Commercial Sector Demand Module                  | 22 |
| Commercial Sector Demand Module                  | 22 |
| I ransportation Sector Demand Module             | 22 |
|                                                  | 23 |
|                                                  | 23 |
| Electricity Market Module                        | 23 |
| Petroleum Market Module                          | 23 |
| International and Economic Modules               | 24 |
| International Energy Activity Module             | 24 |
| Macroeconomic Activity Module                    | 24 |
|                                                  |    |
| 4. Global Data Structure                         | 25 |
| Inter-Module Communications                      | 25 |
| Energy Market Data Representation                | 27 |
| Other Variables in the Global Data Structure     | 30 |
| Variable Naming Convention                       | 30 |
| RESTART File                                     | 31 |
| Report Data                                      | 31 |
| Database Loading                                 | 32 |

| 5. Integrating Module Solution Methodology                       | 33<br>33 |
|------------------------------------------------------------------|----------|
| Integrating Module Inputs                                        | 33       |
| General Modeling Approach                                        | 34       |
| Mathematical Specification                                       | 35       |
| Equation Solving Techniques                                      | 36       |
| Convergence Properties of the Jacobi and Gauss-Seidel Algorithms | 36       |
| Discontinuities and Convergence in NEMS                          | 37       |
| Application of Gauss-Soldal to NEMS                              | 20       |
| Solution Algorithm Flow Chart                                    | 12       |
|                                                                  | 43       |
| Summary of Convergence Brokleme and Boselution                   | 43       |
| Summary of Convergence Problems and Resolution                   | 47       |
|                                                                  | 47       |
|                                                                  | 48       |
| Other Natural Gas Convergence Issues                             | 50       |
| Coal/EMM Interactions                                            | 51       |
| Convergence Issues and the PMM                                   | 52       |
| Summary of Convergence Issues 5                                  | 53       |
| Acceleration Techniques                                          | 53       |
| Initial Solution Selection                                       | 54       |
| Expected Value Foresight 5                                       | 54       |
|                                                                  |          |
| Appendices                                                       |          |
| Appendix A. Variable, Data and Parameter Listing                 | 61       |
| COMMON Block Name                                                | 61       |
| Variable Name                                                    | 61       |
| Variable Dimensions                                              | 61       |
| Variable Descriptors                                             | 62       |
|                                                                  |          |
| Appendix B. Alphabetical List of NEMS Variables                  | 97       |
| Appendix C. Bibliography                                         | 05       |
| NEMS System Design Reports                                       | 05       |
| Overall Systems Design and Integration                           | 05       |
| Macroeconomic Activity                                           | 05       |
| Demand 10                                                        | 06       |
| Flectricity 10                                                   | 06       |
| Coal                                                             | 07       |
| Renewable Fuels                                                  | 07       |
| A A A A A A A A A A A A A A A A A A A                            | 07       |
| Model Decumentation Penerte 10                                   | 01       |
| Macroeconomic Activity                                           | 00       |
|                                                                  | 00       |
|                                                                  | 00       |
| Coal                                                             | 09       |
|                                                                  | 19       |
| Demand Components                                                | 10       |
|                                                                  | 10       |
| Other Documents                                                  | 11       |
| Appendix D. Model Abstract 11                                    | 15       |
| Appendix E. Carbon Emission Calculations                         | 21       |
|                                                                  | 21       |
| Sector Specific Calculations                                     | 21       |
| Other Natural Gas Convergence Issues                             | 50       |
| Appendix F. Emission Policy Module Documentation                 | 29       |

| Model Objectives                         | 29 |
|------------------------------------------|----|
| Carbon Tax                               | 29 |
| Ad Valorem Tax                           | 30 |
| Auctions 1                               | 30 |
| Allowance System 1                       | 30 |
| Offsets 1                                | 31 |
| Input/Output Requirements1               | 31 |
| Modifications to the Solution Algorithm1 | 32 |
| Model Structure                          | 33 |
| Policy Algorithms                        | 33 |
| Carbon Tax                               | 33 |
| Ad Valorem Tax                           | 33 |
| Auction                                  | 34 |
| Carbon Allowances 1                      | 34 |
| Offsets 1                                | 35 |
| Subroutine List                          | 37 |
| Variable List                            | 47 |

## Tables

| 1. Summary of NEMS Modeling Detail                  | 5  |
|-----------------------------------------------------|----|
| 2. NEMS Module Information Flows.                   | 8  |
| 3. COMMON Blocks for the NEMS Global Data Structure | 26 |
| 4. Energy Market Data Consumption Product Arrays.   | 28 |
| 5. Energy Market Data Price Arrays.                 | 29 |
| A1. Dimension Names                                 | 62 |
| A2. Data Dictionary Variable Descriptors            | 63 |
| E1. Emission Factors                                | 22 |
| E2. Energy Demands by Sector 1                      | 23 |

## Figures

| 1. Census Divisions                                                         | 4  |
|-----------------------------------------------------------------------------|----|
| 2. Basic NEMS Structure                                                     | 7  |
| 3A. The Supply Curve Cuts Across the Horizontal Portion of the Demand Curve | 39 |
| 3B. The Supply Curve Cuts Across the Vertical Portion of the Demand Curve   | 39 |
| 4. Integrating Module Flow Chart                                            | 44 |
| F1. Price Adjustment to Common Block With Representative Variables          | 32 |

## 1. Introduction

The National Energy Modeling System (NEMS) is a computer modeling system that produces a general equilibrium solution for energy supply and demand in the U.S. energy markets. The model achieves a supply and demand balance in the end-use demand regions, defined as the nine Census Divisions, by solving for the prices of each energy type such that the quantities producers are willing to supply equal the quantities consumers wish to consume. The system reflects market economics, industry structure, and energy policies and regulations that influence market behavior.

NEMS is structured as a modular system. The modules include the Integrating Module documented herein and a series of relatively independent analytical modules that represent the domestic energy system, the international energy market, and the economy. The domestic energy system is decomposed into fuel supply markets, conversion activities, and end-use consumption sectors.

In order to compute an integrated energy forecast, it is necessary for the modules of NEMS to exchange data, both with the outside world and with each other. This is accomplished in NEMS by a set of global variables arranged into an efficient, manageable data structure, although each module also has its own local variables and local files used only by that particular module. Most of the data reside in main memory, rapidly accessible by any module during execution.

### **Scope of This Document**

The NEMS Integrating Module is the central integrating component of a complex modeling system. As such, a thorough understanding of its role in the modeling process can only be achieved by placing it in the proper context with respect to the other modules. To that end, this document provides an overview of the complete NEMS model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

This document is intended to be read by analytical personnel having in-depth experience with modeling systems, who desire a comprehensive, detailed explanation of overall NEMS methodologies and approaches. As the NEMS approaches completion, additional chapters will analyze the quality of NEMS solutions.

Publication of this document is supported by Public Law 93-275, Federal Energy Administration Act of 1974, Section 57(B)(1) (as amended by Public Law 94-385, Energy Conservation and Production Act), which states in part

...that adequate documentation for all statistical and forecast reports prepared...is made available to the public at the time of publication of such reports.

### **Model Archival Citation**

The first model archival of NEMS will be done for the version used for the *Annual Energy Outlook 1994*. This will be available in early 1994.

### **Report Organization**

Later chapters of this document explain NEMS purpose and scope, rationale and structure, focusing on the Integrating Module, but describing important features of the analytical modules as necessary. The properties of the solution process are also covered in detail.

Because the Integrating Module stands at the center of NEMS operations, controlling the solution process, this documentation describes NEMS as a whole, as well as the details of the operation of the solution algorithm. The first chapter is therefore devoted to a description of NEMS.

The Solution Methodology chapter discusses the details of the Integrating Module's activities.

Chapters on properties, performance, calibration, and validation are reserved for future editions of this document that will be completed later.

Appendices contain supporting information for the NEMS model: history, bibliography, Model Abstract, and detailed listings of model variables.

## 2. Overview of the Structure of NEMS

The purpose of the National Energy Modeling System (NEMS) is:

To illustrate the energy, economic, environmental, and energy security consequences on the United States of various energy policies and assumptions by providing forecasts of alternative energy futures in the mid-, and long-term periods, using a unified modeling system.

The primary use of NEMS is the development of baseline forecasts, such as those presented in the *Annual Energy Outlook* and special studies requested by clients, including Congress. The Short-Term Integrated Forecasting System (STIFS) is currently used in developing the quarterly *Short-Term Energy Outlook*. NEMS is planned to have both a midterm and a long-term modeling capability. The midterm horizon, to 2015, is the focus of this report and of the initial development effort. Most policy questions or alternative analyses have their greatest impact during the midterm.

In that vein, NEMS represents a rethinking and enhancement of past modeling efforts, with particular sensitivity to current policy-related issues. Some of the areas given enhanced representation by NEMS include:

- Environmental issues;
- Regulatory changes;
- New technologies;
- Renewable sources of energy;
- Alternative fuels and reformulated products;
- Extension of the endogenous macroeconomic and microeconomic analysis capability; and
- World energy trade endogenous to the system.

Regional capabilities critical to appropriate representation of issues, such as energy flows, environmental impacts, industry infrastructure, and resource depletion, have also been implemented.

### **NEMS** Objectives

NEMS' design was formulated in response to three objectives:

- The incorporation of sufficient detail to support a broad range of policy analysis;
- The representation of energy markets in a manner that captures the important interrelationships so that actual energy market conditions can be accurately simulated; and
- The choice of a modeling system design which facilitates maintenance and use.

NEMS is a model of domestic energy markets. As such, the decisions to produce, convert, or consume energy products are presumed to serve the economic self-interest of those making the decisions. Many NEMS modules explicitly reproduce the economic decisionmaking involved in the portion of the energy system being modeled. In order to represent these decisions, NEMS is constructed in a reasonably fine detail of energy product categories and the regional locations of the sites of energy production and use. This detail is necessary since the economics of allocating energy products is strongly influenced by the product category at issue and regional differences in costs and other factors. Table 1 provides a summary of NEMS product and regional detail.

| Energy System                                   | Categories                                                                                                        | Regions                                                                                                     |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Primary Supply                                  | outegories                                                                                                        | Regions                                                                                                     |
| Oil                                             | conventional<br>enhanced<br>heavy oil<br>shale oil                                                                | six lower 48 onshore<br>three lower 48 offshore<br>three Alaska                                             |
| Gas                                             | conventional nonassociated<br>conventional associated<br>coalbed methane<br>deep<br>tight sands<br>Devonian shale | six lower 48 onshore<br>three lower 48 offshore<br>three Alaska                                             |
| Natural Gas<br>Transmission and<br>Distribution | residential, commercial, industrial,<br>utility<br>firm <i>vs.</i> interruptible<br>peak <i>vs.</i> offpeak       | twelve transshipment regions                                                                                |
| Coal                                            | four sulfur categories<br>four thermal categories<br>deep and surface mining types                                | sixteen supply regions                                                                                      |
| Renewables                                      | hydropower, wind, geothermal, solar<br>thermal, photovoltaic, municipal solid<br>waste, biomass                   | NERC regions for variables to<br>conversion modules; Census<br>divisions for variables to demand<br>modules |
| Conversion                                      |                                                                                                                   |                                                                                                             |
| Electricity (including<br>uranium for Nuclear)  | utilities, independent power cogeneration                                                                         | thirteen supply regions<br>nine census demand regions                                                       |
| Refining                                        | five crude categories<br>seven product categories                                                                 | five PADDs                                                                                                  |
| Energy Demand                                   |                                                                                                                   |                                                                                                             |
| Residential                                     | eight end-use services<br>three housing types                                                                     | nine census divisions                                                                                       |
| Commercial                                      | eight end-use services<br>eleven building types                                                                   | nine census divisions                                                                                       |
| Transportation                                  | six vehicle size categories ten vehicle age categories                                                            | nine census divisions                                                                                       |
| Industrial                                      | thirty-five industries<br>nine primary industries                                                                 | four census regions shared to nine census divisions                                                         |

#### Table 1. Summary of NEMS Modeling Detail

## **Regional Detail**

The Integrating Module of NEMS processes energy information at the level of Census Divisions, which subdivide the nation as shown in Figure 1. NEMS imposes no requirements upon the component analytical modules as to the regional breakout they are to use, beyond the requirement that all data obtained from, or contributed to, the Integrating Module must be by Census Division. In fact, many of the modules use other regional structures as appropriate for their market segments. These modules convert their solutions to the Census Division structure for processing by the Integrating Module and by the reporting programs. Details of the conversion processes embedded in the modules are given in the individual *Model Documentation Reports*. These are listed below, in the bibliography given in Appendix C, pages 104 through 106.

### **Time Horizon**

The horizon for the midterm model is 2015, covering that time period in which the structure of the economy, the nature of energy markets, and regional demographics are sufficiently well understood in structural and regional detail. The majority of policies proposed today can be expected to have their greatest impacts during the midterm years.

Rather than trying to attain some planned state of energy markets, NEMS attempts to simulate where the present state of energy markets and planned policies would take us. Therefore it solves forward in time year-by-year.



## Major Assumptions

Each module within NEMS embodies the many assumptions necessary to characterize the future production, conversion, and consumption of energy products in the U.S. There are no specific dataoriented assumptions, in the Integrating Module, such as there are for the other modules. NEMS' Integrating Module assumes that the individual modules can be integrated to provide a convergent process for the system as a whole. It makes use of the Gauss-Seidel algorithm for blocked non-linear simultaneous equations, interpreted for the characteristics of the national energy marketplace simulated here. Chapter 4 describes this approach in detail.

The NEMS algorithm and modeling approach worked successfully in the predecessor IFFS/GAMS modeling system. Although the models differ, NEMS has not added obstacles to finding solutions and has retained the older model's overall structure. Experience has shown that this approach occasionally has difficulty converging on a final solution, due to two broad classes of discontinuities in the component modules: the linear programming solution methods used by some modules jump from one vertex to another of their polygonal solution space; and other modules use tabulated functions evaluated either as step functions or by linear interpolation. These issues are handled in NEMS by ensuring that the spacings between the modules' steps are reasonably small. Convergence issues are discussed in more detail in Chapter 5.

### **NEMS Modular Structure**





As shown in Figure 2, NEMS consists of four supply modules (oil and gas, natural gas transmission and distribution, coal, and renewable fuels), two conversion modules (electricity and petroleum refineries), four demand modules (residential, commercial, transportation and industrial sectors), one module to simulate energy/economy interactions (macroeconomic activity), one to simulate world energy/domestic energy interactions (international energy activity), and one module to provide the mechanism that achieves a general market equilibrium among all the modules (the Integrating Module). The last of these is the focus of this document. Figure 2 depicts the high level of modularity of NEMS.

### Modularity

Model modularity implies a system of self-contained units, each performing a specific, well-defined function. This concept is generally consistent with the economic structure of energy markets, which can be represented by various supply, conversion, and demand components that are largely separable. Due to the heterogenous nature of energy markets, a single methodology cannot

adequately represent all fuel supply, energy conversion, and end-use demand sectors. Modularity allows the flexibility to use the methodology and coverage that is most appropriate for each module. Furthermore, modularity provides the capability to execute the modules individually or to easily substitute alternative modules to represent a specific function, so long as the required interfaces are satisfied. The interactions among these modules are controlled by the integrating mechanism.

#### Coordination of Modules and Data

Required linkages among modules are passed through common interfaces via the Integrating Module. The primary data flows among the major modules are the delivered prices of energy and the quantities consumed by product, region, and sector. As shown in

| Module                                          | Inputs from Other NEMS<br>Modules                                                                                | Inputs from Exogenous<br>Sources                                                                                                                                                                                                            | Important Outputs                                                                                                                                                                                                                                          |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Oil and Gas<br>Supply                           | Oil and Gas Production<br>by Fuel Type<br>Interest Rates/Price Deflators<br>Oil, Gas, Electricity Prices         | Resource Levels<br>Finding Rate Parameters<br>Costs<br>Production Profiles<br>Tax Rates                                                                                                                                                     | Supply Curve Parameters<br>Oil and Gas Financial Data<br>Pipeline Gas and LNG Imports<br>(Exports)<br>Reserves and Reserve Additions                                                                                                                       |
| Natural Gas<br>Transmission<br>and Distribution | End-Use Gas Demands<br>Natural Gas Supply Parameters<br>Interest Rates<br>Labor Costs<br>Productivity            | Existing Pipeline and Storage<br>Facilities<br>Historical Consumption Patterns<br>Historical Flow Patterns                                                                                                                                  | End-Use Natural Gas Prices<br>Natural Gas Wellhead Prices<br>Investment for Facilities<br>Pipeline Emissions<br>Storage and Pipeline Capacity<br>Expansion                                                                                                 |
| Coal Market                                     | Coal Demand<br>Natural Gas Prices<br>Refined Product Prices<br>Interest Rates<br>Price Deflators                 | Base Year Production<br>Contract Quantities<br>Labor Productivity, Costs<br>Transportation Costs<br>Excess Capacity                                                                                                                         | Coal Production and Distribution<br>Minemouth and End-Use Coal<br>Prices<br>Coal Feedstock Demand and Prices<br>Coal Liquids Production and Prices<br>Synfuel Plant Investment                                                                             |
| Renewable<br>Fuels                              | Installed Capacities<br>Interest Rates, GDP                                                                      | Technological Parameters<br>Applicable Agricultural Factors<br>Dispersed Geothermal Data                                                                                                                                                    | Available Production Capacities<br>Capital Costs<br>Operating Costs<br>Thermal Contents and Heat Rates<br>Biomass (Wood) Prices<br>Supply Curves for Ethanol<br>Load Duration Curves for Solar and<br>Wind<br>Emissions rates for Wood, MSW,<br>Geothermal |
| Residential                                     | Energy Product Prices<br>Housing Starts                                                                          | Current Housing Stocks<br>Retirement Rates<br>Current Appliance Stocks & Life<br>Expectancy<br>New Appliance Types, Efficiencies,<br>Costs<br>Housing Shell Retrofit Indices<br>Unit Energy Consumptions                                    | Energy Product Demand<br>Emissions<br>Changes in Housing and Appliance<br>Stocks                                                                                                                                                                           |
| Commercial                                      | Energy Product Prices<br>Rates of Interest, GDP                                                                  | Existing Commercial Floorspace<br>Floorspace Survival Rates<br>Appliance Stocks<br>Appliance Survival Rates<br>New Appliance Types, Efficiencies,<br>Costs<br>Service Demand Intensities                                                    | Energy Product Demand<br>Emissions<br>Changes in Floorspace<br>Changes in Appliance Stocks                                                                                                                                                                 |
| Transportation                                  | Energy Product Prices<br>GDP<br>Disposable Personal Income<br>Industrial Output<br>New Car and Light Truck Sales | Current and Projected Demographics<br>Existing Vehicle Stocks<br>Vehicle Survival Rates<br>New Vehicle Technologies,<br>Efficiencies, Costs<br>Vehicle Safety and Emissions<br>Regulations<br>Vehicle Miles-per-Gallon<br>Degradation Rates | Energy Product Demand<br>Emissions<br>Stocks and Characteristics of<br>Vehicle Types                                                                                                                                                                       |
| Industrial                                      | Energy Product Prices<br>Sectoral Trends of Economic<br>Activity                                                 | Production Stages in Energy-<br>Intensive Industries<br>Technology Possibility Curves                                                                                                                                                       | Energy Product Demand<br>Sectoral Detail of Future Energy<br>Use                                                                                                                                                                                           |

### Table 2. NEMS Module Information Flows

| Module                           | Inputs from Other NEMS<br>Modules                                                                                                                                                                          | Inputs from Exogenous<br>Sources                                                                                              | Important Outputs                                                                                                                  |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Petroleum<br>Market              | Current World Oil Price<br>Supply Curves for Imported Crudes<br>and Products<br>Petroleum Product Demands<br>Electricity and Natural Gas Prices                                                            | Costs of Refining and Capacity<br>Expansion<br>Processing Unit Parameters<br>Existing Refining and Distribution<br>Facilities | Petroleum Product Prices<br>Capital Expenditure for Refineries<br>Crude and Product Imports<br>(Exports)<br>Refinery Fuel Use      |
| International<br>Energy Activity | U.S. Oil Supply/Demand<br>U.S. Net Product Imports                                                                                                                                                         | OPEC Production Capacity Path<br>Reference Non-U.S. Oil Supply and<br>Demand                                                  | World Oil Price<br>Crude Oil Imports<br>Product Import Prices<br>MTBE and Methanol Prices                                          |
| Macroeconomic<br>Activity        | Wholesale Electricity Prices<br>Retail Electricity Prices<br>For Oil, Gas and Coal:<br>Wholesale Prices<br>Retail Prices<br>Production Rates<br>Rate of Refinery Activity<br>Incremental Energy Investment | Labor Force<br>Productivity                                                                                                   | GDP and Other Economic Activity<br>Measures<br>Price Indices and Deflators<br>U.S. Imports/Exports<br>Production Rates by Industry |

Table 2, the information flows are not limited to prices and quantities, but include other information such as economic activity, capital expenditures, and load curves. The delivered prices for a fuel include the costs of all the activities necessary to produce, import, and transport the fuel to the end user.

The NEMS user can modify input values and key assumptions for the modules through the user interface, thus facilitating analyses using individual modules. For example, the Electricity Market

Module normally receives delivered prices of fuels from the fuel supply modules; however the user can specify those prices externally to allow greater flexibility in using individual modules of the system.

#### Data Structure

The concept of the NEMS Global Data Structure is central to the modular structure. The NEMS Global Data Structure is defined as the set of data communicated among any of the thirteen NEMS modules. The Global Data Structure includes the energy market prices and consumption, macroeconomic variables, energy production, transportation, and conversion information, as well as centralized model control variables, parameters, and assumptions. The Global Data Structure excludes variables that are defined locally within modules and not communicated to other modules.

An important subset of the Global Data Structure is the Energy Market Data, the energy market enduse-sector prices and quantities of fuels used for equilibration and the NEMS energy balance. The Energy Market Data are the principal variables used directly by the Integrating Module in its convergence algorithm. Additional macroeconomic and international trade variables are tested for convergence as well in the solution algorithm.

### Environment

Recognizing the importance of environmental issues associated with the use of energy, NEMS includes an environmental impact capability. Six emissions are accounted for in NEMS: carbon, CO,  $CO_2$ ,  $SO_x$ ,  $NQ_x$ , and volatile organic compounds. These emissions are computed only for fuel combustion. In addition, NEMS represents all current environmental regulations, such as the Clean Air Act Amendments of 1990.

### Alternative Approaches

This section on alternative approaches to the integrating methodology for NEMS provides background on the research that preceded the overall system design. The discussion of methodologies is limited to those with which EIA has some familiarity and is intended to focus on the fundamental principles of the design rather than on the specifics of individual fuel or sector methodologies. This topic was also considered by the National Research Council Committee on NEMS.

Two primary requirements form the basis for discussion of the integrating framework of NEMS. First, NEMS is a tool for performing market-based integrated energy market analysis, but on a sector- and fuel-specific basis. Second, the NEMS design allows a high degree of modularity. The

<sup>&</sup>lt;sup>1</sup>A full discussion of the issues relating to the integrating methodology can be found in the NEMS Issue Paper, *Integrating Methodology of the National Energy Modeling System*, June 28,1991.

first goal implies that NEMS should be able to balance the supply of and demand for energy, taking into account the economic competition among energy sources. Economic principles for energy supply, consumption, and competition are the foundation of most EIA analysis. Although valuable insights can be derived from the analysis of a narrow sector-specific option, very often the policy discussions center on broad energy market impacts, such as energy security or economic impacts. This is not to imply that all analyses need be done in an integrated framework, but rather that the capability should be in place.

A fixed-shares approach to fuel competition or a system in which the energy sectors do not balance would add little information to the policy debates. A market-based approach, in which supplies and demands for energy respond to the costs and prices of energy, predominates as the underlying principle of the required energy policy analysis. Thus, NEMS must provide a framework in which the market-clearing prices and quantities of energy supply and demand can be derived, subject to other factors, such as regulatory and legislative conditions.

The second goal for NEMS development that directly affects the design of the integrating methodology is the requirement for modularity. Model modularity implies that the modules of NEMS that represent the various supply, conversion, and consumption components are separable in both their methodology and their implementation. Functionally, modularity allows the component modules to be tested and developed without running the entire system, which is necessarily faster, and allows problems to be isolated to particular sectors. In addition, individual fuel or sector studies can be conducted with all other components held constant. Finally, modularity readily allows for the inclusion of alternative modules that meet minimum interface requirements. This desired modularity or segmentation of the modeling system leads to the necessity for a methodology by which the various modules can interact—the integrating methodology. A discussion of various approaches used in earlier models follows.

### Approaches to an Integrating Methodology

#### **Project Independence Evaluation System**

The Project Independence Evaluation System (PIES), later named the Midterm Energy Forecasting System (MEFS), is one example of a large-scale integrated energy modeling system. It was developed in 1974 by the Federal Energy Administration, a predecessor organization to the EIA. The core model of PIES/MEFS was a single linear program of fuel supply, transportation, conversion, and fixed demand activities, which optimized by solving for the least-cost combination of supply and transportation of fuel to meet end-use demand.

PIES/MEFS solved for a supply/demand equilibrium in one future period by iterating between the linear program and a reduced-form representation of demand models. After the linear program optimized the supply/conversion problem, the marginal, or shadow, prices for each fuel delivered to the end-users were taken from the linear program. The reduced-form demand models were evaluated at these marginal prices, giving revised demands for fuels that were entered into the linear program, which was then re-solved. This process of iterating between the linear program and demand models continued until the marginal prices and end-use demands between subsequent

iterations were close within a convergence tolerance. Over the years, many special features were added to PIES/MEFS to reflect regulatory policies or to ensure that certain end-use prices from the linear program were average or regulated prices, rather than strict marginal prices. These features were incorporated in either the linear program or in the program that controlled the equilibration and determined convergence.

As a modeling system, PIES/MEFS encompassed a host of satellite models—coal, oil, natural gas, synthetic fuels, refinery, electric utility, end-use demand, and macroeconomic. Each of these satellite models produced the necessary coefficients and objective function costs for the linear program and incorporated sector-specific features as required. This limited modular structure served to organize the data and allocate responsibilities for the modeling activities; however, there were several significant problems with PIES/MEFS as an integrating methodology.

First, the structure of the system required the entire linear program to be executed together without any means of decomposing the model. This was a serious problem in a testing and debugging mode since PIES/MEFS required several hours to execute, and the simplest changes could only be tested through an entire run of the model. The satellite models and preprocessor programs produced data for the linear program, but did not produce results that could be readily used for analysis or testing of the individual sector. Yet another difficulty with PIES/MEFS was the overarching optimization methodology, which was not suitable for all portions of all the supply sectors. Several special features were incorporated into the system to appropriately represent some regulatory or institutional features of various sectors; however, this became increasingly burdensome.

### Intermediate Future Forecasting System

The immediate predecessor to NEMS was the Intermediate Future Forecasting System (IFFS), an annual model that forecasted to a specified time horizon, the maximum finally set at 2010. IFFS partitioned the energy system into fuel supply, conversion, and end-use demand sectors, then solved for a supply/demand equilibrium by successively and repeatedly invoking these modules. This equilibration was performed one forecast year at a time, stepping forward to the next forecast year when the equilibrium for one year was complete.

The fuel supply modules in IFFS encompassed all the activities necessary to produce, import, and transport the fuel to the end user, thus computing the domestic production and the regional end-use prices necessary to meet end-use demand. Each of the end-use demand modules computed fuel requirements for the sector by region, based upon the regional end-use prices of all competing fuels, and other factors. The electricity module, as a conversion module, consumed fuel based on relative prices and then generated and priced electricity. The refinery module was also viewed as a conversion module, except that it used only a single primary input, crude oil, whose price was invariant, and its fuel use was represented in the industrial demand module with no direct linkage to refinery activity.

Within the IFFS framework, the primary interfaces among the modules were the regional end-use prices and demands for each fuel, although other information was passed among modules. Each fuel supply or end-use sector demand module was called in sequence, and each module solved assuming

all other variables in the energy markets were held constant. That is, the coal module solved for the production and end-use prices of coal, assuming a slate of demands for coal and assuming that all other sectors were fixed. Any module that used the coal prices would then use these new prices to compute demand the next time the module was executed. This process was equivalent to a Gauss-Seidel algorithm for solving a set of simultaneous equations.

The equilibration module of IFFS called the various modules in sequence and checked for convergence of the system by computing percentage differences between iterations for all end-use prices and demands in each region. When differences were within the user-specified tolerance, convergence was declared and the equilibrating module began solving the next forecast year. Some attempt was made in IFFS to speed convergence by using characteristics of particular modules. For example, the sensitivity of the natural gas price to the level of demand, and the concomitant sensitivity of gas demand in certain sectors to the price, was well recognized. To handle this, the electricity module computed a derived demand curve for natural gas, explicitly representing the demand for gas at a variety of prices, for both the electricity and gas modules to deal more effectively with convergence. This demand curve was part of the information passed from the electricity module to the gas module.

Due to the partitioning of the energy markets and the specific implementation of the modules and integrating methodology in IFFS, any subset of the modules could be executed, or any module that met a minimum interface requirement could be substituted. A key feature that was necessary to achieve the modularization was the means by which the modules passed information to each other. Within IFFS, none of the modules passed information directly to another module, but rather through a central data storage file. If a particular module was not included in a particular run of the system, the information it normally provided was located in the central data file. Thus, any other module could read that information and was oblivious to whether the module was included.

The modular nature of IFFS allowed for single-fuel studies, if desired. Such studies were conducted on the electricity and natural gas sectors. However, it was not easy to execute, for example, the electricity model with a specified demand or with fuel prices that were different from another instance of the model execution. These functions required explicit programming by someone familiar with IFFS, or adjusted assumptions in other modules to produce the desired input.

In addition, the modular nature of IFFS readily allowed each sector of the energy market to be represented with the methodology deemed most suitable to that sector, allowing for a more natural representation of each market. IFFS contained a mix of simulation, process, econometric, and optimization methods within the various sectors. It also allowed each module to vary the depth and breadth of its coverage of the sector. For example, the coal supply module of IFFS represented 32 coal production regions and a detailed transportation network delivering the coal to the end-use demand regions. By contrast, the petroleum product module computed the refinery gate prices of products at the national level and used regional, sectoral markups to derive end-use prices without an explicit transportation component.

The flexibility of IFFS came at some cost, however. A linear program, for example, is a highly structured approach to modeling. There is an ever-increasing set of software available to generate, debug, analyze, and report linear programs. In a less structured system with more diverse

methodologies, many of these features are not available or must be programmed into individual modules.

The basic IFFS methodology was also employed in the PC-AEO, a simplified spreadsheet representation of the modeling system used by EIA for three years. PC-AEO decomposed the energy system into the same supply, conversion, and demand modules, representing each module in a separate spreadsheet. The interface variables among the modules upon which the system iterated were also the end-use prices and quantities by fuel. For easier file handling, each module of PC-AEO solved all years in the forecast horizon each time it was invoked. Thus, the order of looping over modules and forecast years was reversed from IFFS.

#### Long-term Energy Analysis Package

For three years, EIA used the Long-term Energy Analysis Package (LEAP) for long-range forecasting. LEAP was EIA's configuration of the Generalized Equilibrium Modeling System (GEMS), originally developed by the Stanford Research Institute and now with Decision Focus, Inc. Many organizations use GEMS, configured to suit their particular purposes.

LEAP segments the energy system by separating all supply, transportation, conversion, and end-use processes. Each of these activities is defined as a node, and a network describing the flows of all information between nodes must be explicitly drawn. Each regional activity, such as coal supply by region, would also be a separate node. At all decision points in the system, there are allocation nodes. Several examples of such allocations are:

- The coal transportation network might contain a centroid in the upper Great Plains that can be served by several production regions. An allocation node at that centroid determines how much production comes from each region.
- The decisions on how much natural gas goes to each of the gas technologies in the electricity generation sector or in any end-use sector would be allocation nodes.
- The amount of each competing technology used to satisfy residential heating needs would be an allocation node.
- The entrance of Alaskan North Slope gas into the supply system would be an allocation node.

Each allocation node is a market share algorithm that uses market share coefficients, price premium, behavioral lag coefficients, and initial year market shares. These data, though fundamental to the solution, are very difficult to derive empirically for each node in the system.

LEAP solved for a supply/demand equilibrium in a way fundamentally similar to IFFS, with prices and quantities of the various types of energy being computed by modules that represented production, raw material transportation, conversion, final product transportation, and end-use energy consumption. As a representation of the overall system, the order of solution was directional, prices flowing from supply to end-use demand and quantities flowing in reverse. Thus, it solved for an equilibrium by iteratively computing the network flows.

Like PC-AEO and unlike IFFS, each module of LEAP/GEMS solved for all forecast years at a time, coming to an equilibrium for all years simultaneously.

One feature of the GEMS system is a library of generic models, from which one can choose in building a representation of the energy system. These generic models include a simple and a complex conversion process, an allocation process, a primary resource process, an end-use demand process, and a transportation process. In building a model using GEMS, a user draws the network by selecting a generic model for each node, defining all the input and output links to other nodes, and specifying all necessary data. It is the data specification and the flows that distinguish, for example, a node representing the industrial sector demand for electricity for machine drive from a node for residential natural gas space heating demand. The value of the generic models depends on the view of the model builder. If the model builders think, for example, that the coal transportation system and the natural gas transportation system differ in their physical or economic characteristics, then a generic model cannot be used for both and separate models must be developed. One model builder might require only a simple energy market representation and therefore be comfortable with the generic models. Someone interested in more sophisticated representations of the different energy sectors for specific issues might be less comfortable with the generic model concept. As the model builder moves away from the generic model concept, the value of the GEMS system and its data structure diminishes.

A potential difficulty in using the GEMS-type approach is the application of methodologies that encompass several nodes. A model builder using GEMS would represent oil and gas production by a separate node for each region and each technology type, differentiated by oil and gas. This was done in LEAP, which made the model large and cumbersome. However, if EIA wished to incorporate a methodology such as an oil and gas industry-wide cash flow or other activity, this would become difficult. EIA has tended to take a wider market view of the various sectors, for example, representing coal supply and transportation in a unified way or natural gas production and transportation. GEMS could incorporate these market views if the model builder programmed larger, more specialized nodes, encompassing a larger number of individual activities, but diminishing the value of the generic module library.

#### **Optimization Methodologies**

Optimization models are often appropriate for simulating the behavior of a homogeneous industry or sector of the economy that typically has a single objective function. For example, the electric industry's plant dispatching decisions or the movements in the coal transportation sector can be represented appropriately as an optimization model. In such models, the objective is typically a cost minimization.

Optimization approaches can also be used to solve a market equilibrium problem for a competitive market. The mathematical equivalence between the competitive solution and the cost minimizing solution allows the use of optimization techniques to solve for the market equilibrium. For a

competitive model, an equivalent supply side optimization problem is to provide customers with prespecified quantities of end-use fuels at minimum cost. Such a model ignores the fact that real-world markets are always suboptimal, as they are constantly in the process of optimizing to constantly changing conditions. The integrating framework of the PIES model mentioned earlier was structured as an optimization problem.

While optimization methods could be used to determine a generalized market clearing solution, such an approach might prove too difficult or inflexible to apply to the complex U.S. energy economy. As discussed above, the experience with the PIES model cautions against using an overarching optimization approach as an integrating framework for NEMS. Model implementation and management are relatively difficult, as is the simulation of a diverse group of industries with a single modeling approach. A preferred approach combines a flexible integrating framework with a solution algorithm that yields equilibrium energy market forecasts.

#### **Other Methodologies**

All the above methodologies inherently assume a complex representation of the feedbacks and interrelationships of the energy system, as well as an ability to represent a system that evolves over time. Other methodologies that do not incorporate such features are possible.

EIA's *Short-Term Energy Outlook* is a 2-year, quarterly forecast of national energy supply and demand, produced using the Short-Term Integrated Forecasting System (STIFS). Given assumed crude oil and natural gas wellhead prices, STIFS computes delivered energy prices and the consumption of energy based upon relative prices and recent trends. Domestic crude oil and coal production are both projected based on the fuel prices. It achieves an energy balance using a simultaneous non-linear equations approach that adjusts production and import trends and stock levels, with limited feedback of energy prices and consumption on production. Being a short-term system, STIFS does not account for capital stock changes and investment decisions.

STIFS performs credibly for its intended purpose of providing short-term, non-equilibrium forecasts, although its limited structural representation and the lack of certain feedback effects restrict the types of scenarios it can address. In general, the STIFS integrating methodology, which does not allow for equilibration or market transition, would not be appropriate for a longer-term modeling system.

### Conclusions

Because of these considerations, NEMS adopted a system design and solution algorithm similar to that of the Intermediate Future Forecasting System (IFFS). The key features of this design are:

• The energy system is decomposed into fuel supply markets, conversion activities, and end-use consumption sectors, with explicitly defined flows among the components. The primary information flows among these major components are the delivered prices of energy and the

quantities consumed by product, region, and sector. Other information such as economic activity, capital expenditures, and load curves is passed among the modules as well.

- To allow operational independence, the components do not pass information to each other directly but communicate through a database while executing.
- Solution is achieved by equilibrating on the delivered prices of energy and quantities demanded, which assures an economic equilibrium of supply and demand in each of the consuming sectors.
- Equilibration is achieved annually at least through the midterm. Eventually, longer-term components of NEMS may function with longer time intervals.

Enhancements or improvements to the IFFS approaches implemented in NEMS are as follows:

- The convergence algorithm allows the use of relaxation techniques to ensure that the system achieves convergence as rapidly as possible.
- The integrating framework accounts for global system values, such as emissions and other toxics, capital requirements, and foreign trade, to allow for the representation of feedback effects of such values on the energy system.
- The structure of the integrating framework and data storage incorporate alternative assumptions about decision makers' foresight in the system. The integrating algorithm allows the system to cycle through the years to reach convergence, rather than stepping forward progressively through the years.

## 3. Summary of NEMS Modules

This chapter gives capsule summaries of the major software components introduced in the previous chapter. for more detailed descriptions of the NEMS modules, the reader is referred to the *NEMS Methodology Summary*, forthcoming in January 1994, and to the documentation packages for the individual modules, which are listed in Appendix C. Inputs for and outputs from the modules are summarized in Table 2.

### **System Integration Module**

Figure 2 depicts the relationship of the Integrating Module of NEMS with each of the component modules. The Integrating Module interacts with all of the NEMS submodels, generally referred to as *modules*. The term module is used because each NEMS submodel is designed to be invoked selectively by the NEMS Integrating Module so that all or some of the NEMS model can be executed in a truly modular way.

The integrating mechanism of NEMS balances the supply of and demand for energy, taking into account the economic competition among energy sources. This competition is the foundation for most of the analysis performed by EIA. Although valuable insights can be derived from a single-sector analysis, very often policy discussions revolve around overall energy market impacts that cannot be understood from the narrow perspective of a single market segment. This does not imply that all analyses must be done in an integrated framework, but rather that the capability be in place. The individual modules of NEMS are designed to account for sector-specific or fuel-specific market characteristics and regulations, while the Integrating Module ensures that the interaction among consuming sectors, energy sources, and the economy is reflected.

The NEMS Integrating Module possesses the following features:

- Solutions are achieved by equilibrating on the delivered prices of energy and the quantities demanded, thus assuring an economic (market-clearing) equilibrium of supply and demand at agreed prices in the consuming and producing sectors. Each fuel supply, conversion, or end-use demand module is called in sequence and solves assuming all other variables in the energy markets are fixed. The modules are called iteratively until the end-use prices and quantities remain constant within a specified tolerance, a state defined as convergence. In NEMS, quantities supplied are not accounted for separately from quantities demanded; a single set of quantities both supplied and demanded ensures that they are in balance with one another.
- Equilibration is achieved annually through the midterm period to 2015.

- The integrating framework incorporates interfaces to macroeconomic and international modules that exchange information with the domestic energy modules. The solution algorithm incorporates iterative calls for the NEMS macroeconomic and international modules and performs convergence tests on a set of key macroeconomic and international trade variables.
- The integrating framework accounts for global system values, such as emissions and capital requirements.

The Integrating Module controls execution of the component modules in an iterative, convergence algorithm. The objective is to equilibrate on the delivered prices of energy and quantities demanded, to ensure an economic equilibrium of supply and demand in the domestic energy markets, with feedbacks from the international market and the economy as whole.

The concept of modularity requires that output variables from each NEMS module be available, even if the module is switched off for a particular run. In support of this requirement, the Integrating Module is capable of replacing a module's output data when that module is omitted from a run. The Integrating Module manages and has access to all data communicated among modules. The Integrating Module also loads initial energy market solutions, assesses market equilibrium, and stores the final solutions for future restart purposes and centralized reporting. In addition, the Integrating Module has access to user-defined model control variables, parameters and centrally defined assumptions.

### **Supply Modules**

Supply sectors are generally characterized by their function of converting raw energy resources into forms that can be consumed by the consumption sectors. In NEMS, supply modules have the responsibility for accepting quantities of energy products demanded by the demand modules, and returning the prices that would be required to produce supplies in matching amounts. In addition, they provide descriptions of the technical characteristics of energy products.

### Oil and Gas Supply Module

The Oil and Gas Supply Module represents domestic crude oil, natural gas liquids, and natural gas production within an integrated framework that captures the interrelationships among the various sources of supply: onshore, offshore, Alaska, conventional, and unconventional production. This framework analyzes cash flow and profitability to compute investment in each of the supply sources. Oil and gas market equilibration for production is computed at a regional level. The crude oil and natural gas liquids produced are input to the Petroleum Market Module, a separate conversion module in NEMS, for conversion and blending into refined petroleum products.

The OGSM is solved as a classical process model.

#### Natural Gas Transmission and Distribution Module

This module represents the transmission, distribution, and pricing of natural gas, subject to end-use demand for natural gas, the production of domestic natural gas, and the availability and price of natural gas traded on the international market. The module tracks the flows of natural gas in an aggregate, domestic pipeline network. This capability allows the analysis of impacts of regional capacity constraints in the interstate natural gas pipeline network and the identification of pipeline capacity expansion requirements. There is an explicit representation of firm and interruptible markets for natural gas transmission services, and the key components of pipeline and distributor tariffs for transmission services are included for the pricing algorithms.

The NGTDM is formulated as a linear program.

#### **Coal Market Module**

The Coal Market Module represents the mining, transportation, and pricing of coal, subject to the end-use demand for coal differentiated by physical characteristics, such as the heat and sulfur content. The coal supply curves include a response to capacity utilization and fuel costs. Transportation by various modes, such as trucks or rail, and the effects of coal contracts are represented.

The Coal Market Module incorporates an international submodule that calculates U.S. coal exports as part of the worldwide market for coal. The Coal Synthetics Submodule projects the production of synthetic fuels from coal, to be used as substitutes for conventional petroleum liquids and pipeline-quality natural gas.

The module combines linear programming optimizations with deterministic calculations.

### Renewable Fuels Module

The Renewable Fuels Module includes several submodules that represent the supply of wood, municipal solid waste, wind, solar, hydropower, and geothermal technologies. The market penetration of renewable technologies used for centralized electricity generation is represented in the Electricity Market Module. The market penetration of dispersed renewables such as rooftop solar collectors and geothermal heat pumps is incorporated within the end-use demand modules. Renewable supply curves from the renewable supply module provide costs and performance criteria to these other modules. The Renewable Fuels Module also interacts with the refining module to represent the production and pricing of alcohol fuels.

Each of the submodules in the Renewable Fuels Module uses its own techniques for arriving at a solution. All, except for Geothermal, are relatively deterministic formulations. The Geothermal Submodule uses a process modeling technique that accounts for all known potential geothermal sites.

## **Demand Modules**

Demand sectors in the energy marketplace are the end users of energy products, converting them into usable work. In NEMS, the demand modules examine prices for energy products to determine the amounts of the products that would be purchased at those prices. They are responsible also for calculating purchases of additional energy consuming equipment, on the basis of expectations about future energy requirements and prices.

The demand modules are deterministic models, characterized as structural, economic/engineering representations, as opposed to econometric modules.

#### **Residential Sector Demand Module**

The Residential Sector Demand Module forecasts the consumption of residential sector fuels and electricity by housing type and end use, subject to delivered energy prices, the availability of renewable sources of energy, and macroeconomic variables representing disposable personal income, interest rates, and housing starts.

The module distinguishes consumption by type of housing unit (single-family, multi-family, mobile home) and end use (heating, air conditioning, water heating, types of appliances, etc.). Because certain end uses and conservation measures interact (e.g., a conversion from incandescent to fluorescent lighting changes demand for other fuels, by increases in heating equipment loads and decreases in cooling loads) the model keeps track of overall, as well as individual, impacts of conservation measures and new technologies.

### **Commercial Sector Demand Module**

The Commercial Sector Demand Module forecasts the consumption of commercial sector fuels and electricity by building type and non-building uses of energy and by category of end use, subject to delivered prices of energy, the availability of renewable sources of energy, and macroeconomic variables representing gross domestic product, employment, interest rates, and floor space construction.

#### Transportation Sector Demand Module

The Transportation Sector Demand Module forecasts the consumption of transportation sector fuels and electricity by transportation mode, including the use of renewables and synthetic fuels, subject to delivered prices of energy fuels and macroeconomic variables representing disposable personal income, gross domestic product, population, interest rates, and the value of output for industries in the freight sector. Analysis is disaggregated by vehicle age and size class.

#### Industrial Sector Demand Module

The Industrial Sector Demand Module forecasts the consumption of fuels and electricity for heat and power and for feedstocks and raw materials at a process or end-use level for the energyintensive industries, including the direct use of renewable energy and the use of synthetic fuels, subject to delivered prices of energy and macroeconomic variables representing gross domestic product, interest rates and cost of capital, employment and labor cost, and the value of output for each industry. It includes simplified process models for 35 industries, with uses broken out to boilers/steam generation, buildings, and process/assembly. This module includes the nonutility generation of electricity that is either used in the sector or sold to electric utilities.

### **Conversion Modules**

Conversion sectors in the energy marketplace convert energy products that could be consumed directly into other forms that can be consumed more easily by the demand sectors. In NEMS, the conversion modules act both like demand modules, in that they demand energy products, and like supply modules, in that they produce energy products for the demand sectors. They also act in a dual capacity in that they calculate the quantities of primary fuels they would consume at specified prices, and calculate the prices necessary to supply quantities of output fuels demanded by the demand modules.

### **Electricity Market Module**

The Electricity Market Module represents the generation, transmission, and pricing of electricity, subject to the delivered prices for coal, petroleum products, natural gas, and synthetic fuels, the costs of generation by centralized renewables, macroeconomic variables for costs of capital and domestic investment, and electricity load shapes and demand. The submodules include capacity planning, fuel dispatch, nonutility generation, finance and electricity pricing, transmission and trade, and demand side management (DSM) in conjunction with the demand models.

DSM programs and all Clean Air Act compliance options are explicitly represented in the capacity expansion and dispatch decisions. Both new generating technologies and some renewable technologies compete directly in these decisions. Several options for wholesale pricing and the competition between utility and nonutility generation are included in the module.

The capacity planning portion of EMM employs a linear programming formulation; the other parts are process models.

### Petroleum Market Module

The Petroleum Market Module includes the pricing of petroleum products, crude oil and product import activity in conjunction with the International Energy Activity Module, and domestic refinery operations, subject to the demand for petroleum products, the availability and price of imported petroleum, and the domestic production of crude oil, natural gas liquids, and alcohol fuels. The module represents the same five crude oil types in the refining activities as does the International Energy Activity Module. It explicitly models the requirements of the Clean Air Act Amendments of 1990 and the costs of new automotive fuels, such as oxygenated and reformulated gasoline, and includes oxygenated production and blending for reformulated gasoline. Costs include required capacity expansion for refinery processing units.

The Petroleum Market Module consists of a set of regional linear programs.

### **International and Economic Modules**

### International Energy Activity Module

The International Energy Activity Module represents the world oil markets and projects world oil prices within NEMS. International petroleum product supply curves, including curves for oxygenates, are incorporated, and an international refinery model is being added. This module defines crude oil categories that are consistent with those in the domestic refinery model.

The module is purely deterministic.

### Macroeconomic Activity Module

The Macroeconomic Activity Module provides a set of essential macroeconomic drivers to the energy modules, provides a macroeconomic feedback mechanism within NEMS, and evaluates detailed macroeconomic and interindustry impacts associated with energy events. Industrial drivers are calculated for 35 industrial sectors. A capability to analyze the impacts of energy investment is included, as well as regional macroeconomic projections. This module is a response surface representation of the Data Resources, Inc., (DRI) Quarterly Model of the U.S. Economy.

## 4. Global Data Structure

As a distinct component of NEMS, the Integrating Module operates on a subset of the Global Data Structure that consists primarily of the model control information and the end-use sector prices and quantities of fuels. Some model control information is input to the Integrating Module from the NEMS user interface. Other control information, such as the current model year, is updated during model execution. All of this control information is accessible to NEMS modules, and can be viewed as an output of the Integrating Module.

The end-use prices and quantities are both inputs and outputs for the Integrating Module. The Integrating Module stores these values from one iteration to the next to check on NEMS convergence. At user request, the Integrating Module can change the prices and quantities from the component modules, to speed convergence (see **Acceleration Techniques**, on page 44). Thus, the updated values are considered an output.

Because of the flexible year-looping algorithm in the Integrating Module, all variables in the Global Data Structure are explicitly dimensioned with a NEMS year subscript. As a result, the memory requirements for the NEMS Global Data Structure are significant.

### **Inter-Module Communications**

Four categories of variables provide input and output for each module. Some variables fall into more than one category:

- Variables needed by the module, which pertain to and are specific only to that module, including initial values, parameters, coefficients, and assumptions for that individual module, ordinarily read in from the module's private input files;
- Variables that are outputs of the individual module, derived only from that module, including specialized and/or debug reports, that ordinarily are output to the module's private output files;
- Variables that are critical to the proper functioning of the integrating system, providing the information links that allow the modules to communicate with each other and/or the system to solve for an equilibrium solution, including prices, consumption, and macroeconomic information that are input to and output from the various modules; and
- Variables that are of sufficiently general interest to most of the model users that they are printed in the modeling system reports, cover a wide range of variables, and are a substantial superset of the variables that are necessary for integration.

Only the last two categories in this list are included in the NEMS Global Data Structure.

All data in the NEMS Global Data Structure is defined in FORTRAN COMMON blocks that designate groups of global variables. Only some of the COMMON blocks used by NEMS modules are considered part of the Global Data Structure. During NEMS execution, each module accesses its input and output variables through these NEMS COMMON blocks. The NEMS COMMON block structure designed to store the Global Data Structure is displayed in Table 3. The specific elements of the COMMON block structure can be found in Appendix A. Generally, three COMMON blocks can be found in the Global Data Structure for each NEMS module, to hold three categories of information:

- The module's outputs (moduleOUT) used by other NEMS modules, (exclusive of end-use consumption and prices);
- The module's outputs (moduleREP) used only for reports (for some modules only); and

|                   | COMMON block |                                            |
|-------------------|--------------|--------------------------------------------|
| Module Creator    | Names        | Description                                |
| Integrating/all   | QBLK         | End-Use Sector Quantities (See Table 3)    |
| Integrating/all   | ~<br>MPBLK   | End-Use Sector Prices (See Table 4)        |
| Integrating/all   | MXQBLK       | Expected Quantities for foresight          |
| Integrating/all   | MXPBLK       | Expected Prices for foresight              |
| Integrating/all   | QSBLK        | SEDS Historical data corresponding to QBLK |
| Integrating/all   | NCNTRL       | Control Variables                          |
| All               | EMISSION     | Emissions data                             |
| All               | CAPEXP       | Capital Expenditures for Energy Equipment  |
| All               | COGEN        | Cogeneration                               |
| All               | DSM          | Demand-Side Management                     |
| Exogenous         | CONVFACT     | Global conversion factors                  |
| Refinery          | PMMOUT       | Module outputs to other modules            |
| Oil & Gas Supply  | OGSMOUT      |                                            |
| Natural Gas T & D | NGTDMOUT     | 11                                         |
| Electricity       |              | 11                                         |
| Coal              | EMMOUT       | 11                                         |
| Renewable/all     | COALOUT      | 11                                         |
| Commercial        | WRENEW       | n                                          |
| Industrial        | COMOUT       | n                                          |
| Macroeconomic     | INDOUT       | И                                          |
| International     | MACOUT       | n                                          |
| Uranium           | INTOUT       | И                                          |
|                   | UMMOUT       |                                            |
| Refinery          |              | Key input parameters and assumptions       |
| Commercial        | PMMPARAM     | 11                                         |
| Macroeconomic     | COMPARAM     | 11                                         |
|                   | MACPARMS     |                                            |
| Nat. Gas T&D      |              | Module outputs to report writer only       |
| Industrial        | NGTDMREP     | 11                                         |
| Macroeconomic     | INDREP       | 11                                         |
| Commercial        | MACREP       | n                                          |
| Refinery          | COMREP       | 1                                          |
| Transportation    | PMMRPT       | 1                                          |
| Residential       | TRANREP      | 1                                          |
|                   | RESDREP      |                                            |

Table 3. COMMON Blocks for the NEMS Global Data Structure

• The module's input variables (modulePARAM) for its key parameters and assumptions.

In addition, a group of general-purpose COMMON blocks, called the Energy Market Data, hold data that are created by various modules. These are:

| Sectoral End-Use quantities              |
|------------------------------------------|
| Sectoral End-Use prices                  |
| Expectations for End-Use quantities      |
| Expectations for End-Use prices          |
| Capital Expenditures on Energy Equipment |
|                                          |

### **Energy Market Data Representation**

The Energy Market Data define the energy consumption product and price details that are used for market definition in NEMS. These variables are the principal values necessary for convergence testing in the integrating algorithm. The Energy Market Data are just part of the NEMS Global Data Structure. The quantity and price structure does not attempt to represent all energy flows, but instead focuses on the primary variables necessary for the design of the NEMS equilibrating methodology. In addition, the Energy Market Data structure defines the end-use energy classification for the NEMS energy balance.

| Table 4. Energy Market | <b>Data Consumption</b> | <b>Product Arrays</b> |
|------------------------|-------------------------|-----------------------|
|------------------------|-------------------------|-----------------------|

|                                   |              | End-Uses    |            |             |             | Conversions |             |             |           |
|-----------------------------------|--------------|-------------|------------|-------------|-------------|-------------|-------------|-------------|-----------|
| Description                       | Prod<br>Code | Resid<br>RS | Comm<br>CM | Trans<br>TR | Indus<br>IN | Refin<br>RF | Elect<br>EL | Synth<br>SN | All<br>AS |
| Purchased Electricity, Peak       | EP           | QEPRS       | QEPCM      | QEPTR       | QEPIN       | QEPRF       |             |             | QEPAS     |
| Purchased Electricity, Off-Peak   | EN           | QENRS       | QENCM      | QENTR       | QENIN       | QENRF       |             |             | QENAS     |
| Purchased Electricity (total) *   | EL           | QELRS       | QELCM      | QELTR       | QELIN       | QELRF       |             |             | QELAS     |
| Natural Gas, Core (Firm)          | GF           | QGFRS       | QGFCM      | QGFTR       | QGFIN       | QGFRF       | QGFEL       |             | QGFAS     |
| Natural Gas, Noncore (Interrupt.) | GI           | QGIRS       | QGICM      | QGITR       | QGIIN       | QGIRF       | QGIEL       |             | QGIAS     |
| Natural Gas (total) *             | NG           | QNGRS       | QNGCM      | QNGTR       | QNGIN       | QNGRF       | QNGEL       |             | QNGAS     |
| Natural Gas, Pipeline Fuel        | GP           |             |            | QGPTR       |             |             |             |             |           |
| Lease and Plant Fuel              | LP           |             |            |             | QLPIN       |             |             |             |           |
| Steam Coal                        | CL           | QCLRS       | QCLCM      |             | QCLIN       | QCLRF       | QCLEL       | QCLSN       | QCLAS     |
| Metallurgical Coal                | MC           |             |            |             | QMCIN       |             |             |             |           |
| Motor Gasoline                    | MG           |             | QMGCM      | QMGTR       | QMGIN       |             |             |             | QMGAS     |
| Jet Fuel                          | JF           |             |            | QJFTR       |             |             |             |             |           |
| Distillate                        | DS           | QDSRS       | QDSCM      | QDSTR       | QDSIN       | QDSRF       | QDSEL       |             | QDSAS     |
| Kerosene                          | KS           | QKSRS       | QKSCM      |             | QKSIN       |             |             |             | QKSAS     |
| Liquid Petroleum Gas              | LG           | QLGRS       | QLGCM      | QLGTR       | QLGIN       | QLGRF       |             |             | QLGAS     |
| Residual Fuel, Low Sulfur         | RL           |             | QRLCM      | QRLTR       | QRLIN       | QRLRF       | QRLEL       |             | QRLAS     |
| Residual Fuel, High Sulfur        | RH           |             |            | QRHTR       |             |             | QRHEL       |             | QRHAS     |
| Residual Fuel (total) *           | RS           |             | QRSCM      | QRSTR       | QRSIN       | QRSRF       | QRSEL       |             | QRSAS     |
| Petrochemical Feedstocks          | PF           |             |            |             | QPFIN       |             |             |             |           |
| Still Gas                         | SG           |             |            |             | QSGIN       | QSGRF       |             |             |           |
| Petroleum Coke                    | PC           |             |            |             | QPCIN       | QPCRF       | QPCEL       |             | QPCAS     |
| Asphalt and Road Oil              | AS           |             |            |             | QASIN       |             |             |             |           |
| Other Petroleum                   | OT           |             |            | QOTTR       | QOTIN       | QOTRF       |             |             | QOTAS     |
| Total Petroleum *                 | TP           | QTPRS       | QTPCM      | QTPTR       | QTPIN       | QTPRF       | QTPEL       |             | QTPAS     |
| Methanol                          | ME           |             |            | QMETR       |             |             |             |             |           |
| Ethanol                           | ET           |             |            | QETTR       |             |             |             |             |           |
| Liquid Hydrogen                   | HY           |             |            | QHYTR       |             |             |             |             |           |
| Uranium                           | UR           |             |            |             |             |             | QUREL       |             |           |
| Hydroelectric                     | HO           |             |            |             | QHOIN       |             | QHOEL       |             | QHOAS     |
| Geothermal                        | GE           |             |            |             | QGEIN       |             | QGEEL       |             | QGEAS     |
| Biomass                           | BM           | QBMRS       | QBMCM      |             | QBMIN       | QBMRF       | QBMEL       | QBMSN       | QBMAS     |
| Municipal Solid Waste             | MS           |             |            |             | QMSIN       |             | QMSEL       |             | QMSAS     |
| Solar Thermal                     | ST           | QSTRS       | QSTCM      |             | QSTIN       |             | QSTEL       |             | QSTAS     |
| Photovoltaic                      | PV           | QPVRS       | QPVCM      |             | QPVIN       |             | QPVEL       |             | QPVAS     |
| Wind                              | WI           |             |            |             | QWIIN       |             | QWIEL       |             | QWIAS     |
| Total Renewable *                 | TR           | QTRRS       | QTRCM      | QTRTR       | QTRIN       |             | QTREL       | QTRSN       | QTRAS     |
| Net Electricity Imports           | ΕI           |             |            |             |             |             | QEIEL       |             |           |
| Net Coal Coke Imports             | CI           |             |            |             | QCIIN       |             |             |             |           |
| Total Sectoral Consumption *      | TS           | QTSRS       | QTSCM      | QTSTR       | QTSIN       | QTSRF       | QTSEL       | QTSSN       | QTSAS     |

\* aggregation of other variables

Table 4 presents a list of the consumption products in a grid depicting the sectoral detail. Each item in the grid represents the named variable in NEMS. The sectoral definitions include the four end-use sectors and three conversion sectors. The reader may note the inclusion of Synthetics as a conversion sector. This sector is implemented in NEMS as a submodule of the Coal Market Module. The sectoral and fuel consumption detail is defined to meet several objectives, including energy accounting coverage and consistency, the structure of component modules, and the requirements for inter-module communications. Elements of this design requiring clarification are as follows:

The electricity sector includes fuel used by electric utilities and independent power producers to generate electricity supplied to the grid. The industrial and commercial sectors

#### Table 5. Energy Market Data Price Arrays

|                                   |              | End Uses    |         |             |             | Conversions |             |             |             |
|-----------------------------------|--------------|-------------|---------|-------------|-------------|-------------|-------------|-------------|-------------|
| Description                       | Prod<br>Code | Resid<br>RS | Comm CM | Irans<br>TR | Indus<br>IN | Refin<br>RF | Elect<br>EL | Synth<br>SN | n All<br>AS |
| Purchased Electricity, Peak       | EP           | PEPRS       | PEPCM   | PEPTR       | PEPIN       |             |             |             | PEPAS       |
| Purchased Electricity, Off-Peak   | EN           | PENRS       | PENCM   | PENTR       | PENIN       |             |             |             | PENAS       |
| Purchased Electricity (average)*  | EL           | PELRS       | PELCM   | PELTR       | PELIN       |             |             |             | PELAS       |
| Natural Gas, Core (Firm)          | GF           | PGFRS       | PGFCM   | PGFTR       | PGFIN       |             | PGFEL       |             | PGFAS       |
| Natural Gas, Noncore (Interrupt.) | GI           | PGIRS       | PGICM   | PGITR       | PGIIN       |             | PGIEL       |             | PGIAS       |
| Natural Gas (average)*            | NG           | PNGRS       | PNGCM   | PNGTR       | PNGIN       |             | PNGEL       |             | PNGAS       |
| Natural Gas, Pipeline Fuel        | GP           |             |         | PGPTR       |             |             |             |             |             |
| Lease and Plant Fuel              | LP           |             |         |             | PLPIN       |             |             |             |             |
| Steam Coal                        | CL           | PCLRS       | PCLCM   |             | PCLIN       |             | PCLEL       | PCLSN       | PCLAS       |
| Metallurgical Coal                | MC           |             |         |             | PMCIN       |             |             |             |             |
| Motor Gasoline                    | MG           |             | PMGCM   | PMGTR       | PMGIN       |             |             |             | PMGAS       |
| Jet Fuel                          | JF           |             |         | PJFTR       |             |             |             |             |             |
| Distillate                        | DS           | PDSRS       | PDSCM   | PDSTR       | PDSIN       |             | PDSEL       |             | PDSAS       |
| Kerosene                          | KS           | PKSRS       | PKSCM   |             | PKSIN       |             |             |             | PKSAS       |
| Liquid Petroleum Gas              | LG           | PLGRS       | PLGCM   | PLGTR       | PLGIN       |             |             |             | PLGAS       |
| Residual Fuel, Low Sulfur         | RL           |             | PRLCM   | PRLTR       | PRLIN       |             | PRLEL       |             | PRLAS       |
| Residual Fuel, High Sulfur        | RH           |             |         | PRHTR       |             |             | PRHEL       |             | PRHAS       |
| Residual Fuel (average)*          | RS           |             | PRSCM   | PRSTR       | PRSIN       |             | PRSEL       |             | PRSAS       |
| Petrochemical Feedstocks          | PF           |             |         |             | PPFIN       |             |             |             |             |
| Asphalt and Road Oil              | AS           |             |         |             | PASIN       |             |             |             |             |
| Other Petroleum                   | OT           |             |         | POTTR       | POTIN       |             |             |             | POTAS       |
| Petroleum (average)*              | TP           | PTPRS       | PTPCM   | PTPTR       | PTPIN       | PTPRF       | PTPEL       |             | PTPAS       |
| Methanol                          | ME           |             |         | PMETR       |             |             |             |             |             |
| Ethanol                           | ET           |             |         | PETTR       |             |             |             |             |             |
| Liquid Hydrogen                   | ΗY           |             |         | PHYTR       |             |             |             |             |             |
| Uranium                           | UR           |             |         |             |             |             | PUREL       |             |             |

\* averaged from other variables

include fuel used for on-site electricity generation, primarily in cogeneration applications. This breakout is consistent with the coverage of the Electricity Market Module and the demand modules.

- Fuel consumption in the refinery sector is broken out from the industrial sector for intermodule communication requirements. The Petroleum Market Module determines fuel use by the refinery sector. This information is passed to Industrial Demand Module, where fuel consumption for refining is added to other industrial fuel use. Thus, the industrial energy consumption product demands as defined in Table 4 *include* refinery consumption.
- The synthetic sector includes fuel consumed for conversion and omits energy products used solely as feedstocks in the synthesis itself.

Table 5 presents the prices in the Energy Market Data structure. In general, the energy prices match the corresponding consumption quantities. The exceptions are as follows:
- Detailed refinery sector prices are omitted even though refinery fuel consumption products are defined. This is because there is no corresponding need to break out refinery sector prices from the rest of the industrial sector. The industrial fuel prices are the delivered prices to industrial fuel consumers, including refineries. As a result, the industrial sector prices match the coverage of the corresponding industrial consumption products.
- Prices for some industrial petroleum categories are combined in the industrial other petroleum category to eliminate unnecessary detail. That is, the industrial other petroleum price is defined as the average price of three consumption categories: still gas, petroleum coke, and other petroleum. The other petroleum price is not needed by any NEMS module but is required for reporting purposes to determine the average price of all petroleum products.
- Delivered prices for renewable energy categories are left undefined because there are no meaningful market prices for them. For example, there are no delivered prices associated with hydroelectric, geothermal, wind, solar thermal, and photovoltaic energy sources. In the case of biomass, the diverse nature of the product and the lack of organized market structures preclude the definition of a delivered price. Thus, there is no need to define end-use prices for renewables.

Table 4 and Table 5 define the variable names for the NEMS consumption products and end-use prices along with the two-character product code mnemonic for each product. Each array is a twodimensional, floating point array. The first dimension represents the nine Census Divisions, with a 10th position reserved for possible breakout of California and the 11th position reserved for the National total. The second dimension represents 26 years from 1990 to 2015, plus 3 additional positions reserved for future storage of 2020, 2025, and 2030 results. The space for the latter 3 years is reserved as a possible way of supporting the NEMS long-term modeling capability. Quantities are stored in trillions of Btu. Prices are stored in 1987 dollars per million Btu, as deflated by the implicit GDP price deflator.

A related part of the Energy Market Data structure comprises the variables to hold energy market expectations. The Integrating Module maintains a separate set of arrays to store consumption and price expectations. The expectations arrays are updated according to the foresight options under consideration. The expectations arrays are defined like the standard energy market arrays, each with an additional leading character, X. Not all energy product detail is duplicated.

### Other Variables in the Global Data Structure

In addition to Energy Market Data, the Global Data Structure includes the following information:

Model Control Variables

Key parameters and Assumptions for each of the NEMS modules Macroeconomic variables, including energy demand drivers such as population Energy demand characteristics, including demand side management savings Energy production, conversion, and transportation activities International energy flows Emissions Renewable energy information Other data for inclusion in central report writing programs

These categories of data are those items necessary for inter-module communications and centralized report writing. COMMON blocks intended for communicating data among the subroutines of a module, but not among modules, are stored in a series of FORTRAN COMMON blocks that are not included in the NEMS data structure.

The details of the contents of the Global Data Structure can be found in Appendix A, where the variables in each COMMON block are described. Appendix A is a partial listing of the contents of the NEMS Data Dictionary, a current version of which can be found in a dataset named CN6005.PRJ.NEMS.DICT.AEO.datekey. Appendix B contains a listing of the same variables in alphabetical order, with references to the COMMON block names shown in Appendix A.

### Variable Naming Convention

The naming convention used for the variables in the NEMS Global Data Structure involves up to four components, with 1- to 3-character mnemonics: a sector, an action or classification, a fuel, and miscellaneous, as follows:

#### [Action] [Fuel] [Sector] [Miscellaneous]

| Action                | Fuel         | Sector                 | Miscellaneous      |  |  |
|-----------------------|--------------|------------------------|--------------------|--|--|
| Price                 | CRude        | <b>R</b> eFinery       | North Slope Alaska |  |  |
| Quantity              | Dry NG       | Oil & Gas              | South Alaska       |  |  |
| Cost                  | Synthetic NG | NGTDM                  | INdustrial Noncore |  |  |
| <b>D</b> iscount(max) | NG Pipeline  | <b>EL</b> ectricity    | Ton Miles          |  |  |
| <b>IM</b> port        | NG Wellhead  | COal                   | Non Utility        |  |  |
| PRoduction            | CoaL LiQuid  | <b>R</b> eSidential    | DSM                |  |  |
| TransportatioN        | CoaL Gases   | <b>CoM</b> mercial     | <b>AV</b> oided    |  |  |
| Capacity Additions    |              | <b>IN</b> dustrial     | <b>R</b> eNewables |  |  |
| GeNeration            |              | <b>TR</b> ansportation |                    |  |  |
| Sales to Grid         |              | InTernational          |                    |  |  |

For instance, the NEMS variable IMCRRF represents crude oil net imports as defined by the refinery sector. This naming convention is neither exhaustive nor required.

## **RESTART File**

At the beginning of a run, the Integrating Module reads initial values for all data in the Global Data Structure from a user-specifiable version of a special file, called the RESTART file. The RESTART file contains a starting point for the scenario currently under consideration, that consists of results from a prior simulation. During the run, much of this data is updated and changed. For example, alternative values for key module parameters and input assumptions, read separately from the user interface file or other sources, override the values stored in the RESTART file. At the end of the run, a new RESTART file is created with all the data from the run. The file is available for future runs, as well as to link with reporting and database management routines.

This feature promotes modularity by supplying values for all shared variables, regardless of whether the module that creates them is active in the run. Prices, quantities demanded or supplied, and other variables normally generated by a module that is switched off for the current run, are provided instead by the RESTART file.

## **Report Data**

NEMS contains several varieties of reporting functionality. While each module generates detailed, module-specific reports, there is also a central reporting feature that prepares reports that combine output from all of the modules and inputs to the models. A simple post-processing user interface is available to prepare standard reports and compose special reports.

A user interface also allows extraction of data and conversion to input for other types of analytic software, and facilitates transfer of output data between platforms. For example, selected output from several NEMS runs may be extracted from the total results on the mainframe, reformatted into Lotus 1-2-3 format, and transferred to the PC for subsequent spreadsheet analysis.

# **Database Loading**

The primary NEMS data management objectives are met with a FORTRAN-callable procedure, FILER, that standardizes and automates storage and retrieval of the NEMS Global Data Structure. In addition, the routine provides a file-based data interchange capability to allow communication among NEMS modules, where necessary, and supports standalone module development and testing.

FILER provides a simple, reliable, and fast mechanism for moving data between COMMON blocks of the Global Data Structure and files. The COMMON blocks used to store the NEMS Global Data Structure and are accessed by most modules. The basic capabilities of FILER are:

- To load data from a file into a standard NEMS COMMON block; and
- To write data from a standard NEMS COMMON block to a file.

This capability is constructed such that files created by FILER can also be read by FILER. Beyond these basic capabilities, FILER simplifies operation of modules in standalone mode by allowing

users to create simple, sequential files containing the subset of the data they need, and the software necessary to read these data. This allows a user to use FILER to prepare sequential files containing all the data needed by a program in a simple format that can be transferred to a PC or another platform for independent operation and development, without need for access to the FILER routines. User access to the FILER program is available outside NEMS through the NEMS macro command, TFILER.

# 5. Integrating Module Solution Methodology

The Integrating Module controls the overall flow of the NEMS solution algorithm, and provides the interface and control logic for scenario implementation and execution. In addition, it tests for convergence of the system during each year, as it controls the iteration process.

Using the Energy Market Data portions of the NEMS Global Data Structure as inputs, the Integrating Module measures whether convergence has occurred, and optionally adjusts the Energy Market Data values to accelerate the convergence process. By means of calls to the FILER and File Manager routines, the Integrating Module manages the flow of overall system data; however, beyond reading the user's parameter requests, it has no important input nor output functions of its own.

### **Relationship of the Integrating Module to Other NEMS Modules**

The modular structure of NEMS implies that little model structure resides within the Integrating Module. The component modules represent energy sectors and markets; the Integrating Module oversees the interactions among the various energy sectors, calling upon the component modules as needed. In a very real sense, the structure of the Integrating Module is therefore synonymous with the structure of NEMS, insofar as the Integrating Module defines a structure within which the analytical modules function.

The Integrating Module controls the execution of the other component modules as part of an iterative convergence algorithm. The objective is to equilibrate iteratively on the delivered prices and quantities of energy, thus assuring an economic equilibrium of supply and demand in the domestic energy markets, with feedbacks from the international markets and the U.S. economy as a whole.

The Integrating Module also coordinates communication among the other modules. The primary information flows among these major modules are the delivered prices and quantities of energy by product, region, and sector. However, the data flows are not limited to prices and quantities and include other information such as economic activity, capital expenditures, and impacts of demand side management programs.

### **Integrating Module Inputs**

Given its mediating role in the NEMS system, the Integrating Module has little input data of its own; the major model inputs are processed by each of the component modules. The Integrating

Module reads user run description parameters and invokes a data base portion that reads the NEMS Global Data Structure.

As a body, all data used, either read or written, by more than one of the NEMS component modules are referred to as the *NEMS Global Data Structure*. For convenient sharing among the modules, all such variables are stored internally in FORTRAN COMMON blocks. At the end of each NEMS iteration, the Integrating Module invokes a process, called *FILER*, which stores the contents of the COMMON blocks that constitute the NEMS Global Data Structure into a single large file, called the *RESTART* file. At the start of each NEMS run, the Integrating Module makes use of FILER to read an entire RESTART file to initialize the COMMON blocks. Thus, the NEMS Global Data Structure includes both the external file and its internal representation in COMMON.

Because all NEMS shared data are initialized from the RESTART file at the start of each run, it is not strictly necessary for the Integrating Module to invoke all of the component modules; if any module is omitted, its normal output variables can be found by the other modules in exactly the same places they would otherwise occupy, filled with values from the end of an earlier NEMS run. An important function of the Integrating Module is to ascertain which of the component modules are to be used in the current run, and to skip the others at times when they would otherwise be called.

# **General Modeling Approach**

EIA has taken the approach of developing models that characterize the natural decision making of each sector of the energy market, linking or integrating the models together in a simulation framework to represent the aggregate U.S. energy market response to basic assumptions and alternative policies. Optimization models are appropriate to simulate the behavior of a homogeneous industry or sector of the economy, and their use is a standard practice in economic policy analysis. For example, the electric industry's plant dispatch decisions or the movements in the coal transportation sector can be appropriately represented as an optimization model. Other sectors are better represented using simulations of the outcome of decision rather than modeling the decisions directly.

The fundamental integrating methodology used by NEMS involves a control program, the Integrating Module, that commences the solution process with an initial set of estimates of energy prices and quantities. It calls each of the modules in turn to generate new end-use demands for energy in the demand modules, and new end-use prices at which the demands can be satisfied in the supply and conversion modules. This new set of prices and quantities is then used for another round of calling the modules and so on, until the model has computed price estimates at which supply and demand are in balance.

NEMS design criteria do not specify the modeling approaches to be taken by the individual analytical modules. A variety of approaches can be found among the existing modules, ranging in complexity from simple accounting models through detailed mathematical optimization algorithms. Some sectors have implemented multiple approaches that the user can select by choosing alternative complete modules.

Figure 2 in Chapter 2 depicts the relationship of the Integrating Module of NEMS with each of the component modules. Generally, the component modules of NEMS do not interact with one another directly, but instead communicate through the Integrating Module. The organization has a number of benefits. It allows each module to be executed or omitted independently. More importantly, it provides centralized control over such Integrating Module functions as execution sequence, convergence checks, equilibration procedures, and data access. Finally, the organization promotes a division of labor for the development and maintenance of NEMS, as each module is the responsibility of a single team.

The approach followed by NEMS is comparable to that followed by the predecessor Intermediate Future Forecasting System (IFFS). The model is entirely new, with additional features such as the implementation of foresight throughout the model and the Global Data Structure. Improvements in the NEMS approach can be found more in the analytical modules than in the Integrating Module.

The following section provides a more explicit, detailed formulation of the Integrating Module solution algorithm. It includes a complete mathematical specification as well as a detailed flow chart of the algorithm.

## **Mathematical Specification**

In many ways, NEMS follows the standard structure of energy models. It has separate models for determining the supply of each fuel. These models are incorporated in the Oil and Gas Supply Module (OGSM), the Renewable Fuels Module, and the Coal Production Submodule. These modules produce supply curves. The supply curves consist of estimates of reserve additions that take account of the longer run effects of prices and the quality of the resource base followed by short-run supply curves that capture the short-run utilization of the reserves in clearing markets annually. The short-run supply curves are inserted into the fuel market models that determine the market clearing prices and quantities and distribution patterns. These models are contained in the Natural Gas Transmission and Distribution Module (NGTDM), the Coal Distribution submodule (CDS), and Coal Export submodule (CES). The transformation components model the conversion of fuel from one form to another. These include the Petroleum Marketing Module (PMM), which converts crude oil to refined products, and the Electricity Marketing Module (EMM), which converts natural gas, petroleum products, and other fuels to electricity. These modules consist of capacity expansion models and short-run capacity-utilization models. Finally, the demand models, including the Commercial, Residential, Industrial, and Transportation modules include short-run and long-run demand responses to price changes in fuels. The short-run response measures the effect of equipment utilization and the long-run response measures the change in energy-consuming capital stock.

The supply curves from the supply models provide prices for fuel quantity used. Although the demand models do not directly provide demand curves, their response to different input prices defines the inherent demand curves. These demand curves or demand model responses provide the quantities of fuels demanded for given fuel prices. The NEMS solution algorithm attempts to determine a vector of prices and quantities so that supply and demand are matched. Thus, the NEMS

integrating algorithm must solve the set of simultaneous equations implied by the supply, demand, and conversion models.

#### **Equation Solving Techniques**

The standard equation solving techniques are Jacobi and Gauss-Seidel algorithms. Suppose that a set of equations is defined

$$f_i(x_1, ..., x_n) = 0$$
 for  $i = 1,...n.$  (1)

If one has a trial solution  $x_1^t, \dots, x_n^t$ , in a Jacobi iteration t, for each  $x_i$  one solves for  $x_i^{t+1}$  in

$$f_i(x_1^{t}, \dots, x_{i-1}^{t}, x_i^{t+1}, x_{i+1}^{t}, \dots, x_n^{t}) = 0.$$
<sup>(2)</sup>

That is, one fixes all variables other than  $x_i$  at the previous trial solution and solves for a new  $x_i^{i+1}$  as a single dimensional line search. For example, if in iteration three of NEMS, the coal model is called to determine the price of coal, the coal demand and all other inputs to the model would be obtained from iteration two of NEMS using the Jacobi method. This is the case even if, for example, the industrial model has already been called during the third NEMS iteration, and therefore, updated information on demand for coal from the industrial sector is available.

On the other hand, with the Gauss-Seidel algorithm one iterates sequentially through i and uses the most recent values for the x's at each step. The equation solved at each step i looks as follows:

$$f_i(x_1^{t+1}, \dots, x_{i-1}^{t+1}, x_i^{t+1}, x_{i+1}^{t}, \dots, x_n^{t}) = 0.$$
(3)

Continuing the example introduced above with the Gauss-Seidel algorithm, when the coal model is called in iteration three of NEMS the results of any other models already run during iteration three are used. If inputs are required from other models that come after the coal model in the NEMS calling sequence, the results from iteration two of these models must be used.

Under certain conditions, it can be shown that the Jacobi iteration can never be faster than Gauss-Seidel and of course, could be considerably slower. It is intuitively more appealing to use the most recent information, which is why the NEMS uses the Gauss-Seidel algorithm.

### Convergence Properties of the Jacobi and Gauss-Seidel Algorithms

It is worth reviewing some of the general convergence properties of the Jacobi and Gauss-Seidel algorithms, especially their relationship to the convergence in NEMS. The matrix of first partial derivatives of equation (1), hereafter denoted J, is a square matrix known as the Jacobian. The spectral radius of a matrix is the largest absolute value of the eigenvalues associated with a matrix.<sup>2</sup>

<sup>&</sup>lt;sup>2</sup>Let  $Ax = \lambda x$  be a linear system of equations, with A a matrix, x a vector, and  $\lambda$  a scalar. The values of  $\lambda$  satisfying this equation are the eigenvalues of the matrix A.

If the spectral radius of the iteration matrix derived from J is less than one, these algorithms converge to a solution. If not, then these algorithms do not necessarily converge. One can think of the spectral radius as the measure of the contractor in a contraction map, since the rate of convergence is inversely proportional to the spectral radius.

In situations where the spectral radius is greater than one, convergence can still be achieved by using relaxation techniques. That is, when the solution is oscillating and diverging, one can take a convex combination of the old and new solutions to dampen the oscillation. This technique, known as successive over relaxation, modifies the iteration matrix so that it has a spectral radius less than one. It can be shown that there is a sufficiently small w > 0 such that when one uses  $(1-w)x_t + wx_{t+1}$  as the trial solution, a solution to the equations will be achieved. In complex models such as NEMS the parameter w must be determined empirically, and could impede convergence if the solution is monotonically converging and w is chosen less than one. The application of relaxation to the NEMS solution process is discussed in the section **Acceleration Techniques**.

With NEMS, however, there are solution points which are either nondifferentiable or for which there are no Jacobians because of the discontinuities caused by incorporating linear programs in the system. The presence of such points greatly complicates the solution procedure of the NEMS system.

### Discontinuities and Convergence in NEMS

The existence of supply and demand curves in NEMS was discussed in the previous section. Though the supply and demand curves are generally treated as continuous functions, various models contain linear programs or their analogues that can only incorporate step functions. Any such continuous functions must be approximated by a series of discrete steps. The inclusion of such discrete functions leads to discontinuities in the representation of the supply and demand curves in NEMS. Such discontinuities cause significant problems in the solution process.

Several modules incorporate algorithms that yield these discontinuous results. For example, the petroleum refining and distribution model is a linear program that represents crude oil supply curves as discrete step functions. Similarly, the distribution model for natural gas is also a linear program that uses step-function approximations of the supply and demand curves. These step-function approximations are updated during each solution iteration, so that the model can be considered to be a nonlinear program which is solved by successive linear approximations. The electricity fuel dispatch (EFD) model, although not a linear program, contains discontinuities due to the discrete nature of the merit-order plant dispatch algorithm which determines the fuel mix required to produce electricity. The coal distribution model is a nonlinear program where the nonlinear supply curves are incorporated directly; however, discontinuities are introduced due to the discrete nature of the heuristic supply distribution algorithm. Thus, each of these models introduces discontinuities into the NEMS solution process.

The effect on the solution process of having discontinuities can be seen by using step function demand curves with continuous supply curves. The same conclusions may be drawn as long as either

or both of the supply and demand curves are step functions. Figures 3a and 3b depict the two ways in which the continuous supply curve and step demand curves can intersect:

In these figures the supply curve determines the price used in the demand curves, which then feed back a quantity. The solution path resulting from application of the Gauss-Seidel algorithm is delineated by arrows: a horizontal arrow shows the quantity response from the demand curve and a vertical arrow shows the price response from the supply curve.

When the supply curve intersects the horizontal portion of the demand curve, there is an oscillation in the solution between quantities  $Q_0$  and  $Q_1$  and prices  $P_0$  and  $P_1$  (Figure 3a). When the intersection of the supply and demand curves is on the vertical portion of the demand curve, one can achieve the equilibrium with the Gauss-Seidel algorithm using relaxation, even if the unrelaxed algorithm yields an oscillation in the solution (Figure 3b). In Figure 3a there is no *w* for which convergence will occur. However, a value for *w* can always be found so that the oscillation occurs around no more than one (or possible two) steps. This is useful because if one can specify sufficiently small steps so that the entire step falls within the convergence tolerance, this oscillation is no longer a convergence problem.

### **Application of Gauss-Seidel to NEMS**

The NEMS integrating algorithm, similar to the approach used for the predecessor Intermediate Future Forecasting System (IFFS), is an application of the Gauss-Seidel algorithm designed to solve a set of simultaneous nonlinear equations.<sup>3</sup> The approach partitions the equations and variables into subsets. For NEMS, the subsets consist of predefined fuel supply, energy conversion, and sectoral demand modules. Each subset of equations is solved keeping the other variables constant at their trial values and ignoring the effects of current variables on equations in other subsets. The process is repeated for each subset, updating the trial values for each variable from the prior solution.

More formally, for a stylized NEMS, the nonlinear system of equations could be represented by

(4)

$$x_i = g_i(x)$$
 for  $i = 1, ..., n$ 

<sup>3</sup>Murphy, F., J. Conti, S. Shaw, and R. Sanders, "Modeling and Forecasting Energy Markets with the Intermediate Future Forecasting System," *Operations Research*, Vol. 36, No. 3, May-June 1988.

Figure 3A. The Supply Curve Cuts Across the Horizontal Portion of the Demand Curve



Figure 3B. The Supply Curve Cuts Across the Vertical Portion of the Demand Curve



having the market clearing or equilibrium solution vector

$$x = (x_1, \ldots, x_n).$$

Here, each  $x_i$  is a single variable. A trial solution for iteration k for a certain year is denoted by  $x^k$ , where

$$x^{k} = (x_{1}^{k}, ..., x_{n}^{k}).$$

Each  $g_i(x)$  uses one or more of the elements of the trial solution vector  $x^k$ , excluding its own solution,  $x_i^k$ .

Further, we define a series of nonlinear equations  $f_i(x^k)$  that represent the amount by which any trial solution  $g_i(x^k)$  deviates from an equilibrium solution:

$$f_i(x^k) = x^k_i - g_i(x^k).$$

To reiterate, the solution vector x represents the set of solutions to the model: prices of energy products, quantities of energy products demanded, and certain key economic quantities. The functions  $g_i(x)$  represent the formulas by which the x are calculated, and f(x) represent the discrepancies between the calculated values for the solution vector and the solution vector itself. The  $g_i(x)$  represent the relationships in the modules between prices and demands: for those *i* that correspond to supply modules and conversion markets the  $g_i(x)$  are prices, for demand modules the  $g_i(x)$  are quantities.

At the end of iteration k for a certain year, the discrepancy  $f_i(x^k)$  from the equilibrium solution can be estimated as follows:

$$f_i(x^k) = x_i^{k-1} - g_i(x^{k-1}), \tag{5}$$

$$f_i(x^k) = x_i^{k-1} - x_i^k.$$
(6)

where  $x^{k-1}$  is the trial solution vector from the previous iteration for the same year.

In the block Gauss-Seidel scheme, unknowns are grouped together in such a way that a subsystem (e.g., a NEMS module) must be solved before any of the unknowns can be determined. The NEMS equations are divided into n groups (modules) and the subsystem of equations belonging to a given group is solved for the corresponding unknowns using approximate values for the other unknowns. For example, suppose the unknowns are divided into groups  $(x_1..x_n)$  such that  $X_1, X_2, ..., X_{m1}$  belong to group  $x_1; X_{m1+1}, X_{m1+2}, ..., X_{m2}$  belong to group  $x_2; X_{m(k-1)+1}, X_{m(k-1)+2}, ..., X_{mk}$  belong to group  $x_k$  etc. In our case, *n* corresponds to the number of separate modules in NEMS (residential demand, commercial, industrial, transportation, petroleum markets, electric generation, oil and gas supply, etc.) In the NEMS context each  $x_i$  represents the set of *outputs* from the module (g(x)), given approximate values for the other unknowns in the remaining NEMS modules. Consequently, there are *n* blocks of variables to be solved for as groups using each of the *n* model blocks,  $g_i(x)$ . At iteration k+1, the solution can be represented by

$$x_1^{k+1}, x_2^{k+1}, \dots, x_{i-1}^{k+1}, x_i^k, \dots, x_n^k$$

In the above representation of the solution, the first *i*-1 groups of unknowns (*x*'s) have been solved for in iteration k+1 and the other groups remain to be determined. The *i*-th group will be solved for next in the scheme. To solve for the next estimate of  $x_i$ , we determine  $x_i$  in the functional relationship

$$(g_i(x_1^{k+1}, x_2^{k+1}, ..., x_{i-1}^{k+1}, x_i^k, x_{i+1}^k, ..., x_n^k)) = (x_1^{k+1}, x_2^{k+1}, ..., x_{i-1}^{k+1}, x_i^{k+1}, x_{i+1}^k, ..., x_n^k)$$

Notice that  $x_i^k$  is usually not used to solve module *i* but is included here for completeness. Starting at the beginning of iteration (*k*+1), the algorithm proceeds as follows:

Step 0: Start with  $x = (x_1^k, x_2^k, ..., x_n^k)$ .

Step 1: Solve the first module in iteration (k+1)

Solve for  $x_1^{k+1}$  by solving for  $x_1$  in the nonlinear system

$$g_1(x_1^{k+1}, x_2^k, ..., x_n^k) = (x_1^{k+1}, x_2^k, ..., x_n^k).$$

The solution yields a new estimate of the unknowns  $x = (x_1^{k+1}, x_2^k, ..., x_n^k)$ .

Step 2: Solve the second module in iteration (k+1).

Solve for  $x_2^{k+1}$  by solving for  $x_2$  in the nonlinear system

$$g_2(x_1^{k+1}, x_2, x_3^k, ..., x_n^k) = (x_1^{k+1}, x_2^{k+1}, x_3^k, ..., x_n^k).$$

The solution yields a new estimate of the unknowns  $x = (x_1^{k+1}, x_2^{k+1}, x_3^k, ..., x_n^k)$ .

In general, when solving for the *i*-th group of variables,

Step i: Solve the *i*-th module in iteration (k+1).

Solve for  $x_i^{k+1}$  by solving for  $x_i$  in the nonlinear system

$$g_i(x_1^{k+1}, x_2^{k+1}, x_{i-1}^{k+1}, x_i, x_{i+1}^{k}, ..., x_n^{k}) = (x_1^{k+1}, x_2^{k+1}, ..., x_{i-1}^{k+1}, x_i^{k+1}, x_{i+1}^{k}, ..., x_n^{k}).$$

The solution for  $x_i$  above in  $g_i$  updates the solution estimate to

 $x = (x_1^{k+1}, x_2^{k+1}, ..., x_{i-1}^{k+1}, x_i^{k+1}, x_{i+1}^k, ..., x_n^k).$ 

The process continues until a k+1 iteration estimate is derived for all groups of  $x_i$ .

At the end of the k+1 iteration, we compare, pointwise, every component of every group of variables in the k+1 iteration versus the k-th iteration values. A final solution,  $x^{k+1}$ , has been achieved if, after all modules have been executed, the absolute values of the proportional changes in the  $x_i$  remain smaller than a specified tolerance,  $\in$ :

$$2 \left| \frac{x_{i}^{k+1} - x_{i}^{k}}{x_{i}^{k+1} + x_{i}^{k}} \right| < \varepsilon$$

for i = 1, ..., n. Values of c can be chosen on a variable-specific basis. Defaults are in the range of 5 percent for the Census Division variables, less for the national macroeconomic variables.

After the convergence criterion has been met, another iteration is performed to test whether a true equilibrium has been reached, and to allow the modules to perform final processing for the year; so that the final converged solution vector for the year is  $x^{k+1}$ .

To handle cases where the procedure does not converge on a solution or does not achieve the specified tolerance, a limit on the number of iterations terminates the algorithm for the current year. In such cases, the model performs the additional iteration mentioned in the previous paragraph, reports the convergence status with a list of the variables failing to converge, and then proceeds to the next projection year. The final solution for the year is therefore the result of one iteration beyond the non-converged trial solution.

The equations are partitioned in the fuel supply and sectoral demand modules, with the  $x_i$  consisting primarily of quantities and prices of fuels by region and consuming sector. These variables are defined as

| $P^{k}_{f,s,r,y}$   | =     | Energy product price (current iteration)                                 |
|---------------------|-------|--------------------------------------------------------------------------|
| $P^{k-l}_{f,s,r,y}$ | =     | Energy product price (previous iteration)                                |
| $Q^{k}_{f,s,r,y}$   | =     | Energy product quantity consumed (current iteration)                     |
| $Q^{k-l}_{f,s,r,y}$ | =     | Energy product quantity consumed (previous iteration)                    |
| indices:            |       |                                                                          |
| f                   | fuel/ | energy product (natural gas, coal, petroleum products, electricity, etc) |

- *s* consuming sector (residential, commercial, industrial, transportation, electric utility, refinery, synthetic)
- *r* region (census divisions)
- y year

In several modules, planning decisions must be made to acquire additional capacity which will be required in future years. These include the Electricity Capacity Expansion (ECP) submodule, the Capacity Expansion Module for natural gas, the Oil and Gas Supply module.

In order to make such decisions, information on future demands, prices, and macroeconomic variables such as interest rates must be provided. While each module solves one year at a time, their simulations of planning activities involve an extrapolation of energy market conditions. Those modules making new capacity construction decisions apply an assumption about foresight in their expectations of future energy prices and quantities. In NEMS, a set of price and quantity variables is defined to store expectations:

 $XP_{f,s,r,\$}$  = Expected prices of energy products beyond the current forecast year (for \$ > y)

$$XQ_{f,s,r,\psi}$$
 = Expected consumption of energy products beyond the current forecast year

The foresight mode determines how the expectation variables are to be calculated: under perfect foresight, the various NEMS modules are invoked for years beyond the current iteration year; otherwise, the Integrating Module calculates minor extrapolations of present-year conditions. Foresight is therefore always calculated by looking forward to the consequences of conditions in the present iteration year, not by attempting to reach some end state determined *a priori*. The treatment of expectations is discussed in greater detail under **Expected Value Foresight**, on page 54.

Additional variables, representing such values as macroeconomic activity, world oil prices and trade, and emissions, may be added to the convergence algorithm, but are omitted here for clarity. In terms of the energy market interactions, the sectoral demand models estimate current-year energy demands  $Q_{f,s,r,y}$  and energy-related capital stock additions as functions of current and expected energy prices. The supply models estimate end-use prices  $P_{f,s,r,y}$  and capacity additions as functions of current and expected energy demands. The conversion modules (electricity, refinery, and synthetics) are viewed primarily as supply components, but they are both consumers of primary energy and suppliers of energy products.

### **Solution Algorithm Flow Chart**

Figure 4 presents a detailed flow of the Integrating Module solution algorithm. The objective of the algorithm is to execute the system of component modules repeatedly until convergence is reached. The solution procedure for one iterative cycle involves execution of the component modules, as well as updating expectation variables. The component modules include the International Energy Activity Module, the Macroeconomic Activity Module, the sectoral demand models, the conversion models, and the supply models.



Through program control options, the looping over years takes place either within an iterative cycle (Inner Year Loop) or outside the iterative cycle (Outer Year Loop). That is, component modules may either be called repeatedly to execute for all years in a given iteration, or may be executed one year at a time. The flexible year looping is designed to support different approaches for foresight, as discussed in detail under **Expected Value Foresight**, on page 54, below. Generally, looping for all years at a time is used only for the perfect foresight approach. The solution of each module one year at a time has been found to be more efficient than solving all years each time.

In Figure 4, the *Outer Year Loop* is executed once for each year in the forecast horizon when all modules are being executed for one year during each iteration. In that case, the *Inner Year Loop* executes for a single year as well. When modules execute for all years during each iteration, the *Inner Year Loop* controls the year indexing, and the *Outer Year Loop* is entered only once.

To accommodate flexible year looping, the solution procedure for a given iteration begins with the establishment of starting and ending year index ranges for the inner year loop. The next step is to update the expectation variables over the specified inner year range (either a single year or all years):

| $XP^{k}_{f,s,r,\diamond}$ | = | $f(P^{k-1}_{f,s,r,v})$ | (update ] | price expe | ctations from p | reviou | s iteration j | prices)   |
|---------------------------|---|------------------------|-----------|------------|-----------------|--------|---------------|-----------|
| $XQ^{k}_{f,s,r,\$}$       | = | $f(Q^{k-1}_{f,s,r,y})$ | (update   | quantity   | expectations    | from   | previous      | iteration |
|                           |   |                        | quantitie | es)        |                 |        |               |           |

Next, each of the modules is executed in turn. Normally, for each year in the inner year range, the International Energy Module and the Macroeconomic Module are called first, followed by the sectoral demand models.

$$Q_{f,s,r,y}^{k} = f(P^{k-1}_{f,s,r,y}, XP_{f,s,r,y}^{k}, macroeconomic, other variables)$$

The conversion and supply models are then called, using updated demand quantities, to return prices:

$$P_{f,s,r,y}^{k} = f(Q_{f,s,r,y}^{k}, XQ_{f,s,r,y}^{k}, macroeconomic, other variables)$$

After all modules have been executed for an inner year, the next inner year is begun. The order of calling the modules is flexible.

### Convergence

After a module has been called, a check for convergence for that specific module is made, and the storage of previous iteration values is performed. Modules that had converged on an earlier iteration in the current year are bypassed. These intervening convergence checks isolate the specific modules that are not converging. An additional global convergence check requires all submodules to have converged. A separate convergence check is made for prices and quantities, consisting of a comparison of the absolute value of the percent changes to an assumed tolerance,  $\in$ , as follows:

$$\left| \begin{array}{c} \frac{Q_{f,s,r,y}^{k} - Q_{f,s,r,y}^{k-1}}{(Q_{f,s,r,y}^{k} + Q_{f,s,r,y}^{k-1}) / 2} \right| < \epsilon \\ \\ \frac{P_{f,s,r,y}^{k} - P_{f,s,r,y}^{k-1}}{(P_{f,s,r,y}^{k} + P_{f,s,r,y}^{k-1}) / 2} \right| < \epsilon \\ \end{array}$$

Here, the denominators use an average to avoid convergence difficulties if either the starting value or a trial solution value is equal to zero. To avoid unnecessary iterations for changes in insignificant values, the quantity convergence check is omitted for changes less than a user-specified minimum level.

The last step is to store the current quantities and prices for the next iteration's convergence check:

$$\begin{array}{l} Q_{f,s,r,y}^{k+1} = Q_{f,s,r,y}^{k} \\ P_{f,s,r,y}^{k+1} = P_{f,s,r,y}^{k} \end{array}$$

The cycle is repeated until convergence is achieved for all submodules over the specified inner year range or until the maximum number of iterations is reached. When one of these two conditions occurs, an additional iteration, referred to as the "Final Convergence and Reporting Loop" is executed. This has several purposes. First, it is used to test whether a solution meeting the convergence criteria is maintained on two successive iterations. If so, there is a greater likelihood that the solution is an equilibrium solution. Second, it provides a signal for each module to write any reporting data out to disk, thus saving resources on intermediate iterations. Third, it provides a signal to the Integrating Module that all modules are to be executed, even if they had already converged on prior iterations. If the modules fail to converge on the Final Convergence and Reporting Loop, the convergence algorithm is repeated. In such cases, the model may converge on a subsequent iteration, thus triggering the Final Convergence and Reporting Loop a second time.

Once the model completes the Final Convergence and Reporting Loop, or when the maximum number of iterations is reached, the cycle for the current inner year range is completed. If the specified inner year range is only one year, the outer year index is incremented and the algorithm is repeated for the next year.

Whenever a year fails to converge within the user-specified number of iterations, the model completes the Final Convergence and Reporting Loop, accepts the resulting solution as the final solution, and proceeds to the next model year. The unconverged final solution should be examined in detail by the user, to verify its validity. Furthermore, later years' solutions in modules that refer to earlier years' solutions in their formulations can be affected adversely by the data in the unconverged final solution. A model "execution log" is generated to record the progress of the model as it proceeds from one iteration to the next. The convergence status after execution of each module is reported in the log. Also reported are the names of any variables failing to converge, along with their values on the current and previous iterations, and their fractional changes. If the values of any tested variables fail to converge within the specified number of iterations, a message is written to the execution log, and execution continues with the next year. During or after a model run, the user may review the execution log to examine the convergence status.

When a nonconvergent situation arises, the results of the run must be viewed with caution. An assessment should be made as to the type of convergence problem and its effect on the results. A failure to converge may indicate a programming error, or it may be an accurate reflection of the modeling configuration. Generally, convergence problems must be evaluated on a case-by-case basis.

Other than specifying the run options through the run submission user interface, and substituting modified files containing data upon which the NEMS modules depend, there is no intervention required of the user to ensure a successful model run. The user should examine the execution run log and other output reports to ensure that convergence has been achieved, and that the results are credible. In the case of a problem with convergence, appropriate modules may be "switched off," the allowable number of iterations may be increased, or other such parameters may be adjusted through the user interface and the simulation resubmitted.

### **Summary of Convergence Problems and Resolution**

Integrated developmental testing of NEMS revealed a number of convergence problems. Factors leading to convergence problems were assessed and changes were made as needed to the individual NEMS modules. In a few cases, provisions to pass additional information between modules were required to develop stable convergence properties. Many of the convergence problems involved interactions between the Electricity Market Module (EMM) and the three supply modules providing it with fuel prices: the Natural Gas Transmission and Distribution Module (NGTDM), the Petroleum Market Module (PMM), and the Coal Market Module (CMM). The primary convergence problems and their resolutions are summarized below.

### Merit Order Switching

The major function of the Electricity Fuel Dispatch (EFD), a submodule of the EMM, is to determine what generating capacity should be running at a particular time to meet the demand for electricity. The type of capacity used (fossil fuel, nuclear, renewables) and the manner in which it is deployed (base load, intermediate load, or peak) determines the fuel demands for the EFD. The objective of the EFD is to provide a least cost solution while meeting environmental requirements. In the merit order dispatching methodology, the marginal source of electricity is selected to react to each load change. One effect of this methodology is that step changes in the quantity of fuels required occur; the resulting discontinuities occasionally yielded nonconvergence.

Merit order switching in the utility market commonly occurred between natural gas and other fuels, between types of coal (graded by sulfur content), and sometimes between types of natural gas (competitive versus firm). Several techniques were used to reduce this effect, depending on the specific cause of the switch. These included incorporating demand curves in the PMM and NGTDM modules, price relaxation, and other modifications discussed later in this section.

#### **NGTDM/EMM** Interactions

Since NEMS is an extension and elaboration of IFFS, the experience gained with achieving convergence while incorporating step functions in IFFS was relevant. Consequently, the first step towards convergence in NEMS was to extend the IFFS approach to addressing the natural gas/utility interactions. As described above, the step functions for utility demand for natural gas come from merit order switches in the utilities model. When gas is cheaper than oil, the gas plants are dispatched with a higher capacity factor than the oil plants, and dual-fired plants switch to gas. When gas is more expensive, the reverse occurs and the gas plants operate with a lower capacity factor and consume less gas even though total electricity demand has not changed. If, when in the gas model, one were to take the utility gas demand as fixed, one would have an oscillation as in Figure 3a. This was known from the beginning of the design of IFFS.

Because of the similarity in the structures of NEMS and IFFS, the first step in achieving convergence was to focus on gas/utility interactions. Using a derived demand curve to encompass all the natural gas consumed by the utilities was not possible due to the greater complexity of the models in NEMS than the ones in IFFS. For example, allowing electricity trade meant that the utility model in each region was no longer an isolated consumer of natural gas and the full derived demand curve could not be constructed in each region without considering the interregional interactions. Consequently, the curve constructed in NEMS looks at fuel switching in dual-fired plants only.

In the EMM, the fuel choice decision is made for each capacity subunit based on a gas/oil sharing function. This function relates the ratio of prices of competitive gas to residual fuel oil to the quantity of gas required by the utilities. The vertical portions of the curve represent minimum and maximum quantities of gas needed by the utility respectively. An aggregate curve for each region is generated in the NGTDM. In order to use the information from the gas/oil sharing function, the oil price provided by the PMM is used as the denominator for the gas/oil price ratio, and a portion of the demand curve is created around the average of the trial prices from the last two iterations. Since a continuous demand curve cannot be implemented in a linear program, the three line segments constructed with the four points shown in the figure are approximated by a step function for inclusion in the NGTDM. This approach operated with relatively few problems and stabilized the fuel switching in the dual-fired plants.<sup>4</sup>

<sup>&</sup>lt;sup>4</sup>There are two ways of interpreting the use of this step function. One is to view this approach as a partition in which the natural gas demand in utilities is determined in the natural gas model. The alternative is to view the utility gas demand as being determined in both the gas and utilities model. This is a departure from traditional equation solving, for in the traditional approach one constructs a partition of the equations, where each equation appears in only one grouping.

Additional merit order switching between categories of gas also occurred for which the gas/oil sharing function did not compensate. Gas is categorized as firm, interruptible, and competitive. Firm gas delivery is guaranteed in that the pipeline capacity is allocated to these customers first. These customers pay a reservation charge to reserve the capacity. Interruptible customers pay a lower price, essentially the marginal cost of delivery plus purchase costs, and face the risk of having gas supplies curtailed if delivery capacity is insufficient. Competitive customers have the ability to switch between gas and oil. Their gas is assumed to be priced as the maximum of either the residual oil price or the city gate price plus \$.10 per MMBtu, with a ceiling at the interruptible price.

Because of the differences in the three gas prices, it was thought that the merit order would not change between iterations. However, this was not the case. Firm gas in utilities is burned in combined cycle plants that are more efficient than steam plants. Although the firm price remained above the competitive price, given the heat rate advantages, in some iterations the usual merit order switched. That is, instead of the steam plants being dispatched ahead of the combined cycle plants, the reverse occurred. With the higher operating rates for the combined cycle plants and the correspondingly lower operating rates for the steam plants, less gas was consumed overall, reflecting the greater efficiencies of the combined cycle plants over the steam plants in electricity production. The effect was to lower the wellhead price of gas. The economics of steam versus combined cycle depend more on the ratio of prices. Given the wellhead price drop and a constant difference between the different gas prices, the merit order switched back and forth because the percentage differences in the prices increased.

The solution to this problem involves changing the representation in the model. Firm gas to utilities needs to be marginally priced at the competitive price for dispatching purposes and priced at the full firm rate (including reservation rates) for calculating electricity rates and capacity expansion planning. The rationale is that the reservation charge is a sunk cost; that is, the charge must be paid whether gas is purchased or not. In general, this puts combined-cycle plants ahead of steam plants in the merit order, thus reducing the potential for these merit order switches. However, in Texas certain steam plants had better heat rates than combined cycle plants, though they had higher operating costs. Consequently, when the price of gas reached a threshold merit order switches still occurred. This was resolved by equalizing the operating costs of the two types of plants.

#### Other Natural Gas Convergence Issues

An aspect of the solution procedure that never caused a problem on its own, but did aggravate other problems, was the way the linear program approximations to the supply curves are constructed in the NGTDM. The underlying supply curve is a continuous function, which is approximated with a step function by constructing steps around the trial solution. The same increment to the price was used in all regions. In the solution to successive transportation linear programs, given the basis did not change, all prices changed the same amount for supply and demand nodes connected by any path of basic variables.<sup>5</sup>

<sup>&</sup>lt;sup>5</sup>Murphy, F.H., and H. Greenberg, "Computing Regulated Equilibria with Mathematical Programming," *Operations Research*, Vol. 33, No. 5, 1985, pp 935-955.

In the case of the natural gas model transmission and distribution problem, almost all the supply and demand nodes and their associated prices are connected in this way. The only demand region not usually connected is the Northwest, because this region is supplied by Canadian gas. Consequently, when the equilibrium price changes, the gas prices in almost all regions change the same amount. Since all of the supply curve steps were based on the same price differences, they coincided with each other for changes in the equilibrium price. Essentially, the gas model had only six national steps because of this property of the solution. The solution was to ensure that step sizes were not absolute but based on a fraction of each regional price. This approach operated with relatively few problems and stabilized the fuel switching in the dual-fired plants. In addition, an oscillation in gas prices occurred because the price used to construct the supply curve was not relaxed, but the demand curve starting price was. The solution was to apply the same relaxation to the supply price as was used for the demand price.

Another natural gas convergence problem occurred when the short run supply curves hit the maximum production-to-reserves ratio at a low price. In this situation, the NGTDM had vertical supply curves. The resulting oscillations in the trial solutions were quite large in price with little quantity movement. The oscillations were aggravated because there were demand curves only for competitive gas to the utilities and not for the other gas demands. Since much of the response to the perturbations in price occurred with other types of gas and by other sectors, these demand curves did not sufficiently reflect the total demand response. This problem was resolved by including the demand response of end-use consumption of natural gas in the NGTDM.

The final convergence problems of note with natural gas involved the linear program defining the enduse prices and flow patterns for movements of natural gas through the regional interstate network. Because of the nature of the linear program, as the full capacity of a pipeline or storage facility would be reached, the price response would be disproportionate, leading to a drop in demand and an oscillation on the price. The solution to this problem also required the incorporation of an approximation of end-use demands within the natural gas distribution model.

### **Coal/EMM Interactions**

The 1990 amendments to the Clean Air Act (CAAA) require reductions of emissions of sulfur dioxides and nitrogen oxides from electric utilities. In particular, after 1994 a national ceiling is placed on the total amount of sulfur dioxide that may be emitted by utilities. To represent the CAAA in the EMM, fuels are classified by the fraction of sulfur they contain. For instance, residual fuel oil is categorized as low or high-sulfur, and coal is divided into 12 sulfur grades, four for each coal rank.

The introduction of the CAAA restrictions, and the resulting disaggregation of coal demand by sulfur type made the convergence issues with coal more complex than encountered with IFFS. In IFFS, the shares of each coal type categorized by rank and sulfur content in electric utility consumption were fixed, and the merit order of the coal plants never changed. In NEMS, the types of coal used by a given plant are determined endogenously, based on the cost of competing coals and the cost of sulfur dioxide allowances. Coal-burning plants are grouped and dispatched by the type of coal they may use. This allows merit order changes even among plants using different coals, which happens regularly in the model. The fundamental problem is that the different coals can be substituted for each other in the

coal plants. Consequently, when there is no single dominant sulphur grade in a region and a mix of coals is available, there can be an oscillation among grades of coal with essentially the same cost.

The convergence problems with coal have to be separated into two periods in the forecast horizon: before 1995, and 1995 and beyond. Prior to 1995 utilities can burn any coal they wish in their plants and the oscillations occur as follows: when the utilities model demands large quantities of high sulfur coal and the price rises above low sulfur, the utilities model switches to low sulfur coal and the relative order of the prices switch as well after the coal model is re-solved. The solution to this problem is to allow lower sulfur coals to flow into high-sulfur coal in the coal model. The effect of this is to cap the high-sulfur price at the low-sulfur price. When these prices are equal, any slight perturbation in price will cause a change in relative order of prices of the coal grades and consequently a large switch in demand. To compensate for this, an additional cost is assessed to change from a higher sulfur coal to one with a lower sulfur content. The effect of this structure is to fix the merit order of the coal plants from the perspective of the utility model.

An additional solution is to add relaxation to the coal prices. Relaxation is accomplished using the formulation

$$x_{i+1} = .80 x_i + .20 x_{i+1}$$

where  $x_i$  is the previous relaxed price and  $x_{i+1}$  the new price. This algorithm also serves to reduce the fluctuation in coal prices between iterations.

After 1994 the Clean Air Act Amendments relating to sulfur dioxide pollution apply. The amendments establish a cap on the amount of sulfur dioxide emitted by the electric utilities nation-wide, and also establishes a system for trading sulfur dioxide emission rights, or allowances. The utilities can reduce their emissions by burning lower sulfur fuel, adding scrubbers, or reducing plant output and fuel consumption and sell the allowances to defray their costs. Alternatively, they can buy allowances to cover their costs of emissions. The market clearing price for the pollution rights functions as a tax on sulfur, since the marginal cost of emissions is equal to the cost of the allowances.

The preliminary approach to modeling the sulfur permit market led to oscillations in coal prices and quantities. To achieve convergence, additional information was passed between the utility and coal modules as follows. Given a set of coal prices, the dispatching order is resolved and the coal demands are calculated in the utility module. Using the emission cap as an additional constraint, a bisection algorithm is used to determine the sulfur penalty such that the least-cost coal dispatch reduces sulfur emissions below the cap. Given these demands, the coal module must determine new prices for each coal rank and sulfur type.

As before, lower-sulfur coals are allowed to replace high-sulfur coal in the coal module. However, a credit must be added to the price of low-sulfur coal in the objective function of the coal module to account for the value of the sulfur emission rights gained by using the low-sulfur coal to meet the demand for high-sulfur coal. Originally, this was set as the sulfur penalty multiplied by the difference in sulfur contents of the coals. Unfortunately, coal demands by region incorporate both scrubbed and unscrubbed plants, and the economics are different for each. Thus the equilibrium value of the credit is not so easily determined. After the demand for each coal grade is determined in the utility module,

the ratio of each coal type is compared to that produced in the previous iteration of the coal module, and the credit adjusted accordingly until the shares of each coal grade are identical between models. At this point the sulfur penalty, coal prices and quantities are constant and market equilibrium has been reached.

#### Convergence Issues and the PMM

Since refineries in the Texas/Louisiana area can burn both natural gas and residual oil for heat, the linear program in the PMM allows both fuels to be consumed. This caused an oscillation between gas and residual fuel oil in the Southwest. This problem was resolved by taking the slope of the Texas supply curve for natural gas and using it to generate a step function supply curve for natural gas in the PMM. Since this supply curve is less elastic than the derived supply curve from NGTDM, it has the property that the model would converge monotonically if there were no other adjustments made. Both the base price and quantity are derived from the trial price and quantity determined in the previous iteration.

Demand curves were added for the following imported products: liquid propane gas (LPG), heating oil, high and low sulfur residual fuel, petrochemical feedstocks and other petroleum products. The purpose of these curves is to reduce the oscillation in prices caused by imports. These curves are implemented with three steps in the linear program used by the PMM. All curves except residual have three steps; high and low-sulfur residual were modeled with a nine step curve. This was required because of a convergence problem that occurred in the Northern Great Plains. In this case the high and low-sulfur residual oil prices oscillated to such an extreme that the high-sulfur residual was more expensive than the low-sulfur residual, the opposite of what should occur. With only three steps, the representation of the import supply curve is necessarily crude. In this case this representation was sufficient to cause slight changes in demand to shift the solution from one step to another and back, causing an oscillation. This was resolved by taking the import points and connecting them with line segments. That is, the curves were made continuous, which better matched the underlying economics. These line segments were then dynamically approximated by the nine steps. This eliminated any major price moves unaccompanied by quantity moves.

#### Summary of Convergence Issues

Three basic techniques were used to enhance convergence in NEMS. The first was to incorporate a representation of the demand response in the supply and pricing modules, as was done in the NGTDM to capture the behavior of dual-fired power plants. Secondly, when the slope of the supply curve for natural gas was incorporated in the PMM, an approximation was created of the first order effects of a change in gas consumption caused by a change in the demands by the PMM. To some extent, these two techniques are reflections of the same principle: a particular set of price-quantity relationships are incorporated in two distinct modules. The final convergence technique involved passing additional information besides just price and quantity signals between the coal and utility modules to compensate for the convergence problems caused by the CAAA requirements.

### **Acceleration Techniques**

The NEMS Integrating Module incorporates a number of features that provide the user some amount of control over the speed with which the equilibration process converges on a final solution. Foremost among such features in terms of accelerating convergence while at the same time increasing the overall robustness of the solution process is a user-controllable feature known as *relaxation*.

As the Integrating Module iteratively directs the energy supply, demand, and other modules to recalculate the energy market data, the calculated prices and quantities can be expected to oscillate about the equilibrium solution as they converge on the supply and demand equilibrium for the current year. If the relaxation option is selected for the run by the user, then these swings from iteration to iteration are dampened by a user-specified factor, which may accelerate convergence and lead to a more stable and robust solution process. Using the notation developed above,

$$x^{k+1} = x^{k} + r (x^{k-1} - x^{k})$$

where r = relaxation factor.

Another acceleration technique is the selection of the appropriate initial solution. As many runs are simulations of alternative scenarios to a prior run, an appropriate choice of initial solution will speed convergence significantly.

### **Initial Solution Selection**

At the start of a NEMS run, initial values for all years for all variables in the Global Data Structure, including the energy market data, are read from a user-specified version of the RESTART file. In turn, the final solution for all years at the end of the NEMS run is stored and becomes available for use as the initial solution for subsequent runs.

The choice of restart files may have an affect on the speed of convergence. A restart file provides an initial set of demands and prices for the modules to use as input. In addition, for those modules employing linear programs, the restart file is associated with a set of initial bases. The restart file based on the last iteration of the same year of another run provided the most efficient initial point for the starting iteration.

### **Expected Value Foresight**

Approaches to foresight  $(XP_{f,s,r,v})$  and  $XQ_{f,s,r,v}$  are important for theoretical and practical reasons. Midand long-term energy forecasting involves assessing changes in energy-using capital stocks and choices among energy supply alternatives. This analysis requires simulation of such decisions as the selection of durable appliances, planning electricity-generating capacity additions, and building gas pipelines. The economic evaluation of these decisions requires energy demand and price expectations for life-cycle cost and capacity addition calculations. An objective in this aspect of the modeling is to simulate such decision making in the aggregate for predictive and analytical purposes, representing how players in the energy marketplace make long term planning decisions, rather than by deriving the theoretically optimal long-term expansion path. As a result, the formulation of foresight assumptions is open to alternative approaches based on observed industry practices.

NEMS could, in principle, approach the issue of foresight by prescribing a desirable end state for the energy marketplace, and calculating backwards in time to prescribe how best to arrive there. However, as a simulation, NEMS calculates foresight as an extrapolation of the present state of energy markets, subject to announced policies. Rather than determining how to arrive at the planned future, NEMS can evaluate whether present plans could result in the desired end state.

In reality, different methodologies for treating foresight are used in different sectors and supply areas, and alternate approaches to representing expectations may yield significantly different planning decisions. Consequently, treatment of foresight becomes an important modeling decision.

There is no one best approach to treating foresight. The National Research Council Committee on NEMS recommended that several options for modeling foresight be developed.<sup>6</sup> As a result, an objective in NEMS was to build the flexibility to support different approaches to foresight to allow for experimentation and future modeling changes. In addition, it is desirable to have the option to treat foresight consistently throughout the modeling system.

The purpose of dealing with foresight and expectations in the Integrating Module is to be able to represent different types of foresight consistently. At the same time the Integrating Module allows individual modules to handle foresight independently, should industry practice require different approaches. To achieve this flexibility, each NEMS module is intended to be constructed so that an on-off switch is examined to determine whether the module uses the system-generated expectations or not. If this central-control switch is turned on, the module uses system expectations; otherwise, the module uses expectations it generates for itself.

The system-generated expectations include several types:

- The "myopic expectations" option is one in which expected prices for any forecast period are assumed to be constant in real dollar terms relative to the current period in which decisions are being made. Generally, this case applies only to expected prices because an assumption of constant energy demands would rarely be assumed.
- "Adaptive expectations," also known as "extrapolative expectations," is an approach that assumes planners extrapolate recent trends when making long-term decisions. For the system-generated expectations, this assumption about foresight is implemented by extrapolating the current projection year prices and quantities using the average annual growth over the previous few projection years. For example, the expectations generated in model year 2000 for use in 2001 would be determined from the growth over the last few model years (e.g., 1998 to 2000), with the number of years being a model option. For

<sup>&</sup>lt;sup>6</sup>National Research Council, *The National Energy Modeling System*, Washington D.C.: National Academy Press, 1992.

expectations generated within individual modules, more elaborate behavioral models, or adaptive expectations, are used.

• The "perfect foresight" approach is based on rational expectations theory. The approach generates an internally consistent scenario for which the formation of expectations is consistent with the projections realized in the model. In practice, perfect foresight describes the configuration and solution algorithm that achieves the convergence of expected values and realized values. A variation in the integrating algorithm is required to implement perfect foresight. Instead of solving for an equilibrium for each year, the Integrating Module calls each model for all years of the forecast horizon during each iteration. The objective is to converge across all years simultaneously rather than solving one year at a time. Expectations of variables beyond the standard forecast horizon, required for long-term decisions made late in the forecast period, are, however, still extrapolated under the perfect foresight approach.

While these approaches are implemented in full in the Integrating Module, they cannot as yet be used in NEMS runs. Some of the analytical modules have not yet been programmed for the approaches other than myopic foresight, and others have not been tested. The foresight options have therefore not been tested in the full NEMS system and will not be available until later editions of the system.

Among those modules using alternative expectations is the Electricity Market Module (EMM). The EMM requires fuel price expectations for natural gas, oil, and coal for use in its capacity planning submodule. For the 1994 *Annual Energy Outlook* (AEO), separate approaches for generating oil, gas and coal prices for this module were developed and are summarized below:

- Coal price expectation equations were developed using a regression approach on a NERC region basis. This methodology is implemented directly in the EMM.
- Oil product price expectations are generated in the Integrating Module. The prices are calculated from an external forecast of world oil prices, assuming a constant markup between the regional product price and the world oil price. In each forecast year, the assumed markup is derived from the prior forecast year:

$$P_{c+k} = (P_c - W_c) + W_{c+k}$$
 for k=1,...,40

where  $P_c$  and  $W_c$  are the product price and the exogenous world oil price from the previous forecast year, and  $P_{c+k}$  and  $W_{c+k}$  are the prices in the expectation years.

• Delivered natural gas prices are derived from expected wellhead prices, assuming a constant markup between the delivered prices and the wellhead price. The wellhead price expectations are based on a simple, nonlinear function which relates the expected wellhead gas price to cumulative domestic gas production. The equation is of the following form:

$$P_k = A * Q_k^{1.5} + B$$
,

where P is the wellhead price, Q is the cumulative production from 1991 to year k, and A and B are determined each year, as explained below.

The approach was developed to have the following properties:

- Prices should be upward sloping as a function of cumulative gas production.
- The rate of change in wellhead prices should increase as fewer economical reserves remain to be discovered and produced.

The approach assumes that at some point in the future a given target price, PF, results when cumulative gas production reaches a given level, QF. Thus, the target values PF and QF are assumed inputs to the approach. For simplicity, the annual production is assumed to be constant at the prior year's level. The parameters of the price equation, A and B, are determined each projection year such that the price equation will intersect the future target point. That is:

Extrapolate cumulative production for future years k=1,...40:

$$Q_k = Q_{k-1} + D$$

Generate expected well-head prices:

 $P_k = A * Q_k^{1.5} + B$ 

Appendix A

Variable, Data and Parameter Listing

# Appendix A. Variable, Data and Parameter Listing

This appendix gives the details of the NEMS Global Data Structure. The bulk of the appendix is a modified listing of the NEMS Data Dictionary, where the modifications are intended to make the somewhat terse content of the Data Dictionary more intelligible to the less-technical reader. Full details of the content of the Global Data Structure are contained herein.

The version of the NEMS Data Dictionary printed here was that created on February 18, 1993. For the most current data, the reader should refer to a dataset on the EIA Service Facility mainframe computer named CN6005.PRJ.NEMS.DICT.AEO.datekey, where *datekey* is the most recent date found. The dataset listed herein was CN6005.PRJ.NEMS.DICT.AEO.D0218931.

In the ordinary format of the Data Dictionary, a series of header records give detailed information about some of the fields in the body of the Data Dictionary. This information is given instead in the tables that follow.

On most of the pages of this appendix, there is a header that describes the content of the columns below. The headings in this row are described in the sections that follow.

### **COMMON Block Name**

Appears at the beginning of the COMMON block, preceded by some delimiters and a verbal description of the purpose for the COMMON. Followed by a row for each variable in the COMMON block; the descriptions that follow describe the content of the rows for variables.

### Variable Name

Variable names that appear in this column are the actual FORTRAN names by which the variables are used in the program.

### **Variable Dimensions**

In the Variable Dimensions column are up to five dimensions for each variable. NEMS conventions limit Global Data Structure variables to five dimensions. There is no convention that limits variables that are not part of the Global Data Structure from assuming the full seven dimensions allowed by the FORTRAN syntax.

Names are used as variable dimensions, so as to distinguish the meanings of the values of the sizes of the variables. Table A1 defines the meanings of the names:

| Dimension Name | Value | Description                     |
|----------------|-------|---------------------------------|
| NOGCAT         | 12    | Oil Catagories (Regions)        |
| NOGCRO         | 5     | Gas Catagories (Regions)        |
| NOGRGN         | 10    | OGSM Reporting Regions          |
| NOGDTP         | 4     | OGSM Drilling Regions           |
| NFNGSS         | 4     | OGSM Import/export Regions      |
| GRADCR         | 5     | Grades of Crude Oil             |
| MNPOLL         | 8     | No. Air Emissions+Particulates  |
| MNETOH         | 5     | No. of Ethanol Vol steps        |
| MNCROP         | 2     | No. of Crops(Corn,Biomass)      |
| WNTECH         | 10    | Renewables                      |
| MNUMCL         | 3     | Renewables                      |
| MNUMSO         | 9     | Renewables                      |
| MNUMWI         | 20    | Renewables                      |
| MNUMPR         | 6     | PADD Regions                    |
| DSMPCM         | 10    | No. of DSM Progs. Commer.       |
| DSMPRS         | 10    | No. of DSM Progs. Residen.      |
| MNUMCR         | 11    | Census Regions                  |
| MNUMXR         | 11    | Coal Export Regions             |
| MODELS         | 12    | Number of Modules               |
| NSICNM         | 12    | Non-Mfg: No. of SIC's           |
| MNUMOR         | 13    | Oil & Gas Regions               |
| MNUMBX         | 18    | NG Border Crossings             |
| MNUMGR         | 15    | NGTDM Regions                   |
| CLTYPE         | 16    | Coal Type                       |
| MNUMNR         | 16    | 'NERC' Electric Supply Regions  |
| MNUMLR         | 17    | Coal Supply Regions             |
| NDREGN         | 23    | Coal Demand Regions             |
| MFTYPE         | 29    | No. of Mfg Types                |
| MNUMYR         | 29    | Years=1990-2015,'20,'25,'30     |
| MECPYR         | 39    | MNUMYR + 10 yrs (horizon)       |
| MSEDYR         | 2     | # Historical SEDS years         |
| MNSICM         | 40    | Mfg: Number of SIC's            |
| MNXYRS         | 66    | No. of Expectation Years        |
| FLTYPE         | 6     | Fuel Type-Oil,NG,MCL,SCL,Ren,Al |

Table A1. Dimension Names

## **Variable Descriptors**

#### Table A2. Data Dictionary Variable Descriptors

|                                                                                                                                                                                                                                                                                                                                                                                                                  | TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CNTROL<br>HISTOR<br>PARAM<br>PRICE<br>QUNTY<br>XPRICE<br>XQUNTY<br>RATE<br>LEVEL<br>INDEX                                                                                                                                                                                                                                                                                                                        | SED/Other Historical Data<br>Parameter<br>Price<br>Quantity<br>Expected Price 87\$BTU<br>Expected Quantity tBTU                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CONFAC<br>GENCAP<br>CAPFAC<br>OPCOS<br>OPCOST<br>LIFE<br>HEATRT<br>FUECOS                                                                                                                                                                                                                                                                                                                                        | Generation Capacity<br>Capacity Factor<br>Capital Cost<br>Operating Cost<br>Plant Lifetime<br>Heat Rate<br>Fuel Cost                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                  | UNITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 87\$BTU<br>87\$BBL<br>87\$MCF<br>BARREL<br>MMBBL<br>BBL/DA                                                                                                                                                                                                                                                                                                                                                       | 87\$ per million BTU<br>87\$ per Barrel<br>87\$ per million cu ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| tBBL/D<br>MPG                                                                                                                                                                                                                                                                                                                                                                                                    | thousand Barrels per day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| MPG<br>mBTU/B<br>tBTU/C<br>MWATT<br>tMWATT<br>GWATT<br>GWATT<br>GWATT<br>SCALAR<br>BLANK<br>DEC_4<br>INT_2<br>INT_2<br>INT_4<br>MCF<br>MKWH<br>ON_OFF                                                                                                                                                                                                                                                            | Million BTU / Barrel<br>Thousand btu / Cubic Ft<br>Megawatts<br>Thousand Megawatts<br>Gigawatts<br>Gigawatt hours                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| N_OFF<br>RADS<br>tBTU<br>THREE<br>TONS<br>tMTONS<br>mMTONS<br>mSTONS<br>bLBS<br>\$/TON                                                                                                                                                                                                                                                                                                                           | Trillion BTU<br>thousand Metric Tons<br>Million Metric Tons<br>Million Short Tons<br>Billion Pounds                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TON_ML<br>TON_ML<br>TWO<br>UNIT1<br>UNIT1<br>UNIT2<br>UNIT3<br>UNIT3<br>UNIT4<br>UNIT5<br>UNIT5<br>UNIT6<br>BCF<br>b87\$<br>m82\$<br>PERCNT<br>MILL<br>1000s<br>89=1.0<br>b87\$1<br>000s<br>87=1.0<br>82=1.0<br>b87\$1<br>87\$<br>KWH<br>87\$KWH<br>87\$KWH<br>87\$KWH<br>87\$KWH<br>87KWH<br>87KWH<br>87KWH<br>BTUCOR<br>BTUCOR<br>BTUCOR<br>BTUCOR<br>BTUCOR<br>BTUCOR<br>BTUCOR<br>BTUCOR<br>BTUCOR<br>BTUCOR | Ton Miles<br>Billion Cu Ft<br>Billion 87\$<br>Million 87\$<br>Million 82\$<br>Percent<br>Million (units)<br>Thousand (units)<br>1989=1.0<br>1987=1.0<br>1987=1.0<br>1987=1.0<br>1982=1.0<br>Billion Sq Ft<br>\$ per Hour<br>\$ per Gallon<br>Foreign Currency/\$<br>87\$ per Kilowatt-hour<br>87\$ per Kilowatt-hour<br>87\$ per Kilowatt-hour<br>Trillion Btu per Kilowatt-hour<br>Years<br>Fraction<br>Btu per Gallon<br>Btu per Gallon<br>Btu per Gallon<br>Btu per Gallon<br>Btu per Short Ton<br>Btu per Barrel<br>FUEL<br>Asphalt and Road Oil |
| AS<br>BM                                                                                                                                                                                                                                                                                                                                                                                                         | Asphalt and Road Oil<br>Biomass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CI<br>CL<br>DS<br>EI<br>EL<br>EL<br>EP<br>ET<br>GE<br>GF<br>GI<br>GP                                                                                                                                                                                                                                                                                                                                             | Net Coal Coke Imports<br>Coal<br>Distillate<br>Net Electricity Imports<br>Purchased Electricity<br>Purchased Electricity, Non-Peak<br>Purchased Electricity, Peak<br>Ethanol<br>Geothermal<br>Natural Gas, Core<br>Natural Gas, Pipeline                                                                                                                                                                                                                                                                                                             |

| HO<br>HY<br>WO<br>JF<br>KSG<br>LP<br>ME<br>MG<br>MS<br>NG<br>PC<br>PF<br>PV<br>RHL<br>RSG<br>ST<br>TP<br>TR<br>TS<br>SST<br>TP<br>TR<br>TS<br>SST<br>TP<br>TR<br>TS<br>COALIQ<br>COALST<br>FUEL4<br>GASOLN<br>LING<br>COHON<br>ALL | HydroPower<br>Liquid Hydrogen<br>World Oil Price<br>Jet Fuel<br>Kerosene<br>Liquid Petroleum Gases<br>Lease and Plant Fuel<br>Metallurgical Coal<br>Methanol<br>Motor Gasoline<br>Municipal Solid Waste<br>Natural Gas<br>Other Petroleum<br>Petroleum Coke<br>Petrochemical Feedstocks<br>Photovoltaic<br>Residual Fuel, High Sulfur<br>Residual Fuel, Low Sulfur<br>Residual Fuel<br>Still Gas<br>Solar Thermal<br>Total Petroleum<br>Total Renewables<br>Total Sectorial Energy Consumption<br>Uranium<br>Wind |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                    | SECTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| RESIDN<br>COMMER<br>TRANSP<br>INDUST<br>REFINE<br>ALLSEC<br>ELECTR<br>SYNTHE<br>PIPELN<br>INTERN<br>PLANT                                                                                                                          | Residential<br>Commercial<br>Transportation<br>Industrial<br>Refinery<br>All Sectors<br>Electricity<br>Synthetics<br>International                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                    | MODELS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| INTERN<br>MACRO<br>ELECTR<br>RESID<br>COMMER<br>INDUST<br>TRANS<br>UTIL<br>COAL<br>UTIL<br>COAL<br>OIL&GS<br>NATGAS<br>PETROL<br>RENEW<br>ALL                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

Energy Information Administration NEMS Integrating Model Documentation Report In the Data Dictionary, the Variable Descriptors are columns provided to allow one-word categorization of each variable in a COMMON block. Within each COMMON block, the variety of categorization can be customized to the purpose of the COMMON block, as shown by the titles at the top of each of the four columns. In fact, the Data Dictionary allows five columns of descriptors, although no COMMON block uses more than four.

Table A2 on the next page gives the names of the legal values for each of the categorizations, and, where the programmers have provided them, the meanings of the categories.

Brief variable descriptions are provided in the dictionary.

| COMMON<br>Block |                  |                     |       |         |          |        |                                   |
|-----------------|------------------|---------------------|-------|---------|----------|--------|-----------------------------------|
| Name            | Variable Name    | Variable Dimensions | Var   | iable D | Descript | ors    | Variable Descriptio               |
|                 |                  |                     |       |         |          |        |                                   |
|                 |                  |                     |       |         |          |        |                                   |
| *=======        |                  |                     | ===== | =====   |          | =====  |                                   |
| * Quantit:      | ies Common Block |                     |       |         |          |        |                                   |
| *=======        |                  |                     | ===== |         | ======   | ====== |                                   |
| QBLK            |                  |                     | TYPE  | UNITS   | FUEL     | SECTOR | QUANTITIES                        |
|                 | QEPRS            | (MNUMCR, MNUMYR)    | QUNTY | tBTU    | EP       | RESIDN | Purchased Electricity, Peak. Resi |
|                 | QEPCM            | (MNUMCR, MNUMYR)    | QUNTY | tBTU    | EP       | COMMER | Purchased Electricity, Peak. Comm |
|                 | QEPTR            | (MINUMCR, MINUMYR)  | QUNTY | CBI.0   | EP       | TRANSP | Purchased Electricity, Peak. Tran |
|                 | QEPIN            | (MNUMCR, MNUMYR)    | QUNIY | LBIU    | EP<br>ED | DEETNE | Purchased Electricity, Peak. Indu |
|                 | OFDAC            | (MNUMCE, MNUMYE)    | QUNTI |         | EP       | ALLORG | Purchased Electricity, Peak. Reli |
|                 | OFNES            | (MNUMCR, MNUMIR)    | OUNTY |         | EP       | ALLSEC | Durchased Electricity, Peak. All  |
|                 | OFNCM            | (MNUMCR, MNUMIR)    | OUNTY | +BTII   | EN       | COMMER | Durchased Electricity, Nonpeak. K |
|                 | OFNTR            | (MNUMCR, MNUMIR)    | OUNTY | +BTII   | EN       | TRANCD | Durchased Electricity, Nonpeak. C |
|                 | OENIN            | (MNUMCR MNUMYR)     | OUNTY | +BTII   | EN       | TNDUST | Purchased Electricity, Nonpeak. I |
|                 | OFNEE            | (MNUMCP MNUMYP)     | OUNTY | +BTII   | FN       | PFFINE | Durchased Electricity, Nonpeak. P |
|                 | OFNAS            | (MNUMCR, MNUMIR)    | OUNTY | +BTII   | EN       | ALLSEC | Durchased Electricity, Nonpeak. A |
|                 | OELRS            | (MNUMCR MNUMYR)     | OUNTY | +BTII   | EL.      | RESIDN | Purchased Electricity, Nonpeak. A |
|                 | OELCM            | (MNUMCR MNUMYR)     | OUNTY | +BTII   | EL.      | COMMER | Purchased Electricity. Commercial |
|                 | OFLTR            | (MNUMCE MNUMYE)     | OUNTY | + BTII  | EL.      | TRANSP | Purchased Electricity Transporta  |
|                 | OFLIN            | (MNUMCE MNUMYE)     | OUNTY | + BTII  | EL.      | INDUST | Purchased Electricity. Industrial |
|                 | OELEE            | (MNUMCR MNUMYR)     | OUNTY | +BTII   | EL.      | REFINE | Purchased Electricity. Refinery   |
|                 | OFLAS            | (MNUMCR MNUMYR)     | OUNTY | +BTII   | EL.      | ALLSEC | Purchased Electricity. All Sector |
|                 | OGFRS            | (MNUMCR, MNUMYR)    | OUNTY | + BTU   | GF       | RESIDN | Natural Gas. Core. Residential    |
|                 | OGFCM            | (MNUMCR, MNUMYR)    | OUNTY | t.BTU   | GF       | COMMER | Natural Gas, Core, Commercial     |
|                 | OGFTR            | (MNUMCR, MNUMYR)    | OUNTY | t.BTU   | GF       | TRANSP | Natural Gas, Core, Transportation |
|                 | OGFIN            | (MNUMCR, MNUMYR)    | OUNTY | t.BTU   | GF       | INDUST | Natural Gas, Core, Industrial     |
|                 | OGFRF            | (MNUMCR, MNUMYR)    | OUNTY | tBTU    | GF       | REFINE | Natural Gas, Core. Refinery       |
|                 | ÕGFEL            | (MNUMCR, MNUMYR)    | ÕUNTY | tBTU    | GF       | ELECTR | Natural Gas, Core. Electricity    |
|                 | ÕGFAS            | (MNUMCR, MNUMYR)    | ÕUNTY | tBTU    | GF       | ALLSEC | Natural Gas, Core. All Sectors    |
|                 | ÕGIRS            | (MNUMCR, MNUMYR)    | ÕUNTY | tBTU    | GI       | RESIDN | Natural Gas, Noncore. Residential |
|                 | ÕGICM            | (MNUMCR, MNUMYR)    | ÕUNTY | tBTU    | GI       | COMMER | Natural Gas, Noncore. Commercial  |
|                 | ÕGITR            | (MNUMCR, MNUMYR)    | QUNTY | tBTU    | GI       | TRANSP | Natural Gas, Noncore. Transportat |
|                 | QGIIN            | (MNUMCR, MNUMYR)    | QUNTY | tBTU    | GI       | INDUST | Natural Gas, Noncore. Industrial  |
|                 | QGIRF            | (MNUMCR, MNUMYR)    | QUNTY | tBTU    | GI       | REFINE | Natural Gas, Noncore. Refinery    |
|                 | QGIEL            | (MNUMCR, MNUMYR)    | QUNTY | tBTU    | GI       | ELECTR | Natural Gas, Noncore. Electricity |
|                 | QGIAS            | (MNUMCR, MNUMYR)    | QUNTY | tBTU    | GI       | ALLSEC | Natural Gas, Noncore. All Sectors |
|                 | QNGRS            | (MNUMCR, MNUMYR)    | QUNTY | tBTU    | NG       | RESIDN | Natural Gas. Residential          |
|                 | QNGCM            | (MNUMCR, MNUMYR)    | QUNTY | tBTU    | NG       | COMMER | Natural Gas. Commercial           |
|                 | QNGTR            | (MNUMCR, MNUMYR)    | QUNTY | tBTU    | NG       | TRANSP | Natural Gas. Transportation       |
|                 | QNGIN            | (MNUMCR, MNUMYR)    | QUNTY | tBTU    | NG       | INDUST | Natural Gas. Industrial           |
|                 | QNGRF            | (MNUMCR, MNUMYR)    | QUNTY | tBTU    | NG       | REFINE | Natural Gas. Refinery             |
|                 | QNGEL            | (MNUMCR, MNUMYR)    | QUNTY | tBTU    | NG       | ELECTR | Natural Gas. Electricity          |
|                 | QNGAS            | (MNUMCR, MNUMYR)    | QUNTY | tBTU    | NG       | ALLSEC | Natural Gas. All Sectors          |
|                 | QGPTR            | (MNUMCR, MNUMYR)    | QUNTY | tBTU    | GP       | TRANSP | Natural Gas. Pipeline             |
|                 | QLPIN            | (MNUMCR, MNUMYR)    | QUNTY | tBTU    | LP       | INDUST | Lease and Plant Fuel              |
|                 | QCLRS            | (MNUMCR, MNUMYR)    | QUNTY | tBTU    | CL       | RESIDN | Coal. Residential                 |
|                 | QCLCM            | (MNUMCR, MNUMYR)    | QUNTY | tBTU    | CL       | COMMER | Coal. Commercial                  |
|                 | QCLIN            | (MNUMCR, MNUMYR)    | QUNTY | tBTU    | CL       | INDUST | Coal. Industrial                  |
|                 | QCLRF            | (MNUMCR, MNUMYR)    | QUNTY | tBTU    | CL       | REFINE | Coal. Refinery                    |
|                 | QCLEL            | (MNUMCR, MNUMYR)    | QUNTY | tBTU    | CL       | ELECTR | Coal. Electricity                 |
|                 | QCLSN            | (MNUMCR, MNUMYR)    | QUNTY | tBTU    | CL       | SYNTHE | Coal. Synthetics                  |
|                 | QCLAS            | (MNUMCR, MNUMYR)    | QUNTY | tBTU    | CL       | ALLSEC | COAL ALL Sectors                  |
|                 | QMCIN            | (MNUMCR, MNUMYR)    | QUNTY | tBTU    | MC       | INDUST | Metallurgical Coal. Industrial    |
|                 | QMGCM            | (MNUMCR, MNUMYR)    | QUNTY | CBIU    | MG       | COMMER | Motor Gasoline. Commercial        |
|                 | QMGTR            | (MNUMCR, MNUMYR)    | QUNTY | tBTU    | MG       | TRANSP | Motor Gasoline. Transportation    |
|                 | QMGIN            | (MNUMCR, MNUMYR)    | QUNTY | tBTU    | MG       | INDUST | Motor Gasoline. Industrial        |
|                 | QMGAS            | (MNUMCR, MNUMYR)    | QUNTY | CB.L.D  | MG       | ALLSEC | Motor Gasoline. All Sectors       |
|                 | QJFTR            | (MNUMCR, MNUMYR)    | QUNTY | tBTU    | JF       | TRANSP | Jet Fuel. Transportation          |

66

| COMMON |                |                      |         |                |          |        |                                   |
|--------|----------------|----------------------|---------|----------------|----------|--------|-----------------------------------|
| Name   | Variable Name  | Variable Dimensions  | Var     | ciable         | Descrip  | tors   | Variable Description              |
|        |                |                      |         |                |          |        |                                   |
|        | QDSRS          | (MNUMCR, MNUMYR)     | QUNTY   | tBTU           | DS       | RESIDN | Distillate. Residential           |
|        | QDSCM          | (MNUMCR, MNUMYR)     | QUNTY   | tBTU           | DS       | COMMER | Distillate. Commercial            |
|        | QDSTR          | (MNUMCR, MNUMYR)     | QUNTY   | tBTU           | DS       | TRANSP | Distillate. Transportation        |
|        | QDSIN          | (MNUMCR, MNUMYR)     | QUNTY   | tBTU           | DS       | INDUST | Distillate. Industrial            |
|        | QDSRF          | (MNUMCR, MNUMYR)     | QUNTY   | tBTU           | DS       | REFINE | Distillate. Refinery              |
|        | QDSEL          | (MNUMCR, MNUMYR)     | QUNTY   | tBTU           | DS       | ELECTR | Distillate. Electricity (incl. pe |
|        | QDSAS          | (MNUMCR, MNUMYR)     | QUNTY   | tBTU           | DS       | ALLSEC | Distillate. All Sectors           |
|        | QKSRS          | (MNUMCR, MNUMYR)     | QUNTY   | tBTU           | KS       | RESIDN | Kerosene. Residential             |
|        | QKSCM          | (MNUMCR, MNUMYR)     | QUNIY   | tBTU           | KS       | COMMER | Kerosene. Commercial              |
|        | QKSIN          | (MNUMCR, MNUMYR)     | QUNTY   | tBTU           | KS       | INDUST | Kerosene. Industrial              |
|        | QKSAS          | (MNUMCR, MNUMYR)     | QUNIY   | LBIU<br>+ DTTI | KS<br>IC | ALLSEC | Liquid Detroloum Cogog Degidenti  |
|        | QLGRS<br>OLCCM | (MNUMCR, MNUMYR)     | QUNIY   |                | LG       | COMMER | Liquid Petroleum Gases. Residenti |
|        | OLGTR          | (MNUMCR, MNUMYR)     | OUNTY   | +BTII          | LG       | TRANCO | Liquid Petroleum Gases. Commercia |
|        | OLGIN          | (MNUMCP MNUMYP)      | OUNTY   | +BTII          | LC       | TNDUST | Liquid Petroleum Gases. Industria |
|        | OLGRE          | (MNUMCR MNUMYR)      | OUNTY   | + BTII         | LG       | REFINE | Liquid Petroleum Gases Refinery   |
|        | OLGAS          | (MNUMCR, MNUMYR)     | OUNTY   | + BTU          | LG       | ALLSEC | Liquid Petroleum Gases All Secto  |
|        | ORLCM          | (MNUMCR, MNUMYR)     | OUNTY   | + BTU          | RI.      | COMMER | Residual Fuel, Low Sulfur, Commer |
|        | ORLTR          | (MNUMCR , MNUMYR )   | OUNTY   | tBTU           | RL       | TRANSP | Residual Fuel, Low Sulfur, Transp |
|        | ORLIN          | (MNUMCR, MNUMYR)     | OUNTY   | tBTU           | RL       | INDUST | Residual Fuel, Low Sulfur. Indust |
|        | ORLRF          | (MNUMCR, MNUMYR)     | OUNTY   | tBTU           | RL       | REFINE | Residual Fuel, Low Sulfur. Refine |
|        | ÕRLEL          | (MNUMCR, MNUMYR)     | ÕUNTY   | tBTU           | RL       | ELECTR | Residual Fuel, Low Sulfur. Electr |
|        | QRLAS          | (MNUMCR, MNUMYR)     | QUNTY   | tBTU           | RL       | ALLSEC | Residual Fuel, Low Sulfur. All Se |
|        | QRHTR          | (MNUMCR, MNUMYR)     | QUNTY   | tBTU           | RH       | TRANSP | Residual Fuel, High Sulfur. Trans |
|        | QRHEL          | (MNUMCR, MNUMYR)     | QUNTY   | tBTU           | RH       | ELECTR | Residual Fuel, High Sulfur. Elect |
|        | QRHAS          | (MNUMCR, MNUMYR)     | QUNTY   | tBTU           | RH       | ALLSEC | Residual Fuel, High Sulfur. All S |
|        | QRSCM          | (MNUMCR, MNUMYR)     | QUNTY   | tBTU           | RS       | COMMER | Residual Fuel. Commercial         |
|        | QRSTR          | (MNUMCR, MNUMYR)     | QUNTY   | tBTU           | RS       | TRANSP | Residual Fuel. Transportation     |
|        | QRSIN          | (MNUMCR, MNUMYR)     | QUNTY   | tBTU           | RS       | INDUST | Residual Fuel. Industrial         |
|        | QRSRF          | (MNUMCR, MNUMYR)     | QUNTY   | tBTU           | RS       | REFINE | Residual Fuel. Refinery           |
|        | QRSEL          | (MNUMCR, MNUMYR)     | QUNTY   | tBTU           | RS       | ELECTR | Residual Fuel. Electricity        |
|        | QRSAS          | (MNUMCR, MNUMYR)     | QUNTY   | tBTU           | RS       | ALLSEC | Residual Fuel. All Sectors        |
|        | QPFIN          | (MINUMER, MINUMER)   | QUNTY   | CBIU           | PF       | INDUST | Petrochemical Feedstocks. Industr |
|        | QSGIN          | (MNUMCR, MNUMYR)     | QUNIY   |                | SG       | INDUSI | Still Gas. Industrial             |
|        | ODCIN          | (MNUMCR, MNUMIR)     | OUNTY   |                | DC       | TNDUCT | Detroloum Coke Industrial         |
|        | ODCDE          | (MNUMCR, MNUMYR)     | OUNTY   | +BTII          | PC       | PEEINE | Petroleum Coke, Enduscriar        |
|        | OPCEL          | (MNUMCR MNUMYR)      | OUNTY   | + BTII         | PC       | ELECTR | Petroleum Coke Electricity        |
|        | OPCAS          | (MNUMCR, MNUMYR)     | OUNTY   | + BTU          | PC       | ALLSEC | Petroleum Coke All Sectors        |
|        | OASIN          | (MNUMCR, MNUMYR)     | OUNTY   | t.BTU          | AS       | INDUST | Asphalt and Road Oil. Industrial  |
|        | OOTTR          | (MNUMCR, MNUMYR)     | OUNTY   | tBTU           | OT       | TRANSP | Other Petroleum. Trans (lubes, av |
|        | ÕOTIN          | (MNUMCR, MNUMYR)     | ÕUNTY   | tBTU           | OT       | INDUST | Other Petroleum. Industrial       |
|        | Õotrf          | (MNUMCR, MNUMYR)     | QUNTY   | tBTU           | OT       | REFINE | Other Petroleum. Refinery         |
|        | QOTAS          | (MNUMCR, MNUMYR)     | QUNTY   | tBTU           | OT       | ALLSEC | Other Petroleum. All Sectors      |
|        | QTPRS          | (MNUMCR, MNUMYR)     | QUNTY   | tBTU           | TP       | RESIDN | Total Petroleum. Residential      |
|        | QTPCM          | (MNUMCR, MNUMYR)     | QUNTY   | tBTU           | TP       | COMMER | Total Petroleum. Commercial       |
|        | QTPTR          | (MNUMCR, MNUMYR)     | QUNTY   | tBTU           | TP       | TRANSP | Total Petroleum. Transportation   |
|        | QTPIN          | (MNUMCR, MNUMYR)     | QUNTY   | tBTU           | TP       | INDUST | Total Petroleum. Industrial       |
|        | QTPRF          | (MNUMCR, MNUMYR)     | QUNTY   | tBTU           | TP       | REFINE | Total Petroleum. Refinery         |
|        | QTPEL          | (MNUMCR, MNUMYR)     | QUNTY   | tBTU           | TP       | ELECTR | Total Petroleum. Electricity      |
|        | QTPAS          | (MNUMCR, MNUMYR)     | QUNTY   | tBTU           | TP       | ALLSEC | Total Petroleum. All Sectors      |
|        | QMETR          | (MNUMCR, MNUMYR)     | QUNTY   | tBTU           | ME       | TRANSP | Methanol. Transporation           |
|        | QETTR          | (MNUMCR, MNUMYR)     | QUNTY   | tBTU           | ET       | TRANSP | Ethanol. Transporation            |
|        | QHYTR          | (MNUMCR, MNUMYR)     | QUNTY   | tBTU           | HY       | TRANSP | Liquid Hydrogen. Transportation   |
|        | QUKEL          | (MINUMCR, MNUMYR)    | QUNTY   | tBTU           | UR       | ELECTR | Uranium. Electricity              |
|        | QHOIN          | (MINUMCR, MNUMYR)    | QUNTY   | CBIU           | HO       | INDUST | Hydropower. Industrial            |
|        | QHUEL          |                      | QUNTY   | CR.L.O         | HU       | ELECTR | Hydropower. Electricity           |
|        | QHUAS          | (MINUMICK, MINUMIYR) | QUINT.X | CB.L.O         | HO       | ALLSEC | Hydropower. All Sectors           |

| COMMON<br>Block |               |                      |              |           |                   |          |        |                                    |
|-----------------|---------------|----------------------|--------------|-----------|-------------------|----------|--------|------------------------------------|
| Name            | Variable Name | Variabl              | e Dimensions | Var       | iable I           | Descript | ors    | Variable Descriptio                |
|                 |               |                      |              |           |                   |          |        |                                    |
|                 | OGEIN         | (MNUMCR, MNUMYR)     |              | OUNTY     | tBTU              | GE       | INDUST | Geothermal. Industrial             |
|                 | ÕGEEL         | (MNUMCR, MNUMYR)     |              | OUNTY     | tBTU              | GE       | ELECTR | Geothermal. Electricity            |
|                 | OGEAS         | (MNUMCR, MNUMYR)     |              | OUNTY     | t.BTU             | GE       | ALLSEC | Geothermal. All Sectors            |
|                 | OBMRS         | (MNUMCR, MNUMYR)     |              | OUNTY     | t.BTU             | BM       | RESIDN | Biomass. Residential               |
|                 | OBMCM         | (MNUMCR MNUMYR)      |              | OUNTY     | t BTU             | BM       | COMMER | Biomass Commercial                 |
|                 | OBMIN         | (MNUMCR MNUMYR)      |              | OUNTY     | t BTU             | BM       | INDUST | Biomass Industrial                 |
|                 | OBMRF         | (MNUMCR MNUMYR)      |              | OUNTY     | t BTU             | BM       | REFINE | Biomass Refinery                   |
|                 | OBMEL         | (MNUMCR, MNUMYR)     |              | OUNTY     | t.BTU             | BM       | ELECTR | Biomass. Electricity               |
|                 | OBMSN         | (MNUMCR, MNUMYR)     |              | OUNTY     | t.BTU             | BM       | SYNTHE | Biomass. Synthetics                |
|                 | OBMAS         | (MNUMCR MNUMYR)      |              | OUNTY     | t BTU             | BM       | ALLSEC | Biomass All Sectors                |
|                 | OMSIN         | (MNUMCR MNUMYR)      |              | OUNTY     | t BTU             | MS       | INDUST | Municipal Solid Waste Industrial   |
|                 | OMSEL         | (MNUMCR MNUMYR)      |              | OUNTY     | t BTU             | MS       | ELECTR | Municipal Solid Waste Electricit   |
|                 | OMSAS         | (MNUMCR, MNUMYR)     |              | OUNTY     | t.BTU             | MS       | ALLSEC | Municipal Solid Waste, All Sector  |
|                 | OSTRS         | (MNUMCR, MNUMYR)     |              | OUNTY     | t.BTU             | ST       | RESIDN | Solar Thermal. Residential         |
|                 | OSTCM         | (MNUMCR MNUMYR)      |              | OUNTY     | + BTII            | ST       | COMMER | Solar Thermal Commercial           |
|                 | OSTIN         | (MNUMCR MNUMYR)      |              | OUNTY     | t BTU             | ST       | INDUST | Solar Thermal Industrial           |
|                 | OSTEL         | (MNUMCR MNUMYR)      |              | OUNTY     | + BTU             | ST       | ELECTR | Solar Thermal Electricity          |
|                 | OSTAS         | (MNUMCR MNUMYR)      |              | OUNTY     | + BTII            | ST       | ALLSEC | Solar Thermal All Sectors          |
|                 | OPVRS         | (MNUMCR MNUMYR)      |              | OUNTY     | + BTU             | PV       | RESIDN | Photovoltaic Residential           |
|                 | ORVCM         | (MNIIMCP MNIIMVP)    |              | OUNTY     | + BTII            | DV       | COMMER | Photovoltaic Commercial            |
|                 | ODVIN         | (MNIIMCP MNIIMVP)    |              | OUNTY     | + BTII            | DV       | TNDUST | Photovoltaic. Industrial           |
|                 | ODVEL         | (MNIIMCP MNIIMVP)    |              | OUNTY     | + BTII            | DV       | FLECTR | Photovoltaic. Electricity          |
|                 | ODVAS         | (MNIIMCP MNIIMVP)    |              | OUNTY     | + BTII            | DV       | ALLSEC | Photovoltaic All Sectors           |
|                 | OWIIN         | (MNUMCR MNUMYR)      |              | OUNTY     | + BTII            | WT       | TNDUST | Wind Industrial                    |
|                 | OWIEI         | (MNUMCE MNUMP)       |              | OUNTY     | + PTII            | WT       | FIRCTR | Wind Electricity                   |
|                 | OWING         | (MNUMCR, MNUMVR)     |              | OUNTY     | +BTII             | WT       | ALLSEC | Wind All Sectors                   |
|                 | OTRRS         | (MNIIMCP MNIIMVP)    |              | OUNTY     | + BTII            | TP .     | RESIDN | Total Renewables Residential       |
|                 | OTROM         | (MNIIMCP MNIIMVP)    |              | OUNTY     | + BTII            | TP       | COMMER | Total Renewables Commercial        |
|                 | OTRUP         | (MNIIMCP MNIIMVP)    |              | OUNTY     | + BTII            | TP       | TRANCD | Total Renewables. Transportation   |
|                 | OTRIN         | (MNIIMCE MNIIMVE)    |              | OUNTY     | + PTII            | TR       | INDUST | Total Renewables. Industrial       |
|                 | OTDEI         | (MNUMCR, MNUMIR)     |              | QUINTTY   |                   |          | FLECTR | Total Renewables, Industrial       |
|                 | OTDON         | (MNUMCR, MNUMIR)     |              | QUINTTY   |                   |          | CUNTUE | Total Renewables. Electricity      |
|                 | OTDAC         | (MNUMCR, MNUMIR)     |              | QUINTTY   |                   |          | ALLCEC | Total Renewables. Synchecics       |
|                 | QIRAS         | (MNUMCR, MNUMIR)     |              | QUINTTY   |                   | IR<br>ET | RIFORD | Not Electricity Imports Electric   |
|                 | QEIEL         | (MNUMCR, MNUMIR)     |              | QUINTI    | LBIU<br>EDEU      | ET.      | LLECIK | Net Geel Gales Imports. Electric   |
|                 | QCIIN         | (MNUMCR, MNUMYR)     |              | QUNII     | LBIU              |          | INDUSI | Net Coal Coke Imports. Industrial  |
|                 | QISKS         | (MNUMCR, MNUMIR)     |              | QUINTTY   |                   | 15       | COMMED | Total Sectoral Energy Consumption. |
|                 | OTCTD         | (MNUMCR, MNUMIR)     |              | QUINTTY   |                   | 15       | TDANCD | Total Sectoral Energy Consumption. |
|                 | OTCIN         | (MNUMCR, MNUMIR)     |              | QUINTTY   |                   | 15       | INDUCT | Total Sectoral Energy Consumption. |
|                 | QISIN         | (MNUMCR, MNUMIR)     |              | QUINTI    | LBIU<br>EDEU      | 15       | DEETNE | Total Sectoral Energy Consumption. |
|                 | QISRF         | (MNUMCR, MNUMYR)     |              | QUNII     | LBIU              | 15       | REFINE | Total Sectoral Energy Consumption. |
|                 | QISEL         | (MNUMCR, MNUMYR)     |              | QUNII     | LBIU              | 15       | ELECIR | Total Sectoral Energy Consumption. |
|                 | QISSN         | (MNUMCR, MNUMYR)     |              | QUNII     | LBIU              | 15       | SINIHE | Total Sectoral Energy Consumption. |
| *               | QISAS         | (MINUMER, MINUMER)   |              | <br>QUNIY | LBIU              | 15       | ALLSEC | Total Sectoral Energy Consumption. |
| * DDTCEC        | Common Block  |                      |              | <br>      |                   |          |        |                                    |
| * PRICES        | CONNION BLOCK |                      |              | <br>      |                   |          |        |                                    |
| MDDIK           |               |                      |              | <br>      | INTTO             | ETTET    | CECTOR |                                    |
| MPBLK           | ספחיזת        | (MNITIMOD MNITIMVD)  |              | DDTCF     |                   | FUEL     | DECIOR | Durahagad Electricity Dock Pagi    |
|                 | DEDCM         | (MNUMCR, MNUMIR)     |              | PRICE     | 0/\$BIU<br>076DTT | EP       | COMMED | Purchased Electricity, Peak. Resi  |
|                 |               | (MNTITINGE MATTINES) |              | PRICE     | 0100000           | er<br>FD |        | Purchased Electricity, Peak. Comm  |
|                 | PEPIK         | (MNUMCR, MNUMYR)     |              | PRICE     | 0/\$BTU           | БР<br>Бр | TNDUG  | Purchased Electricity, Peak. Tran  |
|                 | PEPIG         | (MINUMER, MINUMYR)   |              | PRICE     | 0765TU            | EP<br>ED | TNDORL | Purchased Electricity, Peak. Indu  |
|                 | PEPAS         | (MNUMICE, MNUMIYE)   |              | PRICE     | 0/\$BTU           | EP<br>EN | ALLSEC | Purchased Electricity, Peak. Rell  |
|                 | PENKS         | (MNTIMOD MATTAINS)   |              | PRICE     | 0/2810            | LIN      | COMMER | Purchased Electricity, Nonpeak. R  |
|                 |               | (MNUMCR, MNUMYR)     |              | PRICE     | 0/\$BTU           | LIN      | COMMER | Purchased Electricity, Nonpeak. C  |
|                 | PENTR         | (MNUMCR, MNUMYR)     |              | PRICE     | Ø/ŞBTU            | EN       | TRANSP | Purchased Electricity, Nonpeak. T  |
|                 | PENIN         | (MINUMER, MINUMYR)   |              | PRICE     | 0765TU            | LN       | TNDORL | Purchased Electricity, Nonpeak. 1  |
|                 | PENAS         | (MINUMER, MINUMYR)   |              | PRICE     | 0765TU            | LN       | ALLSEC | Purchased Electricity, Nonpeak. A  |
|                 | FFTK2         | (MNUMICK, MNUMYR)    |              | AKTCE     | g/\$BIU           | £Ъ       | KESIDN | Furchased Electricity. Residentia  |

68
| COMMON |               |                     |                   |        |                                   |
|--------|---------------|---------------------|-------------------|--------|-----------------------------------|
| Name   | Variable Name | Variable Dimensions | Variable Descript | ors    | Variable Descriptio               |
|        |               |                     |                   |        |                                   |
|        | PELCM         | (MNUMCR, MNUMYR)    | PRICE 87\$BTU EL  | COMMER | Purchased Electricity. Commercial |
|        | PELTR         | (MNUMCR, MNUMYR)    | PRICE 87\$BTU EL  | TRANSP | Purchased Electricity. Transporta |
|        | PELIN         | (MNUMCR, MNUMYR)    | PRICE 87\$BTU EL  | INDUST | Purchased Electricity. Industrial |
|        | PELAS         | (MNUMCR, MNUMYR)    | PRICE 87\$BTU EL  | ALLSEC | Purchased Electricity. All Sector |
|        | PGFRS         | (MNUMCR, MNUMYR)    | PRICE 87\$BTU GF  | RESIDN | Natural Gas, Core. Residential    |
|        | PGFCM         | (MNUMCR, MNUMYR)    | PRICE 87\$BTU GF  | COMMER | Natural Gas, Core. Commercial     |
|        | PGFTR         | (MNUMCR, MNUMYR)    | PRICE 87\$BTU GF  | TRANSP | Natural Gas, Core. Transportation |
|        | PGFIN         | (MNUMCR, MNUMYR)    | PRICE 87\$BTU GF  | INDUST | Natural Gas, Core. Industrial     |
|        | PGFEL         | (MNUMCR, MNUMYR)    | PRICE 87\$BTU GF  | ELECTR | Natural Gas, Core. Electricity    |
|        | PGFAS         | (MNUMCR, MNUMYR)    | PRICE 87\$BTU GF  | ALLSEC | Natural Gas, Core. All Sectors    |
|        | PGIRS         | (MNUMCR, MNUMYR)    | PRICE 87\$BTU GI  | RESIDN | Natural Gas, Noncore. Residential |
|        | PGICM         | (MNUMCR, MNUMYR)    | PRICE 87\$BTU GI  | COMMER | Natural Gas, Noncore. Commercial  |
|        | PGITR         | (MNUMCR, MNUMYR)    | PRICE 875BTU GI   | TRANSP | Natural Gas, Noncore. Transportat |
|        | PGIIN         | (MNUMCR, MNUMYR)    | PRICE 875BTU GI   | INDUST | Natural Gas, Noncore. Industrial  |
|        | PGIEL         | (MNUMCR, MNUMYR)    | PRICE 875BTU GI   | ELECTR | Natural Gas, Noncore. Electricity |
|        | PGIAS         | (MNUMCR, MNUMYR)    | PRICE 878BTU GI   | ALLSEC | Natural Gas, Noncore. All Sectors |
|        | PNGRS         | (MNUMCR, MNUMYR)    | PRICE 875BTU NG   | RESIDN | Natural Gas. Residential          |
|        | PNGCM         | (MNUMCR, MNUMYR)    | DRICE 875BIU NG   | COMMER | Natural Gas. Commercial           |
|        | PNGIR         | (MNUMCR, MNUMIR)    | PRICE 875BIU NG   | IRANSP | Natural Gas. Iransportation       |
|        | PNGIN         | (MNUMCR, MNUMYR)    | PRICE 875BTU NG   | INDUST | Natural Gas. Industrial           |
|        | PNGEL         | (MNUMCR, MNUMYR)    | DRICE 875BIU NG   | ALLCER | Natural Gas. Electricity          |
|        | DCDTD         | (MNUMCR, MNUMYR)    | DRICE 070BIU NG   | TDANCD | Natural Gas. All Sectors          |
|        | DIDIN         | (MNUMCR, MNUMYR)    | DRICE 070BIU GP   | INDUCT | Leage and Dlant Fuel              |
|        | PCIDC         | (MNUMCR, MNUMUR)    | DDICE 070DTU CI   | DECIDN | Cool Degidential                  |
|        | DCLCM         | (MNUMCR, MNUMYR)    | DRICE 070BIU CL   | COMMER | Coal Commercial                   |
|        | DCIIN         | (MNUMCR, MNUMYR)    | DRICE 070BIU CL   | TNDUGT | Coal Industrial                   |
|        | DCLEI.        | (MNUMCR MNUMVR)     | DRICE 87\$BIU CL  | FLECTR | Coal Electricity                  |
|        | DCLSN         | (MNUMCR MNUMVR)     | DRICE 87\$BIU CL  | SVNTHE | Coal Synthetics                   |
|        | DCIAG         | (MILIMOR MILIMUR)   | DRICE 97¢DTU CI   | ALLERC | Cool All Sectors                  |
|        | DMCIN         | (MNUMCR MNUMVR)     | DRICE 87\$BIU CL  | TNDUST | Metallurgical Coal Industrial     |
|        | DMCCM         | (MNUMCP MNUMVP)     | DRICE 87¢BTU MC   | COMMER | Motor Gagoline Commercial         |
|        | PMGTR         | (MNUMCR MNUMYR)     | PRICE 87\$BTU MG  | TRANSP | Motor Gasoline Transportation     |
|        | PMGIN         | (MNUMCR MNUMYR)     | PRICE 87\$BTU MG  | INDUST | Motor Gasoline Industrial         |
|        | PMGAS         | (MNUMCR MNUMYR)     | PRICE 87\$BTU MG  | ALLSEC | Motor Gasoline All Sectors        |
|        | P.TETR        | (MNUMCR MNUMYR)     | PRICE 87\$BTU JE  | TRANSP | Jet Fuel Transportation           |
|        | PDSRS         | (MNUMCR MNUMYR)     | PRICE 87\$BTU DS  | RESIDN | Distillate Residential            |
|        | PDSCM         | (MNUMCR, MNUMYR)    | PRICE 87\$BTU DS  | COMMER | Distillate Commercial             |
|        | PDSTR         | (MNUMCR, MNUMYR)    | PRICE 87\$BTU DS  | TRANSP | Distillate Transportation         |
|        | PDSIN         | (MNUMCR, MNUMYR)    | PRICE 87\$BTU DS  | INDUST | Distillate. Industrial            |
|        | PDSEL         | (MNUMCR, MNUMYR)    | PRICE 87\$BTU DS  | ELECTR | Distillate. Electricity (incl. pe |
|        | PDSAS         | (MNUMCR, MNUMYR)    | PRICE 87\$BTU DS  | ALLSEC | Distillate. All Sectors           |
|        | PKSRS         | (MNUMCR, MNUMYR)    | PRICE 87\$BTU KS  | RESIDN | Kerosene. Residential             |
|        | PKSCM         | (MNUMCR, MNUMYR)    | PRICE 87SBTU KS   | COMMER | Kerosene. Commercial              |
|        | PKSIN         | (MNUMCR, MNUMYR)    | PRICE 87SBTU KS   | INDUST | Kerosene. Industrial              |
|        | PKSAS         | (MNUMCR, MNUMYR)    | PRICE 87SBTU KS   | ALLSEC | Kerosene. All Sectors             |
|        | PLGRS         | (MNUMCR, MNUMYR)    | PRICE 87\$BTU LG  | RESIDN | Liquid Petroleum Gases. Residenti |
|        | PLGCM         | (MNUMCR, MNUMYR)    | PRICE 87\$BTU LG  | COMMER | Liquid Petroleum Gases. Commercia |
|        | PLGTR         | (MNUMCR, MNUMYR)    | PRICE 87\$BTU LG  | TRANSP | Liquid Petroleum Gases. Transport |
|        | PLGIN         | (MNUMCR, MNUMYR)    | PRICE 87\$BTU LG  | INDUST | Liquid Petroleum Gases. Industria |
|        | PLGAS         | (MNUMCR, MNUMYR)    | PRICE 87\$BTU LG  | ALLSEC | Liquid Petroleum Gases. All Secto |
|        | PRLCM         | (MNUMCR, MNUMYR)    | PRICE 87\$BTU RL  | COMMER | Residual Fuel, Low Sulfur. Commer |
|        | PRLTR         | (MNUMCR, MNUMYR)    | PRICE 87\$BTU RL  | TRANSP | Residual Fuel, Low Sulfur. Transp |
|        | PRLIN         | (MNUMCR, MNUMYR)    | PRICE 87\$BTU RL  | INDUST | Residual Fuel, Low Sulfur. Indust |
|        | PRLEL         | (MNUMCR, MNUMYR)    | PRICE 87\$BTU RL  | ELECTR | Residual Fuel, Low Sulfur. Electr |
|        | PRLAS         | (MNUMCR, MNUMYR)    | PRICE 87\$BTU RL  | ALLSEC | Residual Fuel, Low Sulfur. All Se |
|        | PRHTR         | (MNUMCR, MNUMYR)    | PRICE 87\$BTU RH  | TRANSP | Residual Fuel, High Sulfur. Trans |
|        | PRHEL         | (MNUMCR, MNUMYR)    | PRICE 87\$BTU RH  | ELECTR | Residual Fuel, High Sulfur. Elect |

| COMMON<br>Block |                    |                    |            |          |         |          |        |                                   |
|-----------------|--------------------|--------------------|------------|----------|---------|----------|--------|-----------------------------------|
| Name            | Variable Name      | Variable           | Dimensions | Var      | lable D | escript  | ors    | Variable Descriptio               |
|                 |                    |                    |            |          |         |          |        |                                   |
|                 | PRHAS              | (MNUMCR, MNUMYR)   |            | PRICE    | 87\$BTU | RH       | ALLSEC | Residual Fuel, High Sulfur. All S |
|                 | PRSCM              | (MNUMCR, MNUMYR)   |            | PRICE    | 87\$BTU | RS       | COMMER | Residual Fuel. Commercial         |
|                 | PRSTR              | (MNUMCR, MNUMYR)   |            | PRICE    | 87\$BTU | RS       | TRANSP | Residual Fuel. Transportation     |
|                 | PRSIN              | (MNUMCR, MNUMYR)   |            | PRICE    | 87\$BTU | RS       | INDUST | Residual Fuel. Industrial         |
|                 | PRSEL              | (MNUMCR, MNUMYR)   |            | PRICE    | 87\$BTU | RS       | ELECTR | Residual Fuel. Electricity        |
|                 | PRSAS              | (MNUMCR, MNUMYR)   |            | PRICE    | 87\$BTU | RS       | ALLSEC | Residual Fuel. All Sectors        |
|                 | PPFIN              | (MNUMCR, MNUMYR)   |            | PRICE    | 87\$BTU | PF.      | INDUST | Petrochemical Feedstocks. Industr |
|                 | PASIN              | (MNUMCR, MNUMYR)   |            | PRICE    | 87\$BTU | AS       | INDUST | Asphait, Road Oll. Industrial     |
|                 | POTIR              | (MINUMER, MINUMIR) |            | PRICE    | 87\$BIU | 01       | IRANSP | Other. Iransporation              |
|                 | POTIN              | (MNUMCR, MNUMYR)   |            | PRICE    | 87\$BTU | 01       | INDUST | Other. Industrial                 |
|                 | DTDDC              | (MNUMCR, MNUMIR)   |            | PRICE    | 07¢DTU  |          | ALLSEC | Total Detroloum Decidential       |
|                 | DTDCM              | (MNUMCR, MNUMIR)   |            | DRICE    | 070DTU  | TP       | COMMER | Total Petroleum, Commorgial       |
|                 | DTDTD              | (MNUMCR MNUMVR)    |            | DRICE    | 87¢BTU  | TP<br>TD | TRANCD | Total Petroleum Transportation    |
|                 | DTDIN              | (MNUMCP MNUMVP)    |            | DRICE    | 87¢BTU  | TTD TTD  | TNDUST | Total Petroleum Industrial        |
|                 | DTDDF              | (MNUMCR MNUMVR)    |            | DRICE    | 87¢BTU  | TP<br>TD | PEEINE | Total Petroleum Pefinery          |
|                 | PTPEI.             | (MNUMCR MNUMYR)    |            | PRICE    | 87\$BTU | TP       | ELECTR | Total Petroleum Electricity       |
|                 | PTPAS              | (MNUMCR MNUMYR)    |            | PRICE    | 87\$BTU | TP       | ALLSEC | Total Petroleum All Sectors       |
|                 | PMETR              | (MNUMCR MNUMYR)    |            | PRICE    | 87\$BTU | ME       | TRANSP | Methanol Transporation            |
|                 | PETTR              | (MNUMCR MNUMYR)    |            | PRICE    | 87\$BTU | ET       | TRANSP | Ethanol Transporation             |
|                 | PHYTR              | (MNUMCR MNUMYR)    |            | PRICE    | 87\$BTU | HY       | TRANSP | Liquid Hydrogen Transporation     |
|                 | PUREL              | (MNUMCR , MNUMYR)  |            | PRICE    | 87\$BTU | UR       | ELECTR | Uranium. Electricity              |
| *=======        |                    | ====== ===== =     |            |          | ======  |          |        |                                   |
| * Expected      | d Value (OUANTITY) | Common Block       |            |          |         |          |        |                                   |
| *=======        |                    |                    |            | =====    |         |          |        |                                   |
| MXQBLK          |                    |                    |            | TYPE     | UNITS   | FUEL     | SECTOR |                                   |
|                 | XQEPRS             | (MNUMCR, MNXYRS)   |            | XQUNTY   | tBTU    | EP       | RESIDN | Purchased Electricity, Peak. Resi |
|                 | XQEPCM             | (MNUMCR, MNXYRS)   |            | XQUNTY   | tBTU    | EP       | COMMER | Purchased Electricity, Peak. Comm |
|                 | XQEPTR             | (MNUMCR, MNXYRS)   |            | XQUNTY   | tBTU    | EP       | TRANSP | Purchased Electricity, Peak. Tran |
|                 | XQEPIN             | (MNUMCR, MNXYRS)   |            | XQUNTY   | tBTU    | EP       | INDUST | Purchased Electricity, Peak. Indu |
|                 | XQEPRF             | (MNUMCR, MNXYRS)   |            | XQUNTY   | tBTU    | EP       | REFINE | Purchased Electricity, Peak. Refi |
|                 | XQEPAS             | (MNUMCR, MNXYRS)   |            | XQUNTY   | tBTU    | EP       | ALLSEC | Purchased Electricity, Peak. All  |
|                 | XQENRS             | (MNUMCR, MNXYRS)   |            | XQUNTY   | tBTU    | EN       | RESIDN | Purchased Electricity, Nonpeak. R |
|                 | XQENCM             | (MNUMCR, MNXYRS)   |            | XQUNTY   | tBTU    | EN       | COMMER | Purchased Electricity, Nonpeak. C |
|                 | XQENTR             | (MNUMCR, MNXYRS)   |            | XQUNTY   | tBTU    | EN       | TRANSP | Purchased Electricity, Nonpeak. T |
|                 | XQENIN             | (MNUMCR, MNXYRS)   |            | XQUNTY   | tBTU    | EN       | INDUST | Purchased Electricity, Nonpeak. I |
|                 | XQENRF             | (MNUMCR, MNXYRS)   |            | XQUNTY   | tBTU    | EN       | REFINE | Purchased Electricity, Nonpeak. R |
|                 | XQENAS             | (MNUMCR, MNXYRS)   |            | XQUNTY   | tBTU    | EN       | ALLSEC | Purchased Electricity, Nonpeak. A |
|                 | XQELRS             | (MNUMCR, MNXYRS)   |            | XQUNTY   | tBTU    | EL       | RESIDN | Purchased Electricity. Residentia |
|                 | XQELCM             | (MNUMCR, MNXYRS)   |            | XQUNTY   | tBTU    | EL       | COMMER | Purchased Electricity. Commercial |
|                 | XQELTR             | (MNUMCR, MNXYRS)   |            | XQUNTY   | tBTU    | EL       | TRANSP | Purchased Electricity. Transporta |
|                 | XQELIN             | (MNUMCR, MNXYRS)   |            | XQUNTY   | tBTU    | EL       | INDUST | Purchased Electricity. Industrial |
|                 | XQELRF             | (MNUMCR, MNXYRS)   |            | XQUNTY   | tBTU    | EL       | REFINE | Purchased Electricity. Refinery   |
|                 | XQELAS             | (MNUMCR, MNXYRS)   |            | XQUNTY   | tBTU    | EL       | ALLSEC | Purchased Electricity. All Sector |
|                 | XQGFRS             | (MNUMCR, MNXYRS)   |            | XQUNTY   | tBTU    | GF       | RESIDN | Natural Gas, Core. Residential    |
|                 | XQGFCM             | (MNUMCR, MNXYRS)   |            | XQUNTY   | tBTU    | GF       | COMMER | Natural Gas, Core. Commercial     |
|                 | XQGFTR             | (MNUMCR, MNXYRS)   |            | XQUNTY   | tBTU    | GF       | TRANSP | Natural Gas, Core. Transportation |
|                 | XQGFIN             | (MNUMCR, MNXYRS)   |            | XQUNTY   | tBTU    | GF       | INDUST | Natural Gas, Core. Industrial     |
|                 | XQGF'RF'           | (MNUMCR, MNXYRS)   |            | XQUN'I'Y | CB.L.O  | GF'      | KEFINE | Natural Gas, Core. Refinery       |
|                 | XQGFEL             | (MNUMCR, MNXYRS)   |            | XQUNTY   | tBTU    | GF       | ELECTR | Natural Gas, Core. Electricity    |
|                 | XQGFAS             | (MNUMCR, MNXYRS)   |            | XQUNTY   | tBTU    | GF       | ALLSEC | Natural Gas, Core. All Sectors    |
|                 | XQGIRS             | (MNUMCR, MNXYRS)   |            | XQUNTY   | tBTU    | GI       | RESIDN | Natural Gas, Noncore. Residential |
|                 | XQGICM             | (MNUMCR, MNXYRS)   |            | XQUN'I'Y | CB.L.O  | GT       | COMMER | Natural Gas, Noncore. Commercial  |
|                 | XQGITR             | (MNUMCR, MNXYRS)   |            | XQUNTY   | CBIU    | GT       | TRANSP | Natural Gas, Noncore. Transportat |
|                 | XQGIIN             | (MNUMCR, MNXYRS)   |            | XQUNTY   | tBTU    | GI       | INDUST | Natural Gas, Noncore. Industrial  |
|                 | XQGIRF             | (MNUMCR, MNXYRS)   |            | XQUNTY   | tBIU    | GT       | REFINE | Natural Gas, Noncore. Refinery    |
|                 | XQGIEL             | (MNUMCR, MNXYRS)   |            | XQUNTY   | tBIU    | GT       | ELECTR | Natural Gas, Noncore. Electricity |
|                 | XQGIAS             | (MNUMCR, MNXYRS)   |            | XQUNTY   | tBTU    | GI       | ALLSEC | Naturai Gas, Noncore. All Sectors |

| _ | COMMON<br>Block |                   |                   |              |          |        |          |        |                                   |
|---|-----------------|-------------------|-------------------|--------------|----------|--------|----------|--------|-----------------------------------|
| _ | Name            | Variable Name     | Variable          | e Dimensions | Var      | iable  | Descript | tors   | Variable Descriptio               |
|   |                 |                   |                   |              |          |        |          |        |                                   |
|   |                 | XQNGRS            | (MNUMCR, MNXYRS)  |              | XQUNTY   | tBTU   | NG       | RESIDN | Natural Gas. Residential          |
|   |                 | XQNGCM            | (MNUMCR, MNXYRS)  |              | XQUNTY   | tBTU   | NG       | COMMER | Natural Gas. Commercial           |
|   |                 | XQNGTR            | (MNUMCR, MNXYRS)  |              | XQUNTY   | tBTU   | NG       | TRANSP | Natural Gas. Transportation       |
|   |                 | XQNGIN            | (MNUMCR, MNXYRS)  |              | XQUNTY   | tBTU   | NG       | INDUST | Natural Gas. Industrial           |
|   |                 | XQNGRF            | (MNUMCR, MNXYRS)  |              | XQUNTY   | tBTU   | NG       | REFINE | Natural Gas. Refinery             |
|   |                 | XQNGEL            | (MNUMCR, MNXYRS)  |              | XQUNTY   | tBTU   | NG       | ELECTR | Natural Gas. Electricity          |
|   |                 | XQNGAS            | (MNUMCR, MNXYRS)  |              | XQUNTY   | tBTU   | NG       | ALLSEC | Natural Gas. All Sectors          |
|   |                 | XQGPTR            | (MNUMCR, MNXYRS)  |              | XQUNTY   | tBTU   | GP       | TRANSP | Natural Gas. Pipeline             |
|   |                 | XQLPIN            | (MNUMCR, MNXYRS)  |              | XQUNTY   | tBTU   | LP       | INDUST | Lease and Plant Fuel              |
|   |                 | XQCLRS            | (MNUMCR, MNXYRS)  |              | XQUNTY   | tBTU   | CL       | RESIDN | Coal. Residential                 |
|   |                 | XQCLCM            | (MNUMCR, MNXYRS)  |              | XQUNTY   | tBTU   | CL       | COMMER | Coal. Commercial                  |
|   |                 | XQCLIN            | (MNUMCR, MNXYRS)  |              | XQUNTY   | tBTU   | CL       | INDUST | Coal. Industrial                  |
|   |                 | XQCLRF            | (MNUMCR, MNXYRS)  |              | XQUNTY   | tBTU   | CL       | REFINE | Coal. Refinery                    |
|   |                 | XQCLEL            | (MNUMCR, MNXYRS)  |              | XQUNTY   | tBTU   | CL       | ELECTR | Coal. Electricity                 |
|   |                 | XQCLSN            | (MNUMCR, MNXYRS)  |              | XQUNTY   | tBTU   | CL       | SYNTHE | Coal. Synthetics                  |
|   |                 | XQCLAS            | (MNUMCR, MNXYRS)  |              | XQUNTY   | tBTU   | CL       | ALLSEC | Coal. All Sectors                 |
|   |                 | XQMCIN            | (MNUMCR, MNXYRS)  |              | XQUNTY   | tBTU   | MC       | INDUST | Metallurgical Coal. Industrial    |
|   |                 | XQMGCM            | (MNUMCR, MNXYRS)  |              | XQUNTY   | tBTU   | MG       | COMMER | Motor Gasoline. Commercial        |
|   |                 | XQMGTR            | (MNUMCR, MNXYRS)  |              | XQUNTY   | tBTU   | MG       | TRANSP | Motor Gasoline. Transportation    |
|   |                 | XQMGIN            | (MNUMCR, MNXYRS)  |              | XQUNTY   | tBTU   | MG       | INDUST | Motor Gasoline. Industrial        |
|   |                 | XQMGAS            | (MNUMCR, MNXYRS)  |              | XQUNTY   | tBTU   | MG       | ALLSEC | Motor Gasoline. All Sectors       |
|   |                 | XQJFTR            | (MNUMCR, MNXYRS)  |              | XQUNTY   | tBTU   | JF       | TRANSP | Jet Fuel. Transportation          |
|   |                 | XQDSRS            | (MNUMCR, MNXYRS)  |              | XQUNTY   | tBTU   | DS       | RESIDN | Distillate. Residential           |
|   |                 | XQDSCM            | (MNUMCR, MNXYRS)  |              | XQUNTY   | tBTU   | DS       | COMMER | Distillate. Commercial            |
|   |                 | XQDSTR            | (MNUMCR, MNXYRS)  |              | XQUNTY   | tBTU   | DS       | TRANSP | Distillate. Transportation        |
|   |                 | XQDSIN            | (MNUMCR, MNXYRS)  |              | XQUNTY   | tBTU   | DS       | INDUST | Distillate. Industrial            |
|   |                 | XQDSRF            | (MNUMCR, MNXYRS)  |              | XQUNTY   | tBTU   | DS       | REFINE | Distillate. Refinery              |
|   |                 | XQDSEL            | (MNUMCR, MNXYRS)  |              | XQUNTY   | tBTU   | DS       | ELECTR | Distillate. Electricity (incl. pe |
|   |                 | XQDSAS            | (MNUMCR, MNXYRS)  |              | XQUNTY   | tBTU   | DS       | ALLSEC | Distillate. All Sectors           |
|   |                 | XQKSRS            | (MNUMCR, MNXYRS)  |              | XQUNTY   | tBTU   | KS       | RESIDN | Kerosene. Residential             |
|   |                 | XQKSCM            | (MNUMCR, MNXYRS)  |              | XQUNTY   | tBTU   | KS       | COMMER | Kerosene. Commercial              |
|   |                 | XQKSIN            | (MNUMCR, MNXYRS)  |              | XQUNTY   | tBTU   | KS       | INDUST | Kerosene. Industrial              |
|   |                 | XQKSAS            | (MNUMCR, MNXYRS)  |              | XQUNTY   | tBTU   | KS       | ALLSEC | Kerosene. All Sectors             |
|   |                 | XQLGRS            | (MNUMCR, MNXYRS)  |              | XQUN'I'Y | tBTU   | LG       | RESIDN | Liquid Petroleum Gases. Residenti |
|   |                 | XQLGCM            | (MNUMCR, MNXYRS)  |              | XQUNTY   | tBTU   | LG       | COMMER | Liquid Petroleum Gases. Commercia |
|   |                 | XQLGTR            | (MNUMCR, MNXYRS)  |              | XQUN'I'Y | tBTU   | LG       | TRANSP | Liquid Petroleum Gases. Transport |
|   |                 | XQLGIN            | (MNUMCR, MNXYRS)  |              | XQUNTY   | CB.L.O | LG       | INDUST | Liquid Petroleum Gases. Industria |
|   |                 | XQLGRF<br>XOLCAS  | (MNUMCR, MNXYRS)  |              | XQUNIY   |        | LG       | ALLORO | Liquid Petroleum Gases. Relinery  |
|   |                 | AQLGAS<br>VODI (M | (MNUMCR, MNXIRS)  |              | XQUNIY   | LBIU   | ЪG       | ALLSEC | Liquid Petroleum Gases. All Secto |
|   |                 | XQRLCM<br>XODI TD | (MNUMCR, MNXYRS)  |              | XQUNIY   |        | RL<br>DI | COMMER | Residual Fuel, Low Sulfur. Commer |
|   |                 | AQRLIR<br>VODI IN | (MNUMCR, MNXYRS)  |              | XQUNIY   |        | RL<br>DI | IRANSP | Residual Fuel, Low Sulfur. Iransp |
|   |                 | VODIDE            | (MNUMCE MNYVES)   |              | VOINTY   |        | DI       | DEETNE | Residual Fuel Low Sulfur Pofino   |
|   |                 | YORLEI.           | (MNIIMCP MNYVPS)  |              | XOUNTY   | + BTII | RI.      | FLECTR | Residual Fuel Low Sulfur Flectr   |
|   |                 | YORLAS            | (MNUMCP MNYVPS)   |              | XOUNTY   | + BTII | RI.      | ALLSEC | Residual Fuel Low Sulfur All Se   |
|   |                 | YOPHTP            | (MNIIMCP MNIYVPS) |              | XOUNTY   | + BTTI | RH<br>RH | TPANCO | Residual Fuel High Sulfur Trang   |
|   |                 | YORHEI.           | (MNIIMCP MNIYVPS) |              | XOUNTY   | + BTTI | DU DU    | FLECTE | Residual Fuel High Sulfur Flect   |
|   |                 | XORHAS            | (MNUMCR MNXYRS)   |              | XOUNTY   | + BTII | RH       | ALLSEC | Residual Fuel High Sulfur All S   |
|   |                 | XORSCM            | (MNUMCR MNXYRS)   |              | XOUNTY   | + BTU  | RS       | COMMER | Residual Fuel Commercial          |
|   |                 | XORSTR            | (MNUMCR MNXVPC)   |              | XUIINIIA | + BTTT | RS       | TRANCD | Residual Fuel Transportation      |
|   |                 | XORSIN            | (MNUMCR MNXVRS)   |              | XOUNTY   | + BTU  | RS       | TNDUST | Residual Fuel Industrial          |
|   |                 | XORSRF            | (MNUMCR MNXYRS)   |              | XOUNTY   | t.BTU  | RS       | REFINE | Residual Fuel. Refinerv           |
|   |                 | XORSEL            | (MNUMCR, MNXYRS)  |              | XOUNTY   | tBTU   | RS       | ELECTR | Residual Fuel. Electricity        |
|   |                 | XÕRSAS            | (MNUMCR, MNXYRS)  |              | XÕUNTY   | tBTU   | RS       | ALLSEC | Residual Fuel. All Sectors        |
|   |                 | XOPFIN            | (MNUMCR, MNXYRS)  |              | XOUNTY   | t.BTU  | PF       | INDUST | Petrochemical Feedstocks. Industr |
|   |                 | XÕSGIN            | (MNUMCR, MNXYRS)  |              | XÕUNTY   | tBTU   | SG       | INDUST | Still Gas. Industrial             |
|   |                 | XÕSGRF            | (MNUMCR, MNXYRS)  |              | XÕUNTY   | tBTU   | SG       | REFINE | Still Gas. Refinery               |
|   |                 | XQPCIN            | (MNUMCR, MNXYRS)  |              | XQUNTY   | tBTU   | PC       | INDUST | Petroleum Coke. Industrial        |
|   |                 |                   |                   |              | ~        |        |          | -      |                                   |

| COMMON |               |                   |          |        |       |        |        |                                 |      |
|--------|---------------|-------------------|----------|--------|-------|--------|--------|---------------------------------|------|
| Name   | Variable Name | Variable Di       | mensions | Var    | iable | Descri | ptors  | Variable Descri                 | ptio |
|        |               |                   |          |        |       |        |        |                                 |      |
|        | XQPCRF        | (MNUMCR, MNXYRS)  |          | XQUNTY | tBTU  | PC     | REFINE | Petroleum Coke. Refinery        |      |
|        | XQPCEL        | (MNUMCR, MNXYRS)  |          | XQUNTY | tBTU  | PC     | ELECTR | Petroleum Coke. Electricity     |      |
|        | XQPCAS        | (MNUMCR, MNXYRS)  |          | XQUNTY | tBTU  | PC     | ALLSEC | Petroleum Coke. All Sectors     |      |
|        | XQASIN        | (MNUMCR, MNXYRS)  |          | XQUNTY | tBTU  | AS     | INDUST | Asphalt and Road Oil. Industr   | ial  |
|        | XQOTTR        | (MNUMCR, MNXYRS)  |          | XQUNTY | tBTU  | OT     | TRANSP | Other Petroleum. Trans (lubes   | , av |
|        | XQOTIN        | (MNUMCR, MNXYRS)  |          | XQUNTY | tBTU  | OT     | INDUST | Other Petroleum. Industrial     |      |
|        | XQOTRF        | (MNUMCR, MNXYRS)  |          | XQUNTY | tBTU  | OT     | REFINE | Other Petroleum. Refinery       |      |
|        | XQOTAS        | (MNUMCR, MNXYRS)  |          | XQUNTY | tBTU  | OT     | ALLSEC | Other Petroleum. All Sectors    |      |
|        | XQTPRS        | (MNUMCR, MNXYRS)  |          | XQUNTY | tBTU  | TP     | RESIDN | Total Petroleum. Residential    |      |
|        | XQTPCM        | (MNUMCR, MNXYRS)  |          | XQUNTY | tBTU  | TP     | COMMER | Total Petroleum. Commercial     |      |
|        | XQTPTR        | (MNUMCR, MNXYRS)  |          | XQUNTY | tBTU  | TP     | TRANSP | Total Petroleum. Transportation | on   |
|        | XQTPIN        | (MNUMCR, MNXYRS)  |          | XQUNTY | tBTU  | TP     | INDUST | Total Petroleum. Industrial     |      |
|        | XQTPRF        | (MNUMCR, MNXYRS)  |          | XQUNTY | tBTU  | TP     | REFINE | Total Petroleum. Refinery       |      |
|        | XQTPEL        | (MNUMCR, MNXYRS)  |          | XQUNTY | tBTU  | TP     | ELECTR | Total Petroleum. Electricity    |      |
|        | XQTPAS        | (MNUMCR, MNXYRS)  |          | XQUNTY | tBTU  | TP     | ALLSEC | Total Petroleum. All Sectors    |      |
|        | XQMETR        | (MNUMCR, MNXYRS)  |          | XQUNTY | tBTU  | ME     | TRANSP | Methanol. Transporation         |      |
|        | XQETTR        | (MNUMCR, MNXYRS)  |          | XQUNTY | tBTU  | ET     | TRANSP | Ethanol. Transporation          |      |
|        | XQHYTR        | (MNUMCR, MNXYRS)  |          | XQUNTY | tBTU  | HY     | TRANSP | Liquid Hydrogen. Transportation | n    |
|        | XQUREL        | (MNUMCR, MNXYRS)  |          | XQUNTY | tBTU  | UR     | ELECTR | Uranium. Electricity            |      |
|        | XQHOIN        | (MNUMCR, MNXYRS)  |          | XQUNTY | tBTU  | HO     | INDUST | Hydropower. Industrial          |      |
|        | XQHOEL        | (MNUMCR, MNXYRS)  |          | XQUNTY | tBTU  | HO     | ELECTR | Hydropower. Electricity         |      |
|        | XQHOAS        | (MNUMCR, MNXYRS)  |          | XQUNTY | tBTU  | HO     | ALLSEC | Hydropower. All Sectors         |      |
|        | XQGEIN        | (MNUMCR, MNXYRS)  |          | XQUNTY | tBTU  | GE     | INDUST | Geothermal. Industrial          |      |
|        | XQGEEL        | (MNUMCR, MNXYRS)  |          | XQUNTY | tBTU  | GE     | ELECTR | Geothermal. Electricity         |      |
|        | XOGEAS        | (MNUMCR, MNXYRS)  |          | XOUNTY | tBTU  | GE     | ALLSEC | Geothermal. All Sectors         |      |
|        | XÕBMRS        | (MNUMCR, MNXYRS)  |          | XÕUNTY | tBTU  | BM     | RESIDN | Biomass. Residential            |      |
|        | XÕBMCM        | (MNUMCR, MNXYRS)  |          | XÕUNTY | tBTU  | BM     | COMMER | Biomass. Commercial             |      |
|        | XÕBMIN        | (MNUMCR, MNXYRS)  |          | XÕUNTY | tBTU  | BM     | INDUST | Biomass. Industrial             |      |
|        | XÕBMRF        | (MNUMCR, MNXYRS)  |          | XÕUNTY | tBTU  | BM     | REFINE | Biomass. Refinery               |      |
|        | XÕBMEL        | (MNUMCR, MNXYRS)  |          | XÕUNTY | tBTU  | BM     | ELECTR | Biomass. Electricity            |      |
|        | XÕBMSN        | (MNUMCR, MNXYRS)  |          | XÕUNTY | tBTU  | BM     | SYNTHE | Biomass. Synthetics             |      |
|        | XÕBMAS        | (MNUMCR, MNXYRS)  |          | XÕUNTY | tBTU  | BM     | ALLSEC | Biomass. All Sectors            |      |
|        | XÕMSIN        | (MNUMCR, MNXYRS)  |          | XÕUNTY | tBTU  | MS     | INDUST | Municipal Solid Waste. Indust:  | rial |
|        | XÕMSEL        | (MNUMCR, MNXYRS)  |          | XÕUNTY | tBTU  | MS     | ELECTR | Municipal Solid Waste. Electr   | icit |
|        | XÕMSAS        | (MNUMCR, MNXYRS)  |          | XOUNTY | t.BTU | MS     | ALLSEC | Municipal Solid Waste, All Se   | ctor |
|        | XÕSTRS        | (MNUMCR, MNXYRS)  |          | XÕUNTY | tBTU  | ST     | RESIDN | Solar Thermal. Residential      |      |
|        | XÕSTCM        | (MNUMCR, MNXYRS)  |          | XÕUNTY | tBTU  | ST     | COMMER | Solar Thermal. Commercial       |      |
|        | XÕSTIN        | (MNUMCR, MNXYRS)  |          | XÕUNTY | tBTU  | ST     | INDUST | Solar Thermal. Industrial       |      |
|        | XÕSTEL        | (MNUMCR, MNXYRS)  |          | XÕUNTY | tBTU  | ST     | ELECTR | Solar Thermal. Electricity      |      |
|        | XÕSTAS        | (MNUMCR, MNXYRS)  |          | XÕUNTY | tBTU  | ST     | ALLSEC | Solar Thermal. All Sectors      |      |
|        | XÕPVRS        | (MNUMCR, MNXYRS)  |          | XÕUNTY | tBTU  | PV     | RESIDN | Photovoltaic. Residential       |      |
|        | XÕPVCM        | (MNUMCR, MNXYRS)  |          | XÕUNTY | tBTU  | PV     | COMMER | Photovoltaic. Commercial        |      |
|        | XÕPVIN        | (MNUMCR, MNXYRS)  |          | XÕUNTY | tBTU  | PV     | INDUST | Photovoltaic. Industrial        |      |
|        | XÕPVEL        | (MNUMCR, MNXYRS)  |          | XÕUNTY | tBTU  | PV     | ELECTR | Photovoltaic. Electricity       |      |
|        | XÕPVAS        | (MNUMCR, MNXYRS)  |          | XÕUNTY | tBTU  | PV     | ALLSEC | Photovoltaic. All Sectors       |      |
|        | XÕWIIN        | (MNUMCR, MNXYRS)  |          | XÕUNTY | tBTU  | WI     | INDUST | Wind. Industrial                |      |
|        | XÕWIEL        | (MNUMCR, MNXYRS)  |          | XÕUNTY | tBTU  | WI     | ELECTR | Wind. Electricity               |      |
|        | XÕWIAS        | (MNUMCR, MNXYRS)  |          | XÕUNTY | tBTU  | WI     | ALLSEC | Wind. All Sectors               |      |
|        | XÕTRRS        | (MNUMCR, MNXYRS)  |          | XÕUNTY | tBTU  | TR     | RESIDN | Total Renewables. Residential   |      |
|        | XÕTRCM        | (MNUMCR, MNXYRS)  |          | XOUNTY | tBTU  | TR     | COMMER | Total Renewables. Commercial    |      |
|        | XÕTRTR        | (MNUMCR, MNXYRS)  |          | XÕUNTY | tBTU  | TR     | TRANSP | Total Renewables. Transportat   | ion  |
|        | XÕTRIN        | (MNUMCR, MNXYRS)  |          | XÕUNTY | tBTU  | TR     | INDUST | Total Renewables. Industrial    |      |
|        | XÕTREL        | (MNUMCR, MNXYRS)  |          | XÕUNTY | tBTU  | TR     | ELECTR | Total Renewables. Electricity   |      |
|        | XÕTRSN        | (MNUMCR, MNXYRS)  |          | XÕUNTY | tBTU  | TR     | SYNTHE | Total Renewables. Synthetics    |      |
|        | XOTRAS        | (MNUMCR, MNXYRS)  |          | XOUNTY | t.BTU | TR     | ALLSEC | Total Renewables. All Sectors   |      |
|        | XÕETEL        | (MNUMCR , MNXYRS) |          | XOUNTY | tBTU  | EI     | ELECTR | Net Electricity Imports Elec    | tric |
|        | XÕCIIN        | (MNUMCR, MNXYRS)  |          | XOUNTY | tBTU  | CT     | INDUST | Net Coal Coke Imports. Indust   | rial |
|        | XÕTSRS        | (MNUMCR, MNXYRS)  |          | XOUNTY | tBTU  | TS     | RESIDN | Total Sectoral Energy Consumpt  | ion. |

| COMMON     |                    |                  |               |        |         |          |        |                                    |
|------------|--------------------|------------------|---------------|--------|---------|----------|--------|------------------------------------|
| Name       | Variable Name      | Variab           | le Dimensions | Var    | iable I | Descript | ors    | Variable Descriptio                |
|            | Tur Lubic Humo     | 141240           |               |        | 14010 1 |          |        |                                    |
|            |                    |                  |               |        |         |          |        |                                    |
|            | XOTSCM             | (MNUMCR.MNXYRS   | )             | XOUNTY | t.BTU   | TS       | COMMER | Total Sectoral Energy Consumption. |
|            | XOTSTR             | (MNUMCR, MNXYRS  | )             | XOUNTY | t.BTU   | TS       | TRANSP | Total Sectoral Energy Consumption. |
|            | XOTSIN             | (MNUMCR MNXYRS   | )             | XOUNTY | t BTU   | TS       | INDUST | Total Sectoral Energy Consumption  |
|            | XOTSRF             | (MNUMCR, MNXYRS  | )             | XOUNTY | t.BTU   | TS       | REFINE | Total Sectoral Energy Consumption. |
|            | XOTSEL             | (MNUMCR MNXYRS   | )             | XOUNTY | t BTU   | TS       | ELECTR | Total Sectoral Energy Consumption  |
|            | XOTSSN             | (MNUMCR, MNXYRS  | )             | XOUNTY | t.BTU   | TS       | SYNTHE | Total Sectoral Energy Consumption. |
|            | XOTSAS             | (MNUMCR, MNXYRS  | )             | XOUNTY | t.BTU   | TS       | ALLSEC | Total Sectoral Energy Consumption. |
|            | XÕNGELFN           | ( 21, MNXYRS     | )             | XÕUNTY | tBTU    | NG       | ELECTR | Natural Gas - Firm Consumption.    |
|            | XÕNGELIN           | ( 21, MNXYRS     | )             | XÕUNTY | tBTU    | NG       | ELECTR | Natural Gas - Interruptible Consum |
|            | XQNGELCN           | ( 21, MNXYRS     | )             | XQUNTY | tBTU    | NG       | ELECTR | Natural Gas - Competitive Consum.  |
| *=======   |                    |                  |               | =====  | =====   | =====    | =====  |                                    |
| * Expected | d Value (PRICES) ( | Common Block     |               |        |         |          |        |                                    |
| *=======   |                    |                  |               | =====  |         | =====    | =====  |                                    |
| MXPBLK     |                    | ()               | 、<br>、        | TYPE   | UNITS   | FUEL     | SECTOR |                                    |
|            | XPEPRS             | (MNUMCR, MNXYRS  | )             | XPRICE | 87SBTU  | EP       | RESIDN | Purchased Electricity, Peak. Resi  |
|            | XPEPCM             | (MNUMCR, MNXYRS  | )             | XPRICE | 87SBTU  | EP       | COMMER | Purchased Electricity, Peak. Comm  |
|            | XPEPTR             | (MNUMCR, MNXYRS  | )             | XPRICE | 87\$BTU | EP       | TRANSP | Purchased Electricity, Peak. Tran  |
|            | XPEPIN             | (MNUMCR, MNXYRS  | )             | XPRICE | 87\$BTU | EP       | INDUST | Purchased Electricity, Peak. Indu  |
|            | XPEPAS             | (MNUMCR, MNXYRS  | )             | XPRICE | 87\$BTU | EP       | ALLSEC | Purchased Electricity, Peak. Reli  |
|            | XPENRS             | (MNUMCR, MNXYRS  | )             | XPRICE | 87\$BTU | EN       | RESIDN | Purchased Electricity, Nonpeak. R  |
|            | XPENCM             | (MNUMCR, MNXYRS  | )             | XPRICE | 87\$BTU | EN       | COMMER | Purchased Electricity, Nonpeak. (  |
|            | XPENTR             | (MNUMCR, MNXYRS  | )             | XPRICE | 87\$BTU | EN       | TRANSP | Purchased Electricity, Nonpeak. 1  |
|            | XPENIN             | (MNUMCR, MINAIRS | )             | XPRICE | 87\$BIU | EN       | INDUSI | Purchased Electricity, Nonpeak. 1  |
|            | APENAS             | (MNUMCR, MINAIRS | )             | XPRICE | 07¢DTU  | EN       | ALLSEC | Purchased Electricity, Nonpeak. A  |
|            | XPELRS<br>XDEL CM  | (MNUMCR, MNXYRS  | )             | XPRICE | 87\$BTU | EL       | RESIDN | Purchased Electricity. Residentia  |
|            | XPELCM<br>XDELTD   | (MNUMCR, MNAIRS  | )             | XPRICE | 07¢DTU  | EL<br>ET | COMMER | Purchased Electricity. Commercial  |
|            | APELIK<br>VDELIN   | (MNUMCR, MNAIRS  | )             | XDDICE | 07¢DTU  | EL<br>DI | INDUCT | Purchased Electricity. Industrial  |
|            | VDEI AG            | (MNUMCR, MNXVDC  | )             | VDDICE | 97¢pmi  | FT       | ALIGEC | Durchased Electricity. All Sector  |
|            | VDCEDC             | (MNUMCR, MNXVDC  | )             | VDDICE | 073B10  | CE       | RESEC  | Natural Cag Core Regidential       |
|            | XPGPRS<br>XDCECM   | (MNUMCR, MNXVDC  | )             | VDDICE | 97¢pmi  | CF       | COMMER | Natural Cas, Core. Commorgial      |
|            | YDGFTP             | (MNUMCR MNYVPS   | )             | XDRICE | 87¢BTU  | GF       | TRANCO | Natural Gas, Core. Transportation  |
|            | YDGFIN             | (MNUMCR MNYVPS   | )             | XDRICE | 87¢BTU  | GF       | INDUST | Natural Gas, Core. Industrial      |
|            | YDGFFI.            | (MNUMCE MNYVES   | )             | XDRICE | 87¢BTU  | CF       | FLECTR | Natural Gas, Core Electricity      |
|            | YDGFAS             | (MNIIMCP MNYVPS  | )             | XDRICE | 87¢BTU  | CF       | ALLSEC | Natural Gag Core All Sectors       |
|            | XPGIRS             | (MNUMCR MNXYRS   | )             | XPRICE | 87\$BTU | GT       | RESIDN | Natural Gas Noncore Residential    |
|            | XPGICM             | (MNUMCR MNXYRS   | )             | XPRICE | 87SBTU  | GT       | COMMER | Natural Gas, Noncore, Commercial   |
|            | XPGITR             | (MNUMCR MNXYRS   | )             | XPRICE | 87SBTU  | GT       | TRANSP | Natural Gas, Noncore, Transportat  |
|            | XPGIIN             | (MNUMCR, MNXYRS  | )             | XPRICE | 87SBTU  | GI       | INDUST | Natural Gas, Noncore, Industrial   |
|            | XPGIEL             | (MNUMCR, MNXYRS  | )             | XPRICE | 87SBTU  | GI       | ELECTR | Natural Gas, Noncore, Electricity  |
|            | XPGIAS             | (MNUMCR, MNXYRS  | )             | XPRICE | 87SBTU  | GI       | ALLSEC | Natural Gas, Noncore, All Sectors  |
|            | XPNGRS             | (MNUMCR, MNXYRS  | )             | XPRICE | 87SBTU  | NG       | RESIDN | Natural Gas. Residential           |
|            | XPNGCM             | (MNUMCR, MNXYRS  | )             | XPRICE | 87\$BTU | NG       | COMMER | Natural Gas. Commercial            |
|            | XPNGTR             | (MNUMCR, MNXYRS  | )             | XPRICE | 87SBTU  | NG       | TRANSP | Natural Gas. Transportation        |
|            | XPNGIN             | (MNUMCR, MNXYRS  | )             | XPRICE | 87SBTU  | NG       | INDUST | Natural Gas. Industrial            |
|            | XPNGEL             | (MNUMCR, MNXYRS  | )             | XPRICE | 87\$BTU | NG       | ELECTR | Natural Gas. Electricity           |
|            | XPNGAS             | (MNUMCR, MNXYRS  | )             | XPRICE | 87\$BTU | NG       | ALLSEC | Natural Gas. All Sectors           |
|            | XPGPTR             | (MNUMCR, MNXYRS  | )             | XPRICE | 87\$BTU | GP       | TRANSP | Natural Gas. Pipeline              |
|            | XPLPIN             | (MNUMCR, MNXYRS  | )             | XPRICE | 87\$BTU | LP       | INDUST | Lease and Plant Fuel               |
|            | XPCLRS             | (MNUMCR, MNXYRS  | )             | XPRICE | 87\$BTU | CL       | RESIDN | Coal. Residential                  |
|            | XPCLCM             | (MNUMCR, MNXYRS  | )             | XPRICE | 87\$BTU | CL       | COMMER | Coal. Commercial                   |
|            | XPCLIN             | (MNUMCR, MNXYRS  | )             | XPRICE | 87\$BTU | CL       | INDUST | Coal. Industrial                   |
|            | XPCLEL             | (MNUMCR, MNXYRS  | )             | XPRICE | 87\$BTU | CL       | ELECTR | Coal. Electricity                  |
|            | XPCLSN             | (MNUMCR, MNXYRS  | )             | XPRICE | 87\$BTU | CL       | SYNTHE | Coal. Synthetics                   |
|            | XPCLAS             | (MNUMCR, MNXYRS  | )             | XPRICE | 87\$BTU | CL       | ALLSEC | Coal. All Sectors                  |
|            | XPMCIN             | (MNUMCR, MNXYRS  | )             | XPRICE | 87\$BTU | MC       | INDUST | Metallurgical Coal. Industrial     |
|            | XPMGCM             | (MNUMCR, MNXYRS  | )             | XPRICE | 87\$BTU | MG       | COMMER | Motor Gasoline. Commercial         |
|            | XPMGTR             | (MNUMCR, MNXYRS  | )             | XPRICE | 87\$BTU | MG       | TRANSP | Motor Gasoline. Transportation     |

| COMMON<br>Block |                   |                  | _        |        | _       | _        |        |                                   |
|-----------------|-------------------|------------------|----------|--------|---------|----------|--------|-----------------------------------|
| Name            | Variable Name     | Variable Di      | mensions | Var    | iable I | Descript | ors    | Variable Descriptio               |
|                 |                   |                  |          |        |         |          |        |                                   |
|                 | XPMGIN            | (MNUMCR, MNXYRS) |          | XPRICE | 87\$BTU | MG       | INDUST | Motor Gasoline. Industrial        |
|                 | XPMGAS            | (MNUMCR, MNXYRS) |          | XPRICE | 87\$BTU | MG       | ALLSEC | Motor Gasoline. All Sectors       |
|                 | XPJFTR            | (MNUMCR, MNXYRS) |          | XPRICE | 87\$BTU | JF       | TRANSP | Jet Fuel. Transportation          |
|                 | XPDSRS            | (MNUMCR, MNXYRS) |          | XPRICE | 87\$BTU | DS       | RESIDN | Distillate. Residential           |
|                 | XPDSCM            | (MNUMCR, MNXYRS) |          | XPRICE | 87\$BTU | DS       | COMMER | Distillate. Commercial            |
|                 | XPDSTR            | (MNUMCR, MNXYRS) |          | XPRICE | 87\$BTU | DS       | TRANSP | Distillate. Transportation        |
|                 | XPDSIN            | (MNUMCR, MNXYRS) |          | XPRICE | 87\$BTU | DS       | INDUST | Distillate. Industrial            |
|                 | XPDSEL            | (MNUMCR, MNXYRS) |          | XPRICE | 87\$BTU | DS       | ELECTR | Distillate. Electricity (incl. pe |
|                 | XPDSAS            | (MNUMCR, MNXYRS) |          | XPRICE | 87\$BTU | DS       | ALLSEC | Distillate. All Sectors           |
|                 | XPKSRS            | (MNUMCR, MNXYRS) |          | XPRICE | 87\$BTU | KS       | RESIDN | Kerosene. Residential             |
|                 | XPKSCM            | (MNUMCR, MNXYRS) |          | XPRICE | 87\$BTU | KS       | COMMER | Kerosene. Commercial              |
|                 | XPKSIN            | (MNUMCR, MNXYRS) |          | XPRICE | 87\$BTU | KS       | INDUST | Kerosene. Industrial              |
|                 | XPKSAS            | (MNUMCR, MNXYRS) |          | XPRICE | 87\$BTU | KS       | ALLSEC | Kerosene. All Sectors             |
|                 | XPLGRS            | (MNUMCR, MNXYRS) |          | XPRICE | 87\$BTU | LG       | RESIDN | Liquid Petroleum Gases. Residenti |
|                 | XPLGCM            | (MNUMCR, MNXYRS) |          | XPRICE | 87\$BTU | LG       | COMMER | Liquid Petroleum Gases. Commercia |
|                 | XPLGTR            | (MNUMCR, MNXYRS) |          | XPRICE | 87\$BTU | LG       | TRANSP | Liquid Petroleum Gases. Transport |
|                 | XPLGIN            | (MNUMCR, MNXYRS) |          | XPRICE | 87\$BTU | LG       | INDUST | Liquid Petroleum Gases. Industria |
|                 | XPLGAS            | (MNUMCR, MNXYRS) |          | XPRICE | 87\$BTU | LG       | ALLSEC | Liquid Petroleum Gases. All Secto |
|                 | XPRLCM            | (MNUMCR, MNXYRS) |          | XPRICE | 87\$BTU | RL       | COMMER | Residual Fuel, Low Sulfur. Commer |
|                 | XPRLTR            | (MNUMCR, MNXYRS) |          | XPRICE | 87\$BTU | RL       | TRANSP | Residual Fuel, Low Sulfur. Transp |
|                 | XPRLIN            | (MNUMCR, MNXYRS) |          | XPRICE | 87\$BTU | RL       | INDUST | Residual Fuel, Low Sulfur. Indust |
|                 | XPRLEL            | (MNUMCR, MNXYRS) |          | XPRICE | 87\$BTU | RL       | ELECTR | Residual Fuel, Low Sulfur. Electr |
|                 | XPRLAS            | (MNUMCR, MNAIRS) |          | XPRICE | 8/\$BIU | RL       | ALLSEC | Residual Fuel, Low Sullur. All Se |
|                 | VDDUEI            | (MNUMCR, MNXIRS) |          | XDDICE | 07¢DTU  | RH<br>DU | TRANSP | Residual Fuel, High Sulfur. Float |
|                 | VDDUAG            | (MNUMCR, MNXIRS) |          | VDDICE | 070DTU  | RH<br>DU | ALICIK | Residual Fuel, High Sulfur. All S |
|                 | YDRSCM            | (MNUMCE MNYVES)  |          | XDRICE | 87¢BTU  | RG       | COMMER | Residual Fuel Commercial          |
|                 | YDPSTP            | (MNUMCE MNYVES)  |          | XDRICE | 87¢BTU  | RG       | TRANCD | Residual Fuel Transportation      |
|                 | XPRSIN            | (MNUMCR MNXYRS)  |          | XPRICE | 87\$BTU | RS       | TNDUST | Residual Fuel Industrial          |
|                 | XPRSEL            | (MNUMCR MNXYRS)  |          | XPRICE | 87\$BTU | RS       | ELECTR | Residual Fuel Electricity         |
|                 | XPRSAS            | (MNUMCR MNXYRS)  |          | XPRICE | 87\$BTU | RS       | ALLSEC | Residual Fuel All Sectors         |
|                 | XPPFIN            | (MNUMCR, MNXYRS) |          | PRICE  | 87\$BTU | PF       | INDUST | Petrochemical Feedstocks. Industr |
|                 | XPASIN            | (MNUMCR MNXYRS)  |          | PRICE  | 87\$BTU | AS       | INDUST | Asphalt, Road Oil, Industrial     |
|                 | XPOTTR            | (MNUMCR, MNXYRS) |          | XPRICE | 87\$BTU | OT       | TRANSP | Other. Transporation              |
|                 | XPOTIN            | (MNUMCR MNXYRS)  |          | XPRICE | 87SBTU  | OT       | INDUST | Other Industrial                  |
|                 | XPOTAS            | (MNUMCR, MNXYRS) |          | XPRICE | 87\$BTU | OT       | ALLSEC | Other. All Sectors                |
|                 | XPTPRS            | (MNUMCR, MNXYRS) |          | XPRICE | 87\$BTU | TP       | RESIDN | Total Petroleum. Residential      |
|                 | XPTPCM            | (MNUMCR, MNXYRS) |          | XPRICE | 87\$BTU | TP       | COMMER | Total Petroleum. Commercial       |
|                 | XPTPTR            | (MNUMCR, MNXYRS) |          | XPRICE | 87\$BTU | TP       | TRANSP | Total Petroleum. Transportation   |
|                 | XPTPIN            | (MNUMCR, MNXYRS) |          | XPRICE | 87\$BTU | TP       | INDUST | Total Petroleum. Industrial       |
|                 | XPTPRF            | (MNUMCR, MNXYRS) |          | XPRICE | 87\$BTU | TP       | REFINE | Total Petroleum. Refinery         |
|                 | XPTPEL            | (MNUMCR, MNXYRS) |          | XPRICE | 87\$BTU | TP       | ELECTR | Total Petroleum. Electricity      |
|                 | XPTPAS            | (MNUMCR, MNXYRS) |          | XPRICE | 87\$BTU | TP       | ALLSEC | Total Petroleum. All Sectors      |
|                 | XPMETR            | (MNUMCR, MNXYRS) |          | XPRICE | 87\$BTU | ME       | TRANSP | Methanol. Transporation           |
|                 | XPETTR            | (MNUMCR, MNXYRS) |          | XPRICE | 87\$BTU | ET       | TRANSP | Ethanol. Transporation            |
|                 | XPHYTR            | (MNUMCR, MNXYRS) |          | XPRICE | 87\$BTU | HY       | TRANSP | Liquid Hydrogen. Transporation    |
|                 | XPUREL            | (MNUMCR, MNXYRS) |          | XPRICE | 87\$BTU | UR       | ELECTR | Uranium. Electricity              |
|                 | XIT_WOP           | (MNXYRS, 2)      |          | XPRICE | 87\$BTU | WO       | INTERN | WORLD OIL PRICE (2UNITS)          |
|                 | XOGWPRNG          | (MNUMOR, MNXYRS) |          | XPRICE | 87\$BTU | NG       | PIPELN | NG WELLHEAD PRICE (\$87/MCF)      |
| *=======        |                   |                  |          |        |         | =====    |        |                                   |
| * History       | Data From SEDS/Ot | her Sources      |          |        |         |          |        |                                   |
| *=======        |                   |                  |          | =====  | =====   | =====    |        |                                   |
| QSBLK           |                   |                  |          | TYPE   | UNITS   | FUEL     | SECTOR |                                   |
|                 | QSEPRS            | (MNUMCR, MSEDYR) |          | HISTOR | tBTU    | EP       | RESIDN | Purchased Electricity, Peak. Resi |
|                 | QSEPCM            | (MNUMCR, MSEDYR) |          | HISTOR | tBTU    | EP       | COMMER | Purchased Electricity, Peak. Comm |
|                 | QSEPTR            | (MNUMCR, MSEDYR) |          | HISTOR | tBTU    | EP       | TRANSP | Purchased Electricity, Peak. Tran |
|                 | QSEPIN            | (MNUMCR, MSEDYR) |          | HISTOR | tBTU    | EP       | INDUST | Purchased Electricity, Peak. Indu |
|                 | QSEPRF            | (MNUMCR, MSEDYR) |          | HISTOR | tBTU    | EP       | REFINE | Purchased Electricity, Peak. Refi |

| COMMON |                |                     |                   |        |                                   |
|--------|----------------|---------------------|-------------------|--------|-----------------------------------|
| Name   | Variable Name  | Variable Dimensions | Variable Descript | ors    | Variable Descriptio               |
|        |                |                     |                   |        |                                   |
|        | QSEPAS         | (MNUMCR, MSEDYR)    | HISTOR tBTU EP    | ALLSEC | Purchased Electricity, Peak. All  |
|        | QSENRS         | (MNUMCR, MSEDYR)    | HISTOR tBTU EN    | RESIDN | Purchased Electricity, Nonpeak. F |
|        | QSENCM         | (MNUMCR, MSEDYR)    | HISTOR tBTU EN    | COMMER | Purchased Electricity, Nonpeak. ( |
|        | QSENTR         | (MNUMCR, MSEDYR)    | HISTOR LBTU EN    | TRANSP | Purchased Electricity, Nonpeak. 1 |
|        | QSENIN         | (MNUMCR, MSEDYR)    | HISTOR tBTU EN    | INDUST | Purchased Electricity, Nonpeak. 1 |
|        | QSENRF         | (MNUMCR, MSEDYR)    | HISTOR tBTU EN    | REFINE | Purchased Electricity, Nonpeak. F |
|        | QSENAS         | (MNUMCR, MSEDYR)    | HISTOR CBTU EN    | ALLSEC | Purchased Electricity, Nonpeak. A |
|        | QSELRS         | (MNUMCR, MSEDYR)    | HISTOR CBTU EL    | COMMER | Purchased Electricity. Residentia |
|        | QSELCM         | (MNUMCR, MSEDYR)    | HISTOR CBTU EL    | COMMER | Purchased Electricity. Commercial |
|        | QSELTR         | (MNUMCR, MSEDYR)    | HISTOR CBTU EL    | TRANSP | Purchased Electricity. Transporta |
|        | QSELIN         | (MNUMCR, MSEDYR)    | HISTOR CBTU EL    | INDUST | Purchased Electricity. Industrial |
|        | QSELRF         | (MNUMCR, MSEDIR)    | HISTOR LBIU EL    | REFINE | Purchased Electricity. Relinery   |
|        | QSELAS         | (MNUMCR, MSEDIR)    | HISTOR LBIU EL    | ALLSEC | Natural Car Core Desidential      |
|        | QSGFRS         | (MNUMCR, MSEDIR)    | HISTOR LBIU GF    | COMMER | Natural Gas, Core. Residential    |
|        | QSGFCM         | (MNUMCR, MSEDIR)    | HISTOR LBIU GF    | COMMER | Natural Gas, Core. Commercial     |
|        | QSGFIR         | (MNUMCR, MSEDIR)    | HISTOR LBIU GF    | IRANSP | Natural Gas, Core. Iransportation |
|        | QSGFIN         | (MNUMCR, MSEDIR)    | HISIOR LBIU GF    | DEETNE | Natural Gas, Core. Industrial     |
|        | QSGFRF         | (MNUMCE, MSEDIE)    | HISTOR LETU GF    | REFINE | Natural Gas, Core. Reinnery       |
|        | QSGFEL         | (MNUMCE, MSEDIE)    | HISTOR LETU GF    | ALLORG | Natural Gas, Core. Electricity    |
|        | QSGFAS         | (MNUMCR, MSEDIR)    | HISTOR LBIU GF    | ALLSEC | Natural Gas, Core. All Sectors    |
|        | QSGIRS         | (MNUMCE, MSEDIE)    | HISTOR LETU GI    | COMMED | Natural Gas, Noncore, Residential |
|        | OSCITR         | (MNUMCR MSEDIR)     | HISTOR CHIU GI    | TRANCD | Natural Gas, Noncore, Transportat |
|        | OSCIIN         | (MNUMCR MSEDIR)     | HISTOR CHIU GI    | TNDUGT | Natural Gas, Noncore, Industrial  |
|        | OSCIPE         | (MNUMCE MEEDUE)     | UISTOR (DIO GI    | DEETNE | Natural Cas, Noncore. Industrial  |
|        | OSCIFI.        | (MNUMCR MSEDIR)     | HISTOR CHIU GI    | FLECTR | Natural Gas, Noncore Electricity  |
|        | OSCIAS         | (MNUMCR MSEDIR)     | HISTOR CHIU GI    | ALLSEC | Natural Gas, Noncore All Sectors  |
|        | OSNGRS         | (MNUMCR MSEDYR)     | HISTOR +BTU NG    | RESIDN | Natural Gas Residential           |
|        | OSNGCM         | (MNUMCR MSEDYR)     | HISTOR +BTU NG    | COMMER | Natural Gas Commercial            |
|        | OSNGTR         | (MNUMCR MSEDYR)     | HISTOR +BTU NG    | TRANSP | Natural Gas Transportation        |
|        | OSNGIN         | (MNUMCR MSEDYR)     | HISTOR +BTU NG    | INDUST | Natural Gas Industrial            |
|        | OSNGRF         | (MNUMCR MSEDYR)     | HISTOR +BTU NG    | REFINE | Natural Gas Refinery              |
|        | OSNGEL         | (MNUMCR, MSEDYR)    | HISTOR +BTU NG    | ELECTR | Natural Gas. Electricity          |
|        | OSNGAS         | (MNUMCR, MSEDYR)    | HISTOR +BTU NG    | ALLSEC | Natural Gas. All Sectors          |
|        | OSGPTR         | (MNUMCR MSEDYR)     | HISTOR +BTU GP    | TRANSP | Natural Gas Pipeline              |
|        | OSLPIN         | (MNUMCR MSEDYR)     | HISTOR +BTU LP    | INDUST | Lease and Plant Fuel              |
|        | OSCLRS         | (MNUMCR, MSEDYR)    | HISTOR LETU CL    | RESIDN | Coal. Residential                 |
|        | ÓSCLCM         | (MNUMCR, MSEDYR)    | HISTOR LBTU CL    | COMMER | Coal. Commercial                  |
|        | ÓSCLIN         | (MNUMCR, MSEDYR)    | HISTOR tBTU CL    | INDUST | Coal. Industrial                  |
|        | OSCLRF         | (MNUMCR, MSEDYR)    | HISTOR LBTU CL    | REFINE | Coal. Refinery                    |
|        | OSCLEL         | (MNUMCR, MSEDYR)    | HISTOR tBTU CL    | ELECTR | Coal. Electricity                 |
|        | ÕSCLSN         | (MNUMCR, MSEDYR)    | HISTOR tBTU CL    | SYNTHE | Coal. Synthetics                  |
|        | ÕSCLAS         | (MNUMCR, MSEDYR)    | HISTOR tBTU CL    | ALLSEC | Coal. All Sectors                 |
|        | ÕSMCIN         | (MNUMCR, MSEDYR)    | HISTOR tBTU MC    | INDUST | Metallurgical Coal. Industrial    |
|        | ÕSMGCM         | (MNUMCR, MSEDYR)    | HISTOR tBTU MG    | COMMER | Motor Gasoline. Commercial        |
|        | ÕSMGTR         | (MNUMCR, MSEDYR)    | HISTOR tBTU MG    | TRANSP | Motor Gasoline. Transportation    |
|        | ÕSMGIN         | (MNUMCR, MSEDYR)    | HISTOR tBTU MG    | INDUST | Motor Gasoline. Industrial        |
|        | ÕSMGAS         | (MNUMCR, MSEDYR)    | HISTOR tBTU MG    | ALLSEC | Motor Gasoline. All Sectors       |
|        | <b>Õ</b> SJFTR | (MNUMCR, MSEDYR)    | HISTOR tBTU JF    | TRANSP | Jet Fuel. Transportation          |
|        | ÕSDSRS         | (MNUMCR, MSEDYR)    | HISTOR tBTU DS    | RESIDN | Distillate. Residential           |
|        | ÕSDSCM         | (MNUMCR, MSEDYR)    | HISTOR tBTU DS    | COMMER | Distillate. Commercial            |
|        | QSDSTR         | (MNUMCR, MSEDYR)    | HISTOR LBTU DS    | TRANSP | Distillate. Transportation        |
|        | QSDSIN         | (MNUMCR, MSEDYR)    | HISTOR tBTU DS    | INDUST | Distillate. Industrial            |
|        | QSDSRF         | (MNUMCR, MSEDYR)    | HISTOR tBTU DS    | REFINE | Distillate. Refinery              |
|        | QSDSEL         | (MNUMCR, MSEDYR)    | HISTOR tBTU DS    | ELECTR | Distillate. Electricity (incl. pe |
|        | QSDSAS         | (MNUMCR, MSEDYR)    | HISTOR tBTU DS    | ALLSEC | Distillate. All Sectors           |
|        | QSKSRS         | (MNUMCR, MSEDYR)    | HISTOR tBTU KS    | RESIDN | Kerosene. Residential             |
|        | QSKSCM         | (MNUMCR, MSEDYR)    | HISTOR tBTU KS    | COMMER | Kerosene. Commercial              |

| <br>COMMON<br>Block |               |                  |       |          |        |           |            |                                                |
|---------------------|---------------|------------------|-------|----------|--------|-----------|------------|------------------------------------------------|
| <br>Name            | Variable Name | Variable Dimen   | sions | Vari     | able   | Descrip   | tors       | Variable Descriptio                            |
|                     |               |                  |       |          |        |           |            |                                                |
|                     | QSKSIN        | (MNUMCR, MSEDYR) |       | HISTOR 1 | tBTU   | KS        | INDUST     | Kerosene. Industrial                           |
|                     | ÕSKSAS        | (MNUMCR, MSEDYR) |       | HISTOR 1 | tBTU   | KS        | ALLSEC     | Kerosene. All Sectors                          |
|                     | ÕSLGRS        | (MNUMCR, MSEDYR) |       | HISTOR 1 | tBTU   | LG        | RESIDN     | Liquid Petroleum Gases. Residenti              |
|                     | ÕSLGCM        | (MNUMCR, MSEDYR) |       | HISTOR 1 | tBTU   | LG        | COMMER     | Liquid Petroleum Gases. Commercia              |
|                     | ŐSLGTR        | (MNUMCR, MSEDYR) |       | HISTOR 1 | tBTU   | LG        | TRANSP     | Liquid Petroleum Gases. Industria              |
|                     | ÕSLGIN        | (MNUMCR, MSEDYR) |       | HISTOR 1 | tBTU   | LG        | INDUST     | Liquid Petroleum Gases. Industria              |
|                     | ÕSLGRF        | (MNUMCR, MSEDYR) |       | HISTOR 1 | tBTU   | LG        | REFINE     | Liquid Petroleum Gases. Refinery               |
|                     | ÕSLGAS        | (MNUMCR, MSEDYR) |       | HISTOR 1 | tBTU   | LG        | ALLSEC     | Liquid Petroleum Gases. All Secto              |
|                     | QSRLCM        | (MNUMCR, MSEDYR) |       | HISTOR 1 | tBTU   | RL        | COMMER     | Residual Fuel, Low Sulfur. Commer              |
|                     | QSRLTR        | (MNUMCR, MSEDYR) |       | HISTOR 1 | tBTU   | RL        | TRANSP     | Residual Fuel, Low Sulfur. Transp              |
|                     | QSRLIN        | (MNUMCR, MSEDYR) |       | HISTOR 1 | tBTU   | RL        | INDUST     | Residual Fuel, Low Sulfur. Indust              |
|                     | QSRLRF        | (MNUMCR, MSEDYR) |       | HISTOR 1 | tBTU   | RL        | REFINE     | Residual Fuel, Low Sulfur. Refine              |
|                     | QSRLEL        | (MNUMCR, MSEDYR) |       | HISTOR 1 | tBTU   | RL        | ELECTR     | Residual Fuel, Low Sulfur. Electr              |
|                     | QSRLAS        | (MNUMCR, MSEDYR) |       | HISTOR 1 | tBTU   | RL        | ALLSEC     | Residual Fuel, Low Sulfur. All Se              |
|                     | QSRHTR        | (MNUMCR, MSEDYR) |       | HISTOR 1 | tBTU   | RH        | TRANSP     | Residual Fuel, High Sulfur. Trans              |
|                     | QSRHEL        | (MNUMCR, MSEDYR) |       | HISTOR 1 | tBTU   | RH        | ELECTR     | Residual Fuel, High Sulfur. Elect              |
|                     | QSRHAS        | (MNUMCR, MSEDYR) |       | HISTOR 1 | tBTU   | RH        | ALLSEC     | Residual Fuel, High Sulfur. All S              |
|                     | QSRSCM        | (MNUMCR, MSEDYR) |       | HISTOR ( | tBTU   | RS        | COMMER     | Residual Fuel. Commercial                      |
|                     | QSRSTR        | (MNUMCR, MSEDYR) |       | HISTOR ( | tBTU   | RS        | TRANSP     | Residual Fuel. Transportation                  |
|                     | QSRSIN        | (MNUMCR, MSEDYR) |       | HISTOR ( | tBTU   | RS        | INDUST     | Residual Fuel. Industrial                      |
|                     | QSRSRF        | (MNUMCR, MSEDYR) |       | HISTOR ( | tBTU   | RS        | REFINE     | Residual Fuel. Refinery                        |
|                     | QSRSEL        | (MNUMCR, MSEDYR) |       | HISTOR 1 | tBTU   | RS        | ELECTR     | Residual Fuel. Electricity                     |
|                     | QSRSAS        | (MNUMCR, MSEDYR) |       | HISTOR 1 | tBTU   | RS        | ALLSEC     | Residual Fuel. All Sectors                     |
|                     | QSPFIN        | (MNUMCR, MSEDYR) |       | HISTOR 1 | tBTU   | PF        | INDUST     | Petrochemical Feedstocks. Industr              |
|                     | QSSGIN        | (MNUMCR, MSEDYR) |       | HISTOR 1 | tBTU   | SG        | INDUST     | Still Gas. Industrial                          |
|                     | QSSGRF        | (MNUMCR, MSEDYR) |       | HISTOR 1 | tBTU   | SG        | REFINE     | Still Gas. Refinery                            |
|                     | QSPCIN        | (MNUMCR, MSEDYR) |       | HISTOR 1 | tBTU   | PC        | INDUST     | Petroleum Coke. Industrial                     |
|                     | QSPCRF        | (MNUMCR, MSEDYR) |       | HISTOR 1 | tBTU   | PC        | REFINE     | Petroleum Coke. Refinery                       |
|                     | QSPCEL        | (MNUMCR, MSEDYR) |       | HISTOR 1 | tBTU   | PC        | ELECTR     | Petroleum Coke. Refinery                       |
|                     | QSPCAS        | (MNUMCR, MSEDYR) |       | HISTOR 1 | tBTU   | PC        | ALLSEC     | Petroleum Coke. All Sectors                    |
|                     | QSASIN        | (MNUMCR, MSEDYR) |       | HISTOR   | tBTU   | AS        | INDUST     | Asphalt and Road Oil. Industrial               |
|                     | QSOTTR        | (MNUMCR, MSEDYR) |       | HISTOR 1 | tBTU   | OT        | TRANSP     | Other Petroleum. Trans (lubes, av              |
|                     | QSOTIN        | (MNUMCR, MSEDYR) |       | HISTOR 1 | tBTU   | OT        | INDUST     | Other Petroleum. Industrial                    |
|                     | QSOTRF        | (MNUMCR, MSEDYR) |       | HISTOR 1 | tBIU   | 0.1.      | REFINE     | Other Petroleum. Refinery                      |
|                     | QSOTAS        | (MNUMCR, MSEDYR) |       | HISTOR 1 | tBTU   | OT        | ALLSEC     | Other Petroleum. All Sectors                   |
|                     | QSTPRS        | (MNUMCR, MSEDYR) |       | HISTOR 1 | tBIU   | TP        | RESIDN     | Total Petroleum. Residential                   |
|                     | QSTPCM        | (MNUMCR, MSEDYR) |       | HISTOR 1 | tBIU   | .T.P      | COMMER     | Total Petroleum. Commercial                    |
|                     | QSTPTR        | (MNUMCR, MSEDYR) |       | HISTOR 1 | tBIU   | .T.P      | TRANSP     | Total Petroleum. Transportation                |
|                     | QSTPIN        | (MNUMCR, MSEDYR) |       | HISTOR   | CBIO   | TP        | INDUST     | Total Petroleum. Industrial                    |
|                     | QSTPRF        | (MNUMCR, MSEDYR) |       | HISTOR   | CBJ.0  | TP        | REFINE     | Total Petroleum. Reinery                       |
|                     | QSIPEL        | (MNUMCR, MSEDIR) |       | HISTOR I |        |           | ALLECIK    | Total Petroleum. All Costors                   |
|                     | QSIPAS        | (MNUMCR, MSEDIR) |       | HISTOR I |        | 1P<br>ME  | ALLSEC     | Mothenel Transportion                          |
|                     | OCETTO        | (MNUMCR, MSEDIR) |       | UTSTOR I |        | PIE<br>TT | TRANSP     | Methanol Transporation                         |
|                     | QSEIIR        | (MNUMCR, MSEDIR) |       | HISTOR I |        | LIV       | TRANSP     | Methanol Transporation                         |
|                     | QSHIIK        | (MNUMCR, MSEDIR) |       | HISTOR I |        |           | FIRANSP    | Methanoi. Iransporacion<br>Uranium Electricity |
|                     | OSUKEL        | (MNUMCR, MSEDIR) |       | UTSTOR I |        | UR        | TNDUCT     | Uranium, Electricity                           |
|                     | OSHOTI        | (MNUMCE MSEDIE)  |       | UISTOR I |        | 10        | FIFCTP     | Hydropower. Floatrigity                        |
|                     | OGHONG        | (MNUMCE MSEDIE)  |       | UISTOR I |        | 10        | ALLEEL     | Hydropower, All Sectors                        |
|                     | OSCEIN        | (MNUMCE MSEDVE)  |       | UISTOR I |        | CF        | TNDUSEC    | Coothermal Industrial                          |
|                     | OSCEEL        | (MNUMCR MSEDIR)  |       | HISTOR   | + BTTT | GE        | ELECTD     | Geothermal Electricity                         |
|                     | OSGEAS        | (MNUMCR MSEDIR)  |       | HISTOR   | + BTTT | GE        | VI.J.GECIK | Geothermal All Sectors                         |
|                     | OSBMRS        | (MNUMCR, MSEDVR) |       | HISTOR   | + BTTT | BM        | RESTON     | Biomass Residential                            |
|                     | OSBMCM        | (MNUMCR MSEDYR)  |       | HISTOR   | +BTU   | BM        | COMMER     | Biomass Commercial                             |
|                     | OSBMIN        | (MNUMCR MSEDYR)  |       | HISTOR   | +BTII  | BM        | TNDUST     | Biomass Industrial                             |
|                     | OSBMRF        | (MNUMCR MSEDYR)  |       | HISTOR   | +BTU   | BM        | REFINE     | Biomass Industrial                             |
|                     | OSBMEL        | (MNUMCR MSEDVR)  |       | HISTOR   | + BTTT | BM        | ELEGUD     | Biomass Electricity                            |
|                     | OSBMSN        | (MNUMCR, MSEDYR) |       | HISTOR   | t.BTU  | BM        | SYNTHE     | Biomass. Synthetics                            |
|                     | A             |                  |       |          |        |           |            |                                                |

| COMMON<br>Block                         |                   |                       |            |                  |               |           |        |                                                                     |
|-----------------------------------------|-------------------|-----------------------|------------|------------------|---------------|-----------|--------|---------------------------------------------------------------------|
| Name                                    | Variable Name     | Variable              | Dimensions | Vai              | iable I       | Descript  | ors    | Variable Description                                                |
|                                         |                   |                       |            |                  |               |           |        |                                                                     |
|                                         | OSBMAS            | (MNUMOR MSEDYR)       |            | HISTOR           | + BTU         | BM        | ALLSEC | Biomass All Sectors                                                 |
|                                         | OSMSIN            | (MNUMCR MSEDYR)       |            | HISTOR           | + BTII        | MS        | TNDUST | Municipal Solid Waste Industrial                                    |
|                                         | OSMSEL            | (MNUMCP MSEDVR)       |            | HIGTOR           | +BTII         | MS        | FLECTR | Municipal Solid Waste Electricity                                   |
|                                         | OSMEAS            | (MNIIMCP MSEDVP)      |            | HISTOR           | +BTII         | MS        | ALLSEC | Municipal Solid Waste All Sector                                    |
|                                         | QSHSAS<br>OCCUPC  | (MNUMCR MCEDVR)       |            | UIGTOR           | + DTU         | CTT CTT   | DECIDN | Colar Thormal Decidential                                           |
|                                         | QSSIRS            | (MNUMCR, MSEDIR)      |            | HISTOR           | LBIU<br>EDEUI | 51        | COMMED | Solar Inermal. Residential                                          |
|                                         | QSSICM            | (MNUMCR, MSEDIR)      |            | HISTOR           | LBIU          | SI        | COMMER | Solar Inermal. Commercial                                           |
|                                         | QSSIIN            | (MNUMCR, MSEDIR)      |            | HISTOR           | LBIU<br>EDEUI | 51        | TNDUST | Solar Inermal. Electricity                                          |
|                                         | QSSIEL            | (MNUMCR, MSEDIR)      |            | HISIOR<br>UICTOR |               | 51<br>CTT | ALLCER | Solar Thermal All Costors                                           |
|                                         | QSSIAS            | (MNUMCR, MSEDIR)      |            | HISTOR           | LBIU          | SI        | ALLSEC | Solar Inermal. All Sectors                                          |
|                                         | QSPVRS            | (MNUMCR, MSEDIR)      |            | HISTOR           | LBIU          | PV        | COMMED | Photovoltaic. Residential                                           |
|                                         | QSPVCM            | (MNUMCR, MSEDYR)      |            | HISTOR           | tBTU          | PV        | COMMER | Photovoltaic. Commercial                                            |
|                                         | QSPVIN            | (MNUMCR, MSEDYR)      |            | HISTOR           | tBTU          | PV        | INDUST | Photovoltaic. Industrial                                            |
|                                         | QSPVEL            | (MNUMCR, MSEDYR)      |            | HISTOR           | tBTU          | PV        | ELECTR | Photovoltaic. Electricity                                           |
|                                         | QSPVAS            | (MNUMCR, MSEDYR)      |            | HISTOR           | tBTU          | PV        | ALLSEC | Photovoltaic. All Sectors                                           |
|                                         | QSWIIN            | (MNUMCR, MSEDYR)      |            | HISTOR           | tBTU          | WI        | INDUST | Wind. Industrial                                                    |
|                                         | QSWIEL            | (MNUMCR, MSEDYR)      |            | HISTOR           | tBTU          | WI        | ELECTR | Wind. Electricity                                                   |
|                                         | QSWIAS            | (MNUMCR, MSEDYR)      |            | HISTOR           | tBTU          | MT        | ALLSEC | Wind. All Sectors                                                   |
|                                         | QSTRRS            | (MNUMCR, MSEDYR)      |            | HISTOR           | tBTU          | TR        | RESIDN | Total Renewables. Residential                                       |
|                                         | QSTRCM            | (MNUMCR, MSEDYR)      |            | HISTOR           | tBTU          | TR        | COMMER | Total Renewables. Commercial                                        |
|                                         | QSTRTR            | (MNUMCR, MSEDYR)      |            | HISTOR           | tBTU          | TR        | TRANSP | Total Renewables. Transportation                                    |
|                                         | QSTRIN            | (MNUMCR, MSEDYR)      |            | HISTOR           | tBTU          | TR        | INDUST | Total Renewables. Industrial                                        |
|                                         | QSTREL            | (MNUMCR, MSEDYR)      |            | HISTOR           | tBTU          | TR        | ELECTR | Total Renewables. Electricity                                       |
|                                         | QSTRSN            | (MNUMCR, MSEDYR)      |            | HISTOR           | tBTU          | TR        | SYNTHE | Total Renewables. Synthetics                                        |
|                                         | QSTRAS            | (MNUMCR, MSEDYR)      |            | HISTOR           | tBTU          | TR        | ALLSEC | Total Renewables. All Sectors                                       |
|                                         | QSEIEL            | (MNUMCR, MSEDYR)      |            | HISTOR           | tBTU          | EI        | ELECTR | Net Electricity Imports. Electric                                   |
|                                         | QSCIIN            | (MNUMCR, MSEDYR)      |            | HISTOR           | tBTU          | CI        | INDUST | Net Coal Coke Imports. Industrial                                   |
|                                         | QSTSRS            | (MNUMCR, MSEDYR)      |            | HISTOR           | tBTU          | TS        | RESIDN | Total Sectoral Energy Consumption.                                  |
|                                         | QSTSCM            | (MNUMCR, MSEDYR)      |            | HISTOR           | tBTU          | TS        | COMMER | Total Sectoral Energy Consumption.                                  |
|                                         | QSTSTR            | (MNUMCR, MSEDYR)      |            | HISTOR           | tBTU          | TS        | TRANSP | Total Sectoral Energy Consumption.                                  |
|                                         | QSTSIN            | (MNUMCR,MSEDYR)       |            | HISTOR           | tBTU          | TS        | INDUST | Total Sectoral Energy Consumption.                                  |
|                                         | QSTSRF            | (MNUMCR,MSEDYR)       |            | HISTOR           | tBTU          | TS        | REFINE | Total Sectoral Energy Consumption.                                  |
|                                         | QSTSEL            | (MNUMCR,MSEDYR)       |            | HISTOR           | tBTU          | TS        | ELECTR | Total Sectoral Energy Consumption.                                  |
|                                         | QSTSSN            | (MNUMCR,MSEDYR)       |            | HISTOR           | tBTU          | TS        | SYNTHE | Total Sectoral Energy Consumption.                                  |
|                                         | QSTSAS            | (MNUMCR,MSEDYR)       |            | HISTOR           | tBTU          | TS        | ALLSEC | Total Sectoral Energy Consumption.                                  |
| *=======                                |                   |                       |            |                  | =====         | =====     | =====  |                                                                     |
| * Control                               | Modules Common Bl | ock                   |            |                  |               |           |        |                                                                     |
| A = = = = = = = = = = = = = = = = = = = |                   |                       |            | <br>TVDF         | INTTS         |           | ====== |                                                                     |
| NONTICE                                 | EXW               | ( 1)                  |            | CNTROL           | ON OFF        |           |        | EXECUTE WORLD (INTERNATIONA)                                        |
|                                         | FYM               | ( 1)                  |            | CNTROL           | ON OFF        |           |        | EXECUTE MAC (MACROECONOMIC)                                         |
|                                         | FYP               | ( 1)                  |            | CNTROL           | ON OFF        |           |        | EXECUTE PESD (PESIDENTIAL)                                          |
|                                         | EXK               | ( 1)                  |            | CNTROL           | ON OFF        |           |        | EXECUTE COMM (COMMERCIAL)                                           |
|                                         | FYT               | ( 1)                  |            | CNTROL           | ON OFF        |           |        | EXECUTE IND (INDUSTRIAL)                                            |
|                                         | FYT               | ( 1)                  |            | CNTROL           | ON OFF        |           |        | EXECUTE TRAN (TRANSDORTATION)                                       |
|                                         | EXT               | ( 1)                  |            | CNITROL          | ON OFF        |           |        | EXECUTE INTE (INTERV)                                               |
|                                         | EXE               | ( 1)                  |            | CNIROL           | ON OFF        |           |        | EXECUTE CONI (CONI SUDDIV)                                          |
|                                         | EAC               | ( 1)                  |            | CNIROL           | ON OFF        |           |        | EXECUTE COAL (COAL SUPPLI)                                          |
|                                         | EXL               | ( 1)                  |            | CNIROL           | ON OFF        |           |        | EXECUTE WELL (OIL AND GAS SUFFLI<br>EVECUTE DIDE (CAS TRANS & DISTR |
|                                         | EXG               | ( 1)                  |            | CNIROL           | ON OFF        |           |        | EXECUTE FIFE (GAS INANG.& DISIR.                                    |
|                                         | EXU               | ( 1)                  |            | CNIROL           | ON_OFF        |           |        | EXECUTE REFINE (FEIROLEOM REFINERI                                  |
|                                         | BIINMOD           | (⊥)<br>(12)           |            | CNIROL           | DI ANV        |           |        | EVECOTE VENEM (VENEMADITE)                                          |
|                                         | EIDGAD            | ( <u>+</u> 4/<br>( 1) |            | CNIROL           | DIANK         |           |        | FIRST FOR WREITER EACH MODEL 15 BE                                  |
|                                         | I JOTVD           | (⊥)<br>( 1)           |            | CNIROL           | DLANK         |           |        | INCT FORECASI IEAR INDER (EG. 2)                                    |
|                                         | MAVITO            | (⊥)<br>( 1)           |            | CNIROL           | DLANK         |           |        | MAVIMIM ITEDATIONS                                                  |
|                                         | FRATIK            | (⊥/<br>(1)            |            | CNIROL           | DIANK         |           |        | MINIMUM EDVOLUTONYI CONTEDCENCE DOL                                 |
|                                         | A D C T O L       | (⊥)<br>( 1)           |            | CNIROL           | DLANK         |           |        | MINIMUM ADONIUTE CONVERGENCE TOL                                    |
|                                         | ADDIUL            | (⊥)<br>( 1)           |            | CNIROL           | DLANK         |           |        | DELAYATION EDACTION                                                 |
|                                         | NVPQ              | ( ⊥/<br>( 1)          |            |                  | BI'VWK        |           |        | MIMBED OF CDOMAR ARYDG EOD EADEGAN                                  |
|                                         | 11110             | \ <u>+</u> /          |            | CNIKUL           | линис         |           |        | NUMBER OF GROWIN IEARS FOR EXPECTA                                  |

| COMMON<br>Block                  |                                          |                                                                                                                                 |              |                                       |                                       |          |     |                                                                                                                                                           |
|----------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------|---------------------------------------|----------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name                             | Variable Name                            | Variabl                                                                                                                         | e Dimensions | Var                                   | lable D                               | escripto | ors | Variable Descriptio                                                                                                                                       |
|                                  |                                          |                                                                                                                                 |              |                                       |                                       |          |     |                                                                                                                                                           |
|                                  | I4SITE<br>I4SCNT<br>IRELAX<br>WWOP       | ( 1)<br>( 1)<br>( 1)<br>( 1)                                                                                                    |              | CNTROL<br>CNTROL<br>CNTROL<br>CNTROL  | BLANK<br>BLANK<br>BLANK<br>BLANK      |          |     | FORESIGHT OPT (1:MYOPIC, 2: ADAPTI<br>FORESIGHT CONTROL: (1: MAIN, 2: SU<br>OPTION TO RUN HEURISTIC ROUTINE TO<br>WORLD OIL PRICE CASE                    |
|                                  | HISTORY<br>CURITR<br>CURIYR              | $\begin{pmatrix} & 1 \\ & 1 \end{pmatrix}$<br>$\begin{pmatrix} & 1 \\ & 1 \end{pmatrix}$<br>$\begin{pmatrix} & 1 \end{pmatrix}$ |              | CNTROL<br>CNTROL<br>CNTROL            | BLANK<br>BLANK<br>BLANK<br>BLANK      |          |     | OPTION TO OVERWRITE 1990 DATA W/SE<br>CURRENT ITERATIONS<br>CURRENT IYEAR INDEX                                                                           |
|                                  | BASEYR<br>ENDYR<br>LOOPOP                | ( 1)<br>( 1)<br>( 1)                                                                                                            |              | CNTROL<br>CNTROL<br>CNTROL            | BLANK<br>BLANK<br>BLANK               |          |     | YEAR CORRESPONDING TO FIRSYR=1<br>YEAR CORRESPONDING TO LASTYR=29<br>NEMS YEAR LOOPING (1: A YEAR AT A                                                    |
|                                  | CTEST<br>FCRL<br>NCRL<br>MACEDBK         | ( 1)<br>( 1)<br>( 1)<br>( 1)                                                                                                    |              | CNTROL<br>CNTROL<br>CNTROL            | BLANK<br>BLANK<br>BLANK<br>ON OFF     |          |     | OVERALL CONVERGENCE TEST (0: NOT,<br>FINAL CONVERGENCE AND REPORTING LO<br>REPORTING LOOP SWITCH FOR EACH MOD<br>MACROECONOMIC FEEDBACK SWITCH            |
|                                  | ELASSW<br>DSMSWTCH<br>DBDUMP<br>MODELON  | ( 1)<br>( 1)<br>( 1)<br>( 1)                                                                                                    |              | CNTROL<br>CNTROL<br>CNTROL            | ON_OFF<br>ON_OFF<br>ON_OFF            |          |     | ELASTICITY SWITCH (0->OFF, 1->ON)<br>DEM SIDE MGMT SWITCH(0->OFF, 1->ON)<br>DATABASE DUMP/YR SW (0->OFF, 1->ON)<br>MODFLS NEVEP OFF SWITCH(0->OFF, 1->ON) |
|                                  | ECPSTART<br>CNVTST<br>ITIMNG             | ( 1)<br>( 12,MNUMYR)<br>( 1)                                                                                                    |              | CNTROL<br>CNTROL<br>CNTROL            | ON_OFF<br>BLANK<br>BLANK              |          |     | START YEAR FOR ECP MODULE (DEF=1)<br>CONVERGENCE TEST FLAGS FOR EACH MO<br>TIMING SWITCH (ITIMNG=1 MEANS TIMI                                             |
|                                  | SCALPR<br>MORDER<br>PRTDBGW              | $\begin{pmatrix} & 1 \\ & 1 \end{pmatrix}$<br>$\begin{pmatrix} & 12 \end{pmatrix}$<br>$\begin{pmatrix} & 12 \end{pmatrix}$      |              | CNTROL<br>CNTROL<br>CNTROL            | BLANK<br>BLANK<br>BLANK               |          |     | FOR REPORTING, DEFLATOR FOR YEARPR<br>MODULE EXECUTION ORDER<br>PRINT DEBUG IN WORLD (INTERNATION                                                         |
|                                  | PRTDBGM<br>PRTDBGR<br>PRTDBGK<br>PRTDBGI | ( 1)<br>( 1)<br>( 1)<br>( 1)                                                                                                    |              | CNTROL<br>CNTROL<br>CNTROL<br>CNTROL  | BLANK<br>BLANK<br>BLANK<br>BLANK      |          |     | PRINT DEBUG IN MAC (MACROECONOM<br>PRINT DEBUG IN RESD (RESIDENTIAL<br>PRINT DEBUG IN COMM (COMMERCIAL)<br>PRINT DEBUG IN IND (INDUSTRIAL)                |
|                                  | PRTDBGT<br>PRTDBGE<br>PRTDBGC<br>PRTDBGL | ( 1)<br>( 1)<br>( 1)<br>( 1)                                                                                                    |              | CNTROL<br>CNTROL<br>CNTROL<br>CNTROL  | BLANK<br>BLANK<br>BLANK<br>BLANK      |          |     | PRINT DEBUG IN TRAN (TRANSPORTAT<br>PRINT DEBUG IN UTIL (UTILITY)<br>PRINT DEBUG IN COAL (COAL SUPPLY<br>PRINT DEBUG IN WELL (OIL AND GAS                 |
| *                                | PRTDBGG<br>PRTDBGO<br>PRTDBGN            | ( 1)<br>( 1)<br>( 1)                                                                                                            |              | CNTROL<br>CNTROL<br>CNTROL            | BLANK<br>BLANK<br>BLANK               |          |     | PRINT DEBUG IN PIPE (GAS TRANS.&<br>PRINT DEBUG IN REFINE (PETROLEUM R<br>PRINT DEBUG IN RENEW (RENEWABLES)                                               |
| * Refinery<br>*=======<br>PMMOUT | / Module Output                          |                                                                                                                                 |              | <br><br>=====<br>TYPE                 | <br>======<br>UNITS                   |          |     |                                                                                                                                                           |
|                                  | RFREV<br>RFQPRDT<br>RFQDCRD<br>RFSPRFR   | (MNUMYR)<br>(MNUMCR, MNUMYR)<br>(15, MNUMYR)<br>(MNUMYR)                                                                        |              | QUNTY<br>QUNTY<br>QUNTY<br>QUNTY      | tBTU<br>tBTU<br>MMBBL<br>tBTU         |          |     | 7 Refinery revenues<br>TOTAL PRODUCT SUPPLIED<br>DOMESTIC TOTAL CRUDE MMBBL/YR/OGSM<br>RF SPR FILL RATE                                                   |
|                                  | RFSPRIM<br>RFCAPEXP<br>RFSAL<br>RFPQNGL  | (MNUMYR)<br>(MNUMYR)<br>(MNUMYR)<br>(MNUMPR, MNUMYR,                                                                            | 6, 2)        | QUNTY<br>PRICE<br>QUNTY<br>QUNTY      | tBTU<br>87\$BTU<br>tBTU<br>tBTU       |          |     | SPR IMPORTS<br>RF CAPITAL EXPENDITURES<br>SULFUR ALLOWANCES TONS/YR U.S. 35,<br>PRICE/QUANITY OF NGL BY PADD FOR 6<br>OUNNER DOWNGRAG OF INDUME TO DE     |
|                                  | RFQPRCG<br>PCTPLT_PADD<br>DCRDWHP        | (MNUMPR, MNUMYR)<br>(MNUMPR, MNUMYR)<br>(MNUMPR, MNUMYR)<br>(MNUMOR, MNUMYR)                                                    |              | QUNTY<br>QUNTY<br>PRICE               | tBTU<br>tBTU<br>87\$BBL               |          |     | QUANT. DOMESTIC OTHER INPUTS IN RE<br>QUANT. OF PROCESSING GAINS MMBBLD<br>GAS PLANT FUEL CONSUMED/TOTAL NG P<br>DOMESTIC CRUDE WELLHEAD PRICE            |
| *========                        | XDCRDWHP<br>XRFQDCRD<br>RFQTDCRD         | (MNUMOR, MNUMYR)<br>(MNUMOR, MNUMYR)<br>(15, MNUMYR)<br>===========                                                             |              | <br>PRICE<br>PRICE<br>QUNTY<br>====== | 87\$BBL<br>87\$BBL<br>MMBBL<br>====== |          |     | EXPECTED DOMESTIC CRUDE WELLHEAD P<br>EXPECTED DOMESTIC CRUDE PRODUCTION<br>DOMESTIC TOTAL CRUDE (INCL EOR) MM                                            |
| * Refinery                       | y Module Parameter                       | s                                                                                                                               |              |                                       |                                       |          |     |                                                                                                                                                           |

| COMMON<br>Block |                      |            |            |              |          |       |                |            |                                    |
|-----------------|----------------------|------------|------------|--------------|----------|-------|----------------|------------|------------------------------------|
| Name            | Variable Name        |            | Variabl    | e Dimensions |          | Var   | lable D        | escriptors | Variable Descriptio                |
|                 |                      |            |            |              |          |       |                |            |                                    |
|                 |                      |            |            |              |          |       |                |            |                                    |
| *=======        | =================    | ======     |            |              |          |       | INITEC         |            |                                    |
| PMMPARAM        | PECHPPE              |            | MNITIMVP ) |              |          | DAPAM | DINIIS         |            | Casoline share-Reformulated        |
|                 | RESHROX              | (MNUMCR)   | MNUMYR)    |              |          | PARAM | BLANK          |            | Gasoline share-Oxygenated          |
|                 | RESHROR              | (MNUMCR )  | MNUMYR)    |              |          | PARAM | BLANK          |            | Gasoline share-oxygenated/reform   |
|                 | RFSHRTR              | (MNUMCR ,  | MNUMYR)    |              |          | PARAM | BLANK          |            | Gasoline share-?                   |
|                 | RFDSTAX              | (MNUMYR)   | ,          |              |          | PARAM | BLANK          |            | Federal Diesel Tax Rate            |
|                 | RFSWDH               | ( 1)       |            |              |          | PARAM | BLANK          |            | Switch reduction for dist fuel     |
| *=======        |                      | ======     | ======     |              | . ====== | ===== | ======         |            |                                    |
| * Refiner       | y Module Report Wr   | iter Var   | iables     |              |          |       |                |            |                                    |
| *=======        |                      | ======     | =====      |              |          | ===== | ======         |            |                                    |
| PMMRPT          |                      | (107705    |            |              |          | TYPE  | UNITS          |            |                                    |
|                 | RFELPURPD            | (MNUMPR,   | MNUMYR)    |              |          | QUNTY | MKWH           |            | ELECTRICITY PURCHASED BY P         |
|                 | RFCGCAPCD            | (MNUMCR,   | MINUMYR)   |              |          | QUNTY | MKWH           |            | COGEN CAP KWH/YR->CGRECAP          |
|                 | RFCGCAPPD            | (MNUMPR,   | MINUMIR)   |              |          | QUNIY | MEMI           |            | COGEN CAPACILI KWH/IK BI P         |
|                 | RFCGCAPADDPD         | (MNUMPR,   | MNTIMVD)   |              |          | QUNII |                |            | CUGEN CAP KWH/IR BI PADD A         |
|                 | REDSICAP<br>REDSTITI | (MNUMPR,   | MNTIMVP)   |              |          | OUNTY | LBIU<br>+BTTI  |            | CAPACITY UTILIZATION DATE          |
|                 | REIPOCLI             | (MNIIMPR   | MNUMYR     | 2)           |          | OUNTY | BBL/DA         |            | IMPORT CRIDE-LO SULFUR LT(P O)     |
|                 | REIPOCMH             | (MNIIMPR   | MNIIMYR    | 2)           |          | OUNTY | BBL/DA         |            | IMPORT CRIDE-MD SULFUR HVY         |
|                 | REIPOCHI.            | (MNIIMPR   | MNUMYR     | 2)           |          | OUNTY | BBL/DA         |            | IMPORT CRIDE-HI SULFUR LT          |
|                 | REIPOCHH             | (MNUMPR .) | MNUMYR .   | 2)           |          | OUNTY | BBL/DA         |            | IMPORT CRUDE-HI SULFUR HVY         |
|                 | RFIPOCHV             | (MNUMPR .) | MNUMYR .   | 2)           |          | OUNTY | BBL/DA         |            | IMPORT CRUDE-HI SULFUR V HVY       |
|                 | RFIPOMG              | (MNUMPR,   | MNUMYR,    | 2)           |          | OUNTY | BBL/DA         |            | IMPORTS MOTOR GASOLINE(P,O)        |
|                 | RFIPODS              | (MNUMPR,   | MNUMYR,    | 2)           |          | ÕUNTY | BBL/DA         |            | IMPORTS DISTILLATE (P.O)           |
|                 | RFIPORL              | (MNUMPR,   | MNUMYR,    | 2)           |          | ÕUNTY | BBL/DA         |            | IMPORTS LO SULFUR RESID (P,O)      |
|                 | RFIPQRH              | (MNUMPR,   | MNUMYR,    | 2)           |          | QUNTY | BBL/DA         |            | IMPORTS HI SULFUR RESID $(P, Q)$   |
|                 | RFIPQJF              | (MNUMPR,   | MNUMYR,    | 2)           |          | QUNTY | BBL/DA         |            | IMPORTS JET FUEL (P,Q)             |
|                 | RFIPQLG              | (MNUMPR,   | MNUMYR,    | 2)           |          | QUNTY | BBL/DA         |            | IMPORTS LPG (P,Q)                  |
|                 | RFIPQME              | (MNUMPR,   | MNUMYR,    | 2)           |          | QUNTY | BBL/DA         |            | IMPORTS METHANOL (P,Q)             |
|                 | RFIPQMT              | (MNUMPR,   | MNUMYR,    | 2)           |          | QUNTY | BBL/DA         |            | IMPORTS MTBE(P,Q)                  |
|                 | RFIMCR               | (MNUMPR,   | MNUMYR)    |              |          | QUNTY | tBTU           |            | 1 Crude net imports                |
|                 | RFIMTP               | (MNUMPR,   | MNUMYR)    |              |          | QUNTY | tBTU           |            | 2 Total prod net imports           |
|                 | RFQMG                | (MNUMCR,   | MNUMYR)    |              |          | QUNTY | tBTU           |            | REFORMULATED /                     |
|                 | RFQDS                | (MNUMCR,   | MNUMYR)    |              |          | QUNTY | tBTU           |            | DISTILLATE FUEL OIL> QDSAS (M      |
|                 | RFQJF                | (MNUMCR,   | MNUMYR)    |              |          | QUNTY | tBTU           |            | JET FUEL> QJFTR (MNU               |
|                 | RFQRL                | (MNUMCR,   | MNUMYR)    |              |          | QUNTY | tBTU           |            | RESIDUAL FUEL OIL LOW SULFUR> Q    |
|                 | RFQRH                | (MNUMCR,   | MNUMYR)    |              |          | QUNTY | tBTU           |            | RESIDUAL FUEL OIL HIGH SULFUR>     |
|                 | RFQLG                | (MNUMCR,   | MINUMYR)   |              |          | QUNTY | CBIU           |            | LPG> QLGAS MNUMCR, M               |
|                 | REQPE                | (MNUMCR,   | MNUMYR)    |              |          | QUNTY | tBTU<br>+ DTTI |            | VEDOCENIE > OKCAS> QPF1            |
|                 | RFQRS                | (MNUMCR,   | MNTIMVD)   |              |          | QUNII |                |            | CTUER> QASAS (MINUMCR,             |
|                 | REQUIN               | (MNUMCR,   | MNTIMVP)   |              |          | OUNTY | LBIU<br>+BTTI  |            | OTHER> QOTAS (MNOMCR,              |
|                 | REOSTG               | (MNUMCR)   | MNTIMYR)   |              |          | OUNTY | + BTII         |            | OUANTITY OF STILL GAS              |
|                 | REOPCK               | (MNUMCR)   | MNIIMYR)   |              |          | OUNTY | + BTII         |            | QUANTITY OF PETROLEUM COKE         |
|                 | REPOIPRDT            | (MNUMPR .) | MNUMYR .   | 2)           |          | OUNTY | + BTU          |            | TOTAL PRODUCT IMPORTED             |
|                 | RFOEXPRDT            | (MNUMPR .) | MNUMYR)    | 47           |          | OUNTY | tBTU           |            | CRUDE EXPORTED                     |
|                 | RFOEXCRD             | (MNUMPR,   | MNUMYR)    |              |          | OUNTY | tBTU           |            | CRUDE EXPORTED                     |
|                 | RFOICRD              | (MNUMPR,   | MNUMYR)    |              |          | ÕUNTY | BBL/DA         |            | IMPORTED TOTAL CRUDE MMBBLD/PADD   |
|                 | RFPOUFC              | (MNUMPR,   | MNUMYR,    | 2)           |          | ÕUNTY | tBTU           |            | TOTAL IMPORTS OF UNFINISHED REF MO |
|                 | RFQIN                | (MNUMYR)   | ,          |              |          | QUNTY | tBTU           |            | INDUSTRIAL PRDS                    |
|                 | RFÕTR                | (MNUMYR)   |            |              |          | QUNTY | tBTU           |            | TRANSP. PRDS                       |
|                 | RFQRC                | (MNUMYR)   |            |              |          | QUNTY | tBTU           |            | RESID/COMM.PRDS                    |
|                 | RFQEL                | (MNUMYR)   |            |              |          | QUNTY | tBTU           |            | UTILITY PRDS                       |
|                 | RFQSECT              | (MNUMYR)   |            |              |          | QUNTY | tBTU           |            | TOTAL SECT.PRDS                    |
|                 | RFDPRDLPG            | (MNUMPR,   | MNUMYR)    |              |          | QUNTY | tBBL/D         |            | REF PRD; LPG                       |
|                 | RFDPRDTRG            | (MNUMPR,   | MNUMYR)    |              |          | QUNTY | tBBL/D         |            | REF PRD; MOTOR GASOLINE            |
|                 | RFDPRDRFG            | (MNUMPR,   | MNUMYR)    |              |          | QUNTY | tBBL/D         |            | REF PRD; REFORMULATED MOGAS        |

| COMMON<br>Block |                  |                    |            |         |        |                |         |            |                                    |
|-----------------|------------------|--------------------|------------|---------|--------|----------------|---------|------------|------------------------------------|
| Name            | Variable Name    |                    | Variabl    | e Dimer | nsions | Var            | iable D | escriptors | Variable Descriptio                |
|                 |                  |                    |            |         |        |                |         |            |                                    |
|                 | RFDPRDTRH        | (MNUMPR            | , MNUMYR ) |         |        | QUNTY          | tBBL/D  |            | REF PRD; HIGH OXYGENATED MOGAS     |
|                 | RFDPRDRF'H       | (MNUMPR            | , MNUMYR ) |         |        | QUNTY          | tBBL/D  |            | REF PRD; REFORM HI OXYG MOGAS      |
|                 | REDERDUIA        | (MNIIMDR           | MNUMIR)    |         |        | OUNTY          | +BBL/D  |            | REF PRD: VEROGENE                  |
|                 | REDERDN2H        | (MNIIMPR           | MNUMYR)    |         |        | OUNTY          | tBBL/D  |            | REF PRD: NO 2 DISTILLATE           |
|                 | RFDPRDN6T        | (MNUMPR            | , MNUMYR ) |         |        | OUNTY          | t.BBL/D |            | REF PRD; LO SULFER RESID OIL       |
|                 | RFDPRDN6B        | (MNUMPR            | , MNUMYR ) |         |        | OUNTY          | tBBL/D  |            | REF PRD; HI SULFER RESID OIL       |
|                 | RFDPRDOTH        | (MNUMPR            | , MNUMYR ) |         |        | QUNTY          | tBBL/D  |            | REF PRD; OTHER PETROLEUM           |
|                 | RFDPRDPCF        | (MNUMPR            | , MNUMYR ) |         |        | QUNTY          | tBBL/D  |            | REF PRD; PETROCHEM FEEDSTOCKS      |
|                 | RFDPRDAST        | (MNUMPR            | , MNUMYR ) |         |        | QUNTY          | tBBL/D  |            | REF PRD; ASPHALT & ROAD OIL        |
|                 | RFDPRDDSL        | (MNUMPR            | ,MNUMYR)   |         |        | QUNTY          | tBBL/D  |            | REF PRD; LOW SULFUR DIESEL         |
|                 | RFDPRDSTG        | (MNUMPR            | , MNUMYR ) |         |        | QUNTY          | tBBL/D  |            | REF PRD; STILL GAS                 |
|                 | RFDPRDCOK        | (MNUMPR            | , MNUMYR ) |         |        | QUNTY          | tBBL/D  |            | REF PRD; PETROLEUM COKE            |
|                 | RFDSCUM          | (MNUMPR            | , MNUMYR ) |         |        | QUNTY          | TBBT/D  |            | REF CUM CAP EXPANSION              |
| *               | RFBD51CAP        | (MINUMPR           | , MINOMYR) |         |        | <br>QUNIY      | BBL/DA  |            | REF BASE DISTILLATION CAPACITY     |
| * Oil & Ga      | as Module Output |                    |            |         |        | <br>           |         |            |                                    |
| *=======        |                  |                    |            |         |        | <br>=====      | ======  |            |                                    |
| OGSMOUT         | OGDEGNGON        | / 17               |            |         |        | TYPE           | UNITS   |            | NTA dawa waa waxaa ayaabawa        |
|                 | OGRESNGON        | ( 17<br>( 17       | , MNUMYR ) |         |        | QUNTY          | BCF     |            | NA dry gas reserves onshore        |
|                 | OGELSNGON        | ( 17               | MNUMIR)    |         |        | DARAM          | SCALAR  |            | NA dry gas p/r racio onshore       |
|                 | OGRESNGOF        | ( 3                | MNUMYR)    |         |        | OUNTY          | BCF     |            | NA dry gas reserves offsfore       |
|                 | OGPRRNGOF        | ( 3                | , MNUMYR ) |         |        | PARAM          | SCALAR  |            | NA dry gas p/r ratio onshore       |
|                 | OGELSNGOF        | ( 3                | , MNUMYR ) |         |        | PARAM          | SCALAR  |            | NA dry gas prod fcn parm offshr    |
|                 | OGSPEND          | (MNUMYR            | )          |         |        | QUNTY          | BLANK   |            | TOTAL NATIONAL EXPENDITURES        |
|                 | OGELSCO          | (MNUMOR            | , MNUMYR ) |         |        | QUNTY          | BLANK   |            | OIL ELASTICITY                     |
|                 | OGPRRCO          | (MNUMOR            | , MNUMYR ) |         |        | QUNTY          | SCALAR  |            | OIL P/R RATIO                      |
|                 | OGRESCO          | (MNUMOR            | , MNUMYR ) |         |        | QUNTY          | MMBBL   |            | OIL RESERVES (MILL. BARRELS)       |
|                 | OGQNGEXP         | (MNUMBX            | , MNUMYR ) |         |        | QUNTY          | BCF     |            | NG EXPORTS (BILL. CU FT)           |
|                 | OGQNGIMP         | (MNUMBX            | , MNUMYR ) |         |        | QUNTY          | BCF     |            | NG IMPORTS (BILL, CU FT)           |
|                 | OCDNCIMD         | (MNUMBX<br>(MNUMBY | , MNUMYR ) |         |        | DRICE          | 87\$MCF |            | NG PRICE EXPORTS (\$ / MMCF)       |
|                 | OGPOGIMP         | ( MNITIMVP         | )          |         |        | OUNTY          | 87¢BBI. |            | CRIDE AVC WELLHEAD DRICE           |
|                 | OGOCRREP         | (NOGCRO            | MNIIMVR)   |         |        | OUNTY          | MMBBL   |            | CRIDE PRODUCTION BY OIL CAT        |
|                 | OGOCRRSV         | (MNUMYR            | )          |         |        | OUNTY          | MMBBL   |            | CRUDE RESERVES                     |
|                 | OGPNGWHP         | (MNUMYR            | )          |         |        | ÕUNTY          | 87\$MCF |            | NG AVG WELLHEAD PRICE              |
|                 | OGQNGREP         | (NOGCAT            | , MNUMYR ) |         |        | QUNTY          | BCF     |            | NG PRODUCTION BY GAS CAT           |
|                 | OGQNGRSV         | (MNUMYR            | )          |         |        | QUNTY          | BCF     |            | NG RESERVES                        |
|                 | OGNOWELL         | (MNUMYR            | )          |         |        | QUNTY          | SCALAR  |            | WELLS COMPLETED                    |
|                 | OGTECHON         | ( 3                | , 6,       | MNUMYR  | )      | QUNTY          | SCALAR  |            | TECH FACTORS BY COSTCAT/FUEL/YEAR  |
|                 | OGELSCAN         | ( 2                | , MNUMYR ) |         |        | QUNTY          | SCALAR  |            | (BETA) PRICE ELASTICITY (1=01L,    |
|                 | OGPERCAN         |                    | , MNUMYR ) |         |        | QUNTY          | SCALAR  |            | (UMEGA) GAS EXTRACTION RATE; P/R R |
|                 | OCCNORD          |                    | MNUMIR)    |         |        | OUNTY          | SCALAR  |            | (R) END-OF-IEAR RESERVES.          |
|                 | OGCNOPRD         |                    | MNTIMVR )  |         |        | OUNTY          | SCALAR  |            | CANADIAN PRODUCTION OF OIL & GAS   |
|                 | OGCNPARM1        | ( 1                | )          |         |        | OUNTY          | SCALAR  |            | (ALPHA) ACTUAL GAS ALLOCATION FACT |
|                 | OGCNPARM2        | ( 1                | )          |         |        | OUNTY          | SCALAR  |            | (Y) RESPONSIVENESS OF FLOW TO DIFF |
|                 | OGADFACT         | ( 1                | )          |         |        | QUNTY          | SCALAR  |            | AD GAS FACTOR (BCF/MMB)            |
|                 | OGDIFWOP         | ( 1                | )          |         |        | QUNTY          | SCALAR  |            | CANADA WORLD OIL->WELLHD PRC DIFFE |
|                 | OGCNDEM          | ( 3                | )          |         |        | QUNTY          | SCALAR  |            | CANADIAN DEMAND CALCULATION PARAME |
|                 | OGCNCAP          | ( 6                | , MNUMYR ) |         |        | QUNTY          | SCALAR  |            | CANADIAN CAPACITIES AT BORDER CROS |
|                 | OGCNFLW          | ( 6                | )          |         |        | QUNTY          | SCALAR  |            | INITIAL FLOW RATES AT BORDER CROSS |
|                 | OGCNBLOSS        | ( 6                | )          |         |        | QUNTY          | SCALAR  |            | GAS LOST IN TRANSIT TO BORDER      |
|                 | OGCNEXLOSS       | ( 1                | )          |         |        | QUNTY          | SCALAR  |            | GAS LOST FROM US EXPORT TO CANADA  |
|                 | OCCNDMLOSS       |                    | )          |         |        | QUNTY<br>QUNTY | SCALAR  |            | GAS LUST FROM WELL HEAD TO CANADA  |
|                 | OGONGSAKMY       | 0 ( MNITMVD        | )          |         |        | QUINTY         | SCALAR  |            | MAXIMIM DRODUCTION I IMIT OF SOUTH |
|                 | OGŐIIGDHI/IN     | V TATIN O MIT I K  | /          |         |        | <b>MOINT I</b> | SCALAK  |            | MAAIMUM FRODUCTION LIMIT OF SOUTH  |

| COMMON<br>Block | Variable Name                           |          | Variah     |          | ngiong  |        | Var                | viable D | escript   | ors  | Variable Descriptio                |
|-----------------|-----------------------------------------|----------|------------|----------|---------|--------|--------------------|----------|-----------|------|------------------------------------|
| Name            | Variable Name                           |          | Variabi    |          | GIDIOID |        | Var                | Table D  | /esci ipt | .015 |                                    |
|                 |                                         |          |            |          |         |        |                    |          |           |      |                                    |
|                 | OGQEORCON                               | ( 6,     | MNUMYR     | )        |         |        | QUNTY              | SCALAR   |           |      | CRUDE OIL CONSUMPTION FOR EOR BY R |
|                 | OGQEORPR                                | ( 6,     | MNUMYR     | )        |         |        | QUNTY              | SCALAR   |           |      | CRUDE OIL SUPPLY FROM EOR BY REGIO |
|                 | OGQEORNGC                               | ( 6,     | , 2,       | , MNUMYR | )       |        | QUNTY              | SCALAR   |           |      | NG CONSUMPTION FOR EOR PROD BY REG |
|                 | OGQEORNGP                               | ( 6,     | MNUMYR     | )        |         |        | QUNTY              | SCALAR   |           |      | NG (COPRODUCT) PRODUCTION FROM EOR |
|                 | OGEORCOGC                               | ( 6,     | , 2,       | MNUMYR   | )       |        | QUNTY              | SCALAR   |           |      | COGEN ELEC CAPACITY FROM EOR BY RE |
|                 | OGEORCOGG                               | ( 6,     | . 2        | MNUMYR   | )       |        | ÕUNTY              | SCALAR   |           |      | COGEN ELEC GENERATION FROM EOR BY  |
|                 | OGOANGTS                                | (MNUMYR) | )          |          |         |        | OUNTY              | BCF      |           |      | GAS FLOW AT U.S. BORDER FROM ANGTS |
|                 | OGANGTSMX                               | (MNUMYR) | )          |          |         |        | QUNTY              | BCF      |           |      | MAX KNOWN FLOW IN CURRENT YR (BCF) |
|                 | OGCNCON                                 | ( 2,     | MNUMYR     | )        |         |        | QUNTY              | BCF      |           |      | CANADIAN GAS CONSUMPTION           |
|                 | OGQLNGMAX                               | ( 4,     | MNUMYR     | )        |         |        | QUNTY              | BCF      |           |      | MAX FORESEEABLE LNG REGAS FLOWS    |
|                 | OGCORSV                                 | (NOGCRO  | MNUMYR     | )        |         |        | QUNTY              | MMBBL    |           |      | CRUDE RESERVES BY OIL CATEGORY     |
|                 | OGNGRSV                                 | (NOGCAT, | MNUMYR     | )        |         |        | QUNTY              | BCF      |           |      | NG RESERVES BY GAS CATEGORY        |
|                 | OGCOPRD                                 | (NOGRGN, | MNUMYR     | )        |         |        | QUNTY              | MMBBL    |           |      | CRUDE PRODUCTION BY OIL CATEGORY   |
|                 | OGNGPRD                                 | (NOGRGN, | MNUMYR     | )        |         |        | QUNTY              | BCF      |           |      | NG PRODUCTION BY GAS CATEGORY      |
|                 | OGCOWHP                                 | (NOGRGN, | MNUMYR     | )        |         |        | PRICE              | 87\$BBL  |           |      | CRUDE WELLHEAD PRICE BY OIL CATEGO |
|                 | OGNGWHP                                 | (NOGRGN, | MNUMYR     | )        |         |        | PRICE              | 87\$MCF  |           |      | NG WELLHEAD PRICE BY GAS CATEGORY  |
|                 | EXSPEND                                 | (NOGDTP, | , MNUMYR ) | )        |         |        | PRICE              | m87\$    |           |      | EXPLORATORY EXPENDITURES           |
|                 | DVSPEND                                 | (NOGDTP, | , MNUMYR ) | )        |         |        | PRICE              | m87\$    |           |      | DEVELOPMENT EXPENDITURES           |
|                 | EXOILFT                                 | (NOGDTP, | , MNUMYR ) | )        |         |        | QUNTY              | MILL     |           |      | OIL FOOTAGE (EXPL.)                |
|                 | DVOILFT                                 | (NOGDTP, | , MNUMYR ) | )        |         |        | QUNTY              | MILL     |           |      | OIL FOOTAGE (DEV.)                 |
|                 | EXGASFT                                 | (NOGDTP, | , MNUMYR ) | )        |         |        | QUNTY              | MILL     |           |      | GAS FOOTAGE (EXPL.)                |
|                 | DVGASFT                                 | (NOGDTP, | , MNUMYR ) | )        |         |        | QUNTY              | MILL     |           |      | GAS FOOTAGE (DEV.)                 |
|                 | EXDRYFT                                 | (NOGDTP, | , MNUMYR   | )        |         |        | QUNTY              | MILL     |           |      | DRY FOOTAGE (EXPL.)                |
|                 | DVDRYFT                                 | (NOGDTP, | MNUMYR     | )        |         |        | QUNTY              | MILL     |           |      | DRY FOOTAGE (DEV.)                 |
|                 | EXFTAGE                                 | (NOGDTP, | , MNUMYR   | )        |         |        | QUNTY              | MILL     |           |      | TOTAL FOOTAGE (EXPL.)              |
|                 | DVFTAGE                                 | (NOGDTP, | MNUMYR     | )        |         |        | QUNTY              | MILL     |           |      | TOTAL FOOTAGE (DEV.)               |
|                 | FNGIMPORT                               | (NFNGSS, | MNUMYR     | )        |         |        | QUNTY              | BCF      |           |      | NG IMPORTS                         |
|                 | FNGEXPORT                               | (NFNGSS, | MNUMYR (   | )        |         |        | QUNTY              | BCF      |           |      | NG EXPORTS                         |
| *               | FNGIMPRIC                               | (NFNGSS, | , MINUMIR, |          |         |        | QUNIY              | 87ŞMCF   |           |      | IMPORI PRICES                      |
| * Natural       | Gas Transmission                        | & Distri | bution     | Module   | Output  |        |                    |          |           |      |                                    |
| *=======        |                                         | ======   | ======     | ======   | ======  |        |                    |          |           |      |                                    |
| NGTDMOUT        |                                         |          |            |          |         |        | TYPE               | UNITS    |           |      |                                    |
|                 | OGPRDNGON                               | ( 17,    | MNUMYR     | )        |         |        | OUNTY              | BCF      |           |      | NA DRY GAS PROD ONSHORE (BCF)      |
|                 | OGPRDNGOF                               | ( 3,     | MNUMYR     | )        |         |        | OUNTY              | BCF      |           |      | NA DRY GAS PROD OFFSHORE (BCF)     |
|                 | PRNG_PADD                               | (MNUMPR  | MNUMYR     | )        |         |        | QUNTY              | BCF      |           |      | TOT DRY GAS PRODUCTION (BCF) W/L&P |
|                 | PGFELGR                                 | ( 21,    | MNUMYR     | )        |         |        | PRICE              | 87\$BTU  |           |      | E UTIL FIRM NG PRICE (T BTU)       |
|                 | PGIELGR                                 | ( 21,    | MNUMYR     | )        |         |        | PRICE              | 87\$BTU  |           |      | E UTIL INTERRUPTIBLE NG PRICE (T B |
|                 | PGCELGR                                 | ( 21,    | MNUMYR     | )        |         |        | PRICE              | 87\$BTU  |           |      | E UTIL COMPETITIVE NG PRICE (T BTU |
|                 | CLSYNGWP                                | ( 17,    | MNUMYR     | )        |         |        | PRICE              | 87\$BTU  |           |      | SYNTHETIC NG PRICE FROM COAL       |
| *=======        | =========                               | =====    |            | =====    |         | =====  | =====              | =====    | =====     |      |                                    |
| * Natural       | Gas Transmission                        | & Distri | ibution    | report   | Writer  | output | 3                  |          |           |      |                                    |
| *=======        |                                         | =====    |            |          | =====   | ====== | ======             |          |           |      |                                    |
| NGTDMREP        |                                         |          |            |          |         |        | TYPE               | UNITS    |           |      |                                    |
|                 | OGWPRNG                                 | (MNUMOR, | MNUMYR     | )        |         |        | PRICE              | 87\$MCF  |           |      | NG WELLHEAD PRICE (87\$/MCF)       |
|                 | OGIMNGP                                 | (MNUMYR) | )          |          |         |        | QUNTY              | BCF      |           |      | NET IMPORTS - PIPELINE NG          |
|                 | OGIMLNG                                 | (MNUMYR) | )          |          |         |        | QUNTY              | BCF      |           |      | NET IMPORTS OF LNG                 |
|                 | OGPRSUP                                 | (MNUMYR) |            |          |         |        | QUNTY              | BCF      |           |      | TOTAL SUPPLEMENTAL GAS (SYN+OTH)   |
|                 | OGPRDNG                                 | (MNUMOR, | MNUMYR     | )        |         |        | QUN.I.X            | BCF.     |           |      | DOMESTIC DRY NG PRODUCTION         |
|                 | OGIMMEX                                 | (MNUMYR) | )          |          |         |        | QUNTY              | BCF      |           |      | NET IMPORTS OF MEX NG              |
|                 | OGIMCAN                                 | (MNUMYR) | MANTERATOR |          |         |        | QUN.I.X            | BCF      |           |      | NET IMPORTS OF CAN NG              |
|                 | NGSTRCAP                                | ( 24,    | MINUMYR    |          |         |        | QUNITY             | MCF      |           |      | NG UNDERGROUND STORAGE CAPACITY    |
|                 | NGP1PCAP                                | ( 2,     | MNTUMYR ;  |          |         |        | QUINTLY<br>QUINTLY | BCF      |           |      | NG PIPELINE CAPACITY - NATIONAL    |
| *               | UGPKSUP3                                | ( 3,     |            |          |         |        | QUNIX              | БСР<br>  |           |      | SUPPLEMENTAL NG SUBCATEGORIES      |
| * Utility       | EFP Module Output                       |          |            |          |         |        |                    |          |           |      |                                    |
| *========       | ======================================= |          |            |          |         |        |                    |          |           |      |                                    |
| UEFPOUT         |                                         |          |            |          |         |        | TYPE               | UNITS    |           |      |                                    |

| COMMON<br>Block | Variable Name     | Variabl                | o Dimongiong | Variable     | Deggriptorg           | Variable Degeriptic                |
|-----------------|-------------------|------------------------|--------------|--------------|-----------------------|------------------------------------|
| Name            | Vallable Name     | Variabi                | e Dimensions | Variable     | Descriptors           | Variable Descriptio                |
|                 |                   |                        |              |              |                       |                                    |
|                 | PELAV             | (MNUMCR, MNUMYR)       | 1            | PRICE 87\$KW | νH                    | Utility avoided costs              |
|                 | PELCP             | (MNUMCR, MNUMYR)       | 1            | PRICE 87\$KW | 7H                    | Capital component of price         |
|                 | PELFL             | (MNUMCR, MNUMYR)       | 1            | PRICE 87\$KW | ИН                    | Fuel component of price            |
|                 | PELOM             | (MNUMCR, MNUMYR)       | 1            | PRICE 87\$KW | VΗ                    | O&M component of price             |
|                 | PELWH             | (MNUMCR, MNUMYR)       | 1            | PRICE 87\$KW | VΗ                    | Wholesale Electricity Price        |
|                 | PELTL             | (MNUMCR, MNUMYR)       | 1            | PRICE 87\$KW | VΗ                    | Total price                        |
| *========       |                   |                        |              |              |                       |                                    |
| * Utility       | EFP Module Output |                        |              |              |                       |                                    |
| *=======        |                   |                        |              |              |                       |                                    |
| EP.DOO.L        |                   |                        |              | TYPE UNITS   | )<br>11 T             | Dur Eles Deels Des by MEDG         |
|                 | DEDCIMID          | (MNTIMNE, MINUMIR,     |              | PRICE 075KW  |                       | Pur Elec, Peak. Res. by NERC       |
|                 | DEDUDND           | (MINUMINE, MINUMIE)    |              | DDICE 97¢KW  | n<br>TU               | Dur Flog Dook Trong by NERC        |
|                 | DEDINNE           | (MNUMNE MNUMVE)        |              | DRICE 875KW  | 11<br>11              | Dur Flee Deak Ind by NERC          |
|                 | DEDAGND           | (MNTIMNE MNTIMVE)      |              | DDICE 97¢KW  | 11                    | Dur Flog Dook All by NERC          |
|                 | DENESNE           | (MNUMNE MNUMVE)        |              | DRICE 875KW  | 11<br>11              | Dur Elec Norrk Reg by NERC         |
|                 | PENCMNR           | (MNUMNE MNUMYE)        |              | PRICE 875KW  | JH                    | Pur Elec Nonpk Com by NERC         |
|                 | PENTRNR           | (MNUMNE MNUMYE)        |              | PRICE 875KW  | JH                    | Pur Elec Nonpk Trans by NERC       |
|                 | PENINNR           | (MNUMNR, MNUMYR)       |              | PRICE 875KW  | VH                    | Pur. Elec. Nonpk. Ind. by NERC     |
|                 | PENASNR           | (MNUMNR, MNUMYR)       |              | PRICE 875KW  | JH III                | Pur Elec, Nonpk, All by NERC       |
|                 | PELRSNR           | (MNUMNR, MNUMYR)       |              | PRICE 87\$KW | /H                    | Pur. Elec. Res. by NERC            |
|                 | PELCMNR           | (MNUMNR, MNUMYR)       |              | PRICE 87\$KW | /H                    | Pur. Elec. Com. by NERC            |
|                 | PELTRNR           | (MNUMNR, MNUMYR)       | 1            | PRICE 87\$KW | ИН                    | Pur. Elec. Trans. by NERC          |
|                 | PELINNR           | (MNUMNR, MNUMYR)       | 1            | PRICE 87\$KW | νH                    | Pur. Elec. Ind. by NERC            |
|                 | PELASNR           | (MNUMNR, MNUMYR)       | 1            | PRICE 87\$KW | νH                    | Pur. Elec. All Sectors by NERC     |
|                 | PELCPNR           | (MNUMNR, MNUMYR)       | 1            | PRICE 87\$KW | νH                    | Capital Component by NERC          |
|                 | PELFLNR           | (MNUMNR, MNUMYR)       | 1            | PRICE 87\$KW | νH                    | Fuel Component by NERC             |
|                 | PELOMNR           | (MNUMNR, MNUMYR)       | 1            | PRICE 87\$KW | νH                    | O&M Component by NERC              |
|                 | PELWHNR           | (MNUMNR, MNUMYR)       | 1            | PRICE 87\$KW | lΗ                    | WHOLESALE Component by NERC        |
|                 | PELTLNR           | (MNUMNR, MNUMYR)       | 1            | PRICE 87\$KW | lΗ                    | AvgAll Components by NERC          |
| *=======        |                   |                        |              |              |                       |                                    |
| * Utility       | EFD Module Output |                        |              |              |                       |                                    |
| *=======        |                   |                        |              |              | := ====== ======<br>, |                                    |
| OFFDOOT         | HONOLND           |                        |              | OTNER ONTES  | )                     | Gool Con by Ormonobin Three (NEDC  |
|                 | UGNCENR           | ( Z, MINUMINR,         | MNUMIR)      | QUNII MKWH   |                       | Coal Gen by Ownership Type/NERC    |
|                 | UGNGFNR           | ( 2, MINUMINE,         | MNTIMVD)     | OUNTY MEMU   |                       | Cag (Int.) Can by Ownership Type/N |
|                 | UGNGINR           | ( 2, MINUMINE,         | MNTIMVD)     | OUNTY MEMU   |                       | Gas (Inc.) Gen by Ownership Type/M |
|                 | UGNDSNR           | ( 2 MNUMNR             | MNUMYR)      | OUNTY MEWH   |                       | DS Gen by Ownership type/          |
|                 | UGNRUNR           | ( 2 MNUMNR             | MNUMYR)      | OUNTY MEWH   |                       | RL Gen by Ownership type/NERC      |
|                 | UGNRHNR           | ( 2. MNUMNR            | MNUMYR)      | OUNTY MKWH   |                       | RH Gen by Ownership type/NERC      |
|                 | UGNURNR           | ( 2, MNUMNR            | MNUMYR)      | OUNTY MKWH   |                       | Nuc Gen by Ownership type/NERC     |
|                 | UGNPSNR           | ( 2, MNUMNR            | MNUMYR)      | OUNTY MKWH   |                       | PS Gen by Ownership type/NERC      |
|                 | UGNHYNR           | ( 2, MNUMNR            | MNUMYR)      | OUNTY MKWH   |                       | Hyd (Not PS) Gen by Ownership type |
|                 | UGNGENR           | ( 2, MNUMNR            | MNUMYR)      | OUNTY MKWH   |                       | Geothermal Gen by Ownership type/N |
|                 | UGNMSNR           | ( 2, MNUMNR            | MNUMYR)      | OUNTY MKWH   |                       | MSW Gen by Ownership type/NERC     |
|                 | UGNWDNR           | ( 2, MNUMNR            | MNUMYR)      | QUNTY MKWH   |                       | Wind Gen by Ownership type/NERC    |
|                 | UGNSONR           | ( 2, MNUMNR,           | MNUMYR)      | QUNTY MKWH   |                       | Solar Gen by Ownership type/NERC   |
|                 | UGNPVNR           | <pre>( 2,MNUMNR)</pre> | MNUMYR)      | QUNTY MKWH   |                       | Photovoltaic Gen by Ownership type |
|                 | UGNWNNR           | ( 2, MNUMNR            | MNUMYR)      | QUNTY MKWH   |                       | Wind Gen by Ownership type/NERC    |
|                 | UGNHONR           | ( 2, MNUMNR            | MNUMYR)      | QUNTY MKWH   |                       | Hyd/Oth Gen by Ownership type/NER  |
|                 | UGNTLNR           | ( 2, MNUMNR,           | MNUMYR)      | QUNTY MKWH   |                       | Tot. Gen by Ownership Type/NERC    |
|                 | UPRCLNR           | (MNUMNR, MNUMYR)       | 1            | PRICE 87\$KW | νH                    | Coal Price by Ownership Type/NERC  |
|                 | UPRGFNR           | (MNUMNR, MNUMYR)       | 1            | PRICE 87\$KW | νH                    | Gas (Firm) Price by Ownership Type |
|                 | UPRGINR           | (MNUMNR, MNUMYR)       | 1            | PRICE 87\$KW | νH                    | Gas (Int.) Price by Ownership Type |
|                 | UPRGCNR           | (MNUMNR, MNUMYR)       |              | PRICE 87\$KW | /H                    | Gas (Comp) Price by Ownership Type |
|                 | UPRDSNR           | (MNUMNR, MNUMYR)       |              | PRICE 87\$KW | VH                    | DS Price by Ownership Type/NERC    |
|                 | UPRRLNR           | (MNUMNR, MNUMYR)       |              | PRICE 87\$KW | VH                    | RL Price by Ownership Type/NERC    |

| COMMON<br>Block | Variable Name       | Variable Dimensions  | Variable Degeriptorg          | Variable Descriptio                     |
|-----------------|---------------------|----------------------|-------------------------------|-----------------------------------------|
| Nalle           | Variabie Name       | Variable Dimensions  | Variable Descriptors          |                                         |
|                 |                     |                      |                               |                                         |
|                 | UPRRHNR             | (MNUMNR, MNUMYR)     | PRICE 87\$KWH                 | RH Price by Ownership Type/NERC         |
|                 | UPRURNR             | (MNUMNR, MNUMYR)     | PRICE 87\$KWH                 | Nuc Price by Ownership Type/NERC        |
|                 | UPRHONR             | (MNUMNR, MNUMYR)     | PRICE 87\$KWH                 | Ren. Price by Ownership Type/NERC       |
|                 | UTSO2               | (MNUMNR, MNUMYR)     | QUNTY MKWH                    | Total SO2 Emissions by NERC             |
|                 | UTNOX               | (MNUMNR, MNUMYR)     | QUNTY MKWH                    | Total NOX Emissions by NERC             |
|                 | UTCO2               | (MNUMNR, MNUMYR)     | QUNTY MKWH                    | Total CO2 Emissions by NERC             |
|                 | URETTLU             | (MNUMNR, MNUMYR)     | QUNTY MKWH                    | Util Total Retirements by Nerc          |
|                 | UGNUBCR             | (MNUMCR, MNUMYR)     | QUNTY MKWH                    | Util BWR Nuclear gener. by CENSUS       |
|                 | UGNUPCR             | (MNUMCR, MNUMYR)     | QUNTY MKWH                    | Util PWR Nuclear gener. by CENSUS       |
|                 | QBCELNR             | (NDREGN, MNUMYR)     | QUNTY MKWH                    | VLS Bit Coal consumption by Coal R      |
|                 | QBDELNR             | (NDREGN, MNUMYR)     | QUNTY MKWH                    | LS Bit Coal consumption by Coal Re      |
|                 | QBMELNR             | (NDREGN, MNUMYR)     | QUNTY MKWH                    | MS Bit Coal consumption by Coal Re      |
|                 | QBHELNR             | (NDREGN, MNUMYR)     | QUNTY MKWH                    | HS Bit Coal consumption by Coal Re      |
|                 | QSCELNR             | (NDREGN, MNUMYR)     | QUNTY MKWH                    | VLS Sub Coal consumption by Coal R      |
|                 | QSDELNR             | (NDREGN, MNUMYR)     | QUNTY MKWH                    | LS Sub Coal consumption by Coal Re      |
|                 | QSMELNR             | (NDREGN, MNUMYR)     | QUNTY MKWH                    | MS Sub Coal consumption by Coal Re      |
|                 | QSHELNR<br>OLCELND  | (NDREGN, MNUMYR)     | QUNII MKWH<br>OUNTY MKWU      | HS Sub Coal consumption by Coal Re      |
|                 | QLCELNR<br>OLDELND  | (NDREGN, MNUMYR)     | QUNII MKWH<br>OUNTY MKWU      | VLS Lig Coal consumption by Coal R      |
|                 | OI MELNIR           | (NDREGN, MNUMYD)     | QUNII MKWH<br>OUNTY MKWH      | MS Lig Coal consumption by Coal Re      |
|                 | QLMELNR<br>OLUELND  | (NDREGN, MNUMYR)     | QUNII MKWH<br>OUNTY MKWU      | MS Lig Coal consumption by Coal Re      |
|                 |                     | (NDREGN, MNUMVR)     | QUNII MKWH<br>OUNTY MKWH      | 1-4 Pit Coal consumption by Coal Re     |
|                 | OSTELNR             | (NDREGN MNUMYR)      | OUNTY MEWH                    | 5-7 Sub Coal consumption by Coal R      |
|                 | OLTELNR             | (NDREGN MNUMYR)      | OUNTY MKWH                    | 9-12 Lig Coal consumption by Coal I     |
|                 | OGFFLGR             | (10)(EON, MOMIN)     | OUNTY MEWH                    | NG "firm" consumption by NGTDM          |
|                 | OGIELGR             | ( 21 MNIIMYR)        | OUNTY MKWH                    | NG "inter" consumption by NGTDM         |
|                 | OGCELGR             | ( 21, MNUMYR)        | OUNTY MKWH                    | NG "compet" consumption by NGTDM        |
| *=======        | = ================= |                      | = ====== ====== ======        | = ===================================== |
| * Utility       | y DAT Module Outpu  | t                    |                               |                                         |
| *=======        |                     |                      |                               |                                         |
| UDATOUT         | HANDAGH             |                      | TYPE UNITS                    | Util Gool Steen Generity by NEDG        |
|                 | UCAPCSU             | (MNUMINE, MINUMIE)   | QUNIY LMWAII                  | Util Coal Steam Capacity by NERC        |
|                 | UCAPOSU             | (MINUMINE, MINUMIER) | QUNIY LMWAII                  | Util Other Steam Capacity by NERC       |
|                 | UCAPCCU             | (MNUMINE, MNUMYE)    | QUNII CMWAII<br>OINTY EMMANTT | Util Combustion Turb Capacity by NE     |
|                 | UCAPCIU             | (MINUMINE, MINUMIER) | QUNIY LMWAII                  | Util Compustion Turb, Capacity by .     |
|                 | UCAPNUU             | (MITIMINE MITIMUE)   | QUNII CMWAII<br>OUNTY +MWATT  | Util Nuclear Capacity by NERC           |
|                 | UCAPPSO             | (MITIMITE MITIMITE)  | QUNII CHWAII<br>OUNTY +MWATT  | Util Convention Hydro Cap by NERC       |
|                 | UCADCEII            | (MNUMNE MNUMVE)      | OUNTY +MWATT                  | Util Ceothermal Capacity by NERC        |
|                 | UCADMEII            | (MNUMNID MNUMVD)     | OUNTY +MWATT                  | Util MGW Conscitu by NERC               |
|                 | UCAPINDU            | (MNUMNE MNUMVE)      | OUNTY +MWATT                  | Util Biomage/Wood Capacity by NERC      |
|                 | UCAPSTU             | (MNUMNE MNUMYE)      | OUNTY +MWATT                  | Itil Solar Thermal Capacity by NERC     |
|                 | IICAPPVII           | (MNUMNE MNUMYE)      | OUNTY +MWATT                  | Itil Photovoltaic Capacity by NERC      |
|                 | UCAPWNU             | (MNUMNR, MNUMYR)     | OUNTY +MWATT                  | Util Wind Capacity by NERC              |
|                 | UCAPRNII            | (MNUMNE MNUMYE)      | OUNTY +MWATT                  | Itil Renewable (exclud PS) Cap by       |
|                 | UCAPTLU             | (MNUMNE MNUMYE)      | OUNTY +MWATT                  | Util Total Capacity by NERC             |
|                 | UCAPCSN             | (MNUMNR, MNUMYR)     | OUNTY +MWATT                  | NonUtil Coal Steam Capacity by NER      |
|                 | UCAPOSN             | (MNUMNR, MNUMYR)     | OUNTY +MWATT                  | NonUtil Other Steam Capacity by NE      |
|                 | UCAPCCN             | (MNUMNR, MNUMYR)     | OUNTY LAWATT                  | NonUtil Combined Cycle Cap by NERC      |
|                 | UCAPCTN             | (MNUMNR, MNUMYR)     | OUNTY LMWATT                  | NonUtil Comb Turb. Capacity by NER      |
|                 | UCAPNUN             | (MNUMNR, MNUMYR)     | OUNTY LMWATT                  | NonUtil Nuclear Capacity by NERC        |
|                 | UCAPPSN             | (MNUMNR, MNUMYR)     | OUNTY tMWATT                  | NonUtil Pump Storage Capacity by N      |
|                 | UCAPHYN             | (MNUMNR, MNUMYR)     | ÕUNTY tMWATT                  | NonUtil Convention Hydro Cap by N       |
|                 | UCAPGEN             | (MNUMNR, MNUMYR)     | QUNTY tMWATT                  | NonUtil Geothermal Capacity by NER      |
|                 | UCAPMSN             | (MNUMNR, MNUMYR)     | QUNTY tMWATT                  | NonUtil MSW Capacity by NERC            |
|                 | UCAPWDN             | (MNUMNR, MNUMYR)     | QUNTY tMWATT                  | NonUtil Biomass/Wood Capacity by N      |
|                 | UCAPSTN             | (MNUMNR, MNUMYR)     | QUNTY tMWATT                  | NonUtil Solar Thermal Capacity by       |
|                 | UCAPPVN             | (MNUMNR, MNUMYR)     | QUNTY tMWATT                  | NonUtil Photovoltaic Capacity by N      |
|                 |                     |                      |                               |                                         |

| COMMON<br>Block |                           |                |            |                   |        |        |        |            |         |       |                                     |
|-----------------|---------------------------|----------------|------------|-------------------|--------|--------|--------|------------|---------|-------|-------------------------------------|
| Name            | Variable Name             |                | Variab.    | Le Dimer          | nsions |        | Var    | lable D    | escript | ors   | Variable Descriptio                 |
|                 |                           |                |            |                   |        |        |        |            |         |       |                                     |
|                 |                           | / MINITIMINITO | MATTIMAZO  |                   |        |        | OUNTRY | + MM 7 TT  |         |       | Nonlith Wind Conscitut by NEDC      |
|                 | UCAPWINI                  | (MNUMNR        | MNIIMYR    |                   |        |        | OUNTY  | +MWATT     |         |       | NonIItil Renewable (ex PS) Cap by N |
|                 | IICAPTIN                  | (MNUMNR        | MNUMYR     | ,<br>)            |        |        | OUNTY  | + MWATT    |         |       | NonUtil Total Capacity by NERC      |
| *=======        | ========================= | ======         | ======     |                   | ====== | ====== | ====== | ======     |         |       |                                     |
| * Utility       | ECP Module Output         |                |            |                   |        |        |        |            |         |       |                                     |
| *=======        |                           | =====          | ======     | =====             | =====  | ====== | =====  | ======     | ======  | ===== |                                     |
| UECPOUT         |                           |                |            |                   |        |        | TYPE   | UNITS      |         |       |                                     |
|                 | UADDCSU                   | ( 2            | , MNUMNR   | MNUMYR            | )      |        | QUNTY  | tMWATT     |         |       | Util coal steam additions by Nerc   |
|                 | UADDOSU                   | ( 2            | , MNUMNR   | MNUMYR            | )      |        | QUNTY  | tMWATT     |         |       | Util other steam additions by Nerc  |
|                 | UADDCCU                   | ( 2            | , MNUMNR   | MNUMYR            | )      |        | QUNTY  | tMWA'I''I' |         |       | Util combined cycle additions by N  |
|                 | UADDCTU                   | ( 2            | , MINUMINR | MNUMYR<br>MNTIMYD | )      |        | QUNTY  | + MWATT    |         |       | Util comp. turp. additions by Nerc  |
|                 |                           |                | MNTIMNTO   |                   | )      |        | OUNTY  | + MWAII    |         |       | Util hydro additions by Nerc        |
|                 | IIADDPSII                 | ( 2            | MNIIMNR    | MNTIMYR           | )      |        | OUNTY  | +MWATT     |         |       | Util nump storage additions by Nerc |
|                 |                           | ( 2            | MNIIMNR    | MNTIMYR           | )      |        | OUNTY  | + MWATT    |         |       | Util total additions by Nerc        |
|                 | UADDCSN                   | ( 2            | MNUMNR     | MNUMYR            | )      |        | OUNTY  | + MWATT    |         |       | NUGS coal additions by Nerc         |
|                 | UADDOSN                   | ( 2            | , MNUMNR   | MNUMYR            | )      |        | OUNTY  | tMWATT     |         |       | NUGS gas additions by Nerc          |
|                 | UADDCCN                   | ( 2            | MNUMNR     | MNUMYR            | )      |        | QUNTY  | tMWATT     |         |       | NUGS oil additions by Nerc          |
|                 | UADDCTN                   | ( 2            | , MNUMNR   | MNUMYR            | )      |        | QUNTY  | tMWATT     |         |       | NUGS hydro additions by Nerc        |
|                 | UADDNUN                   | ( 2            | , MNUMNR   | MNUMYR            | )      |        | QUNTY  | tMWATT     |         |       | NUGS other additions by Nerc        |
|                 | UADDRNN                   | ( 2            | , MNUMNR   | , MNUMYR          | )      |        | QUNTY  | tMWATT     |         |       | NUGS total additions by Nerc        |
|                 | UADDPSN                   | ( 2            | , MNUMNR   | MNUMYR            | )      |        | QUNTY  | tMWATT     |         |       | NUGS total additions by Nerc        |
|                 | UADDTLN                   | ( 2            | , MNUMNR   | MNUMYR            | )      |        | QUNTY  | tMWATT     |         |       | NUGS total additions by Nerc        |
|                 | XPELAVN                   | (MNUMNR        | ,MECPYR    | )                 |        |        | QUNTY  | tMWATT     |         |       | Exp. Avoided EL cost by Nerc        |
|                 | UADDHYT                   | (MNUMNR        | , MECPYR   | )                 |        |        | QUNTY  | tMWATT     |         |       | Total hydro additions by Nerc       |
|                 | UADDGET                   | (MNUMNR        | , MECPYR   | )                 |        |        | QUNTY  | CMWA'I''I' |         |       | Tot Geoth. Additions by Nerc        |
|                 | UADDMST                   | (MNUMNR        | , MECPIR   | )                 |        |        | QUNTY  | + MWATT    |         |       | Tot MSW additions by Nerc           |
|                 |                           | (MNUMNR        | MECPIK     |                   |        |        | OUNTY  | + MWATT    |         |       | Tot solar the additions by Nerc     |
|                 | UADDOTT                   |                | MECDVR     | ,<br>)            |        |        | OUNTY  | + MWATT    |         |       | Tot DV additions by Nerc            |
|                 | UADDWNT                   | (MNUMNR        | MECPYR     | ,<br>)            |        |        | OUNTY  | + MWATT    |         |       | Tot wind additions by Nerc          |
|                 | UADDPST                   | (MNUMNR        | MECPYR     | ,<br>,            |        |        | OUNTY  | t.MWATT    |         |       | Tot pump stor, additions by Nerc    |
| *=======        |                           | ======         | ======     |                   |        |        |        |            |         |       |                                     |
| * LDSM Mod      | dule Output               |                |            |                   |        |        |        |            |         |       |                                     |
| *=======        |                           |                | ======     | ======            | =====  | =====  | =====  | ======     | ======  | ===== |                                     |
| ULDSMOUT        |                           |                |            |                   |        |        | TYPE   | UNITS      |         |       |                                     |
|                 | UDSMNRG                   | (MNUMNR        | , MNUMYR   | )                 |        |        | QUNTY  | MKWH       |         |       | DSM Energy SavingsNerc (Mkwh)       |
|                 | UDSMCAP                   | (MNUMNR        | , MNUMYR   | )                 |        |        | QUNTY  | MKWH       |         |       | DSM Capacity SavingsNerc (Mkwh)     |
|                 | UDSMEXP                   | (MNUMNR        | , MNUMYR   | )                 |        |        | QUNTY  | MKWH       |         |       | DSM ExpendituresNerc (MM\$)         |
| *=========      |                           |                |            |                   |        |        |        |            |         |       |                                     |
| * Utility       | ETT Module Output         |                |            |                   |        |        |        |            |         |       |                                     |
|                 |                           |                |            |                   |        |        | TVDF   | UNITE      |         |       |                                     |
| 0811001         | UTDMMF                    | (MNUMNR        | MNIIMYR    | )                 |        |        | OUNTY  | MKMH       |         |       | Domestic Firm Power SalesNerc (M    |
|                 | UTDMME                    | (MNUMNR        | MNIIMYR    |                   |        |        | OUNTY  | MKMH       |         |       | Domestic Economy SalesNerc (Mkwh    |
|                 | UTDMDF                    | (MNUMNR        | , MNUMYR   | ,<br>,            |        |        | OUNTY  | m87\$      |         |       | Domestic Firm Power SalesNerc (M    |
|                 | UTDMDE                    | (MNUMNR        | MNUMYR     | )                 |        |        | OUNTY  | m87\$      |         |       | Domestic Economy SalesNerc (MM\$)   |
|                 | UTIMPF                    | (MNUMNR        | , MNUMYR   | )                 |        |        | QUNTY  | мкин       |         |       | Firm Power ImportsNerc (Mkwh)       |
|                 | UTIMPE                    | (MNUMNR        | , MNUMYR   | )                 |        |        | QUNTY  | MKWH       |         |       | Economy Power ImportsNerc (Mkwh)    |
|                 | UTEXPF                    | (MNUMNR        | , MNUMYR   | )                 |        |        | QUNTY  | MKWH       |         |       | Firm Power ExportsNerc (Mwh)        |
|                 | UTEXPE                    | (MNUMNR        | , MNUMYR   | )                 |        |        | QUNTY  | MKWH       |         |       | Economy Power ExportsNerc (Mwh)     |
|                 | UTEXMF                    | (MNUMNR        | , MNUMYR   | )                 |        |        | QUNTY  | MKWH       |         |       | Gross Dom. Firm PowerNerc (Mkw      |
|                 | UTEXME                    | (MNUMNR        | , MNUMYR   | )                 |        |        | QUNTY  | MKWH       |         |       | Gross Dom. Economy Sales-Nerc (Mkw  |
|                 | UTEXDF                    | (MNUMNR        | , MNUMYR   | )                 |        |        | QUNTY  | m87\$      |         |       | Gross Dom. Firm Power -Nerc (MM\$   |
|                 | UTEXDE                    | (MNUMNR        | , MNUMYR   | )                 |        |        | QUNTY  | m87\$      |         |       | Gross Dom. Economy SalesNerc (MM    |
| *=======        |                           | ======         | ======     |                   | =====  |        |        |            |         | ===== |                                     |
| ~ UGOIL E.      | Lectricity Market         | Moaule (       | Jutput     |                   |        |        |        |            |         |       |                                     |
|                 |                           |                | ==         | ==                | =      |        | =      | ==         | ==      | ==    |                                     |

| COMMON<br>Block | Venichle Neme |         | Vanish    | Dimensions    |       | Tee              | deble D |            | Vanishla Dazanishis              |
|-----------------|---------------|---------|-----------|---------------|-------|------------------|---------|------------|----------------------------------|
| Name            | variable Name |         | variab.   | le Dimensions |       | var              | lable D | escriptors | variable Descriptio              |
|                 |               |         |           |               |       |                  |         |            |                                  |
| UGOTIOUT        |               |         |           |               |       | TYPE             | UNITS   |            |                                  |
| 00012001        | PRLELCR       | (MNUMCR | , MNUMYR  | )             |       | PRICE            | 87\$KWH |            | LS RESID PRC FOR D-F PLANTS      |
|                 | PRHELCR       | (MNUMCR | , MNUMYR  | )             |       | PRICE            | 87\$KWH |            | HS RESID PRC FOR D-F PLANTS      |
|                 | QRLELGR       | ( 21    | , MNUMYR  | )             |       | QUNTY            | MKWH    |            | LS RESID USE IN D-F PLANTS       |
|                 | QRHELGR       | ( 21    | , MNUMYR  | )             |       | QUNTY            | MKWH    |            | HS RESID USE IN D-F PLANTS       |
|                 | GSHRMIN       | ( 21    | , MNUMYR  | )             |       | QUNTY            | MKWH    |            | MIN GAS USE IN D-F PLANTS        |
|                 | GRATMIN       | ( 21    | , MNUMYR  | )             |       | QUNTY            | MKWH    |            | G/O PRC RATIO AT MIN USE         |
|                 | GSHRMAX       | ( 21    | , MNUMYR  | )             |       | QUNTY            | MKWH    |            | MAX GAS USE IN D-F PLANTS        |
|                 | GRATMAX       | ( 21    | , MNUMYR  | )             |       | QUNTY            | MKWH    |            | G/O PRC RATIO AT MAX USE         |
|                 | GSHRPAR       | ( 21    | , MNUMYR  | )             |       | QUNTY            | MKWH    |            | PAR GAS USE IN D-F PLANTS        |
|                 | GRATPAR       | ( 21    | , MNUMYR  | )             |       | QUNTY            | MKWH    |            | G/O PRC RATIO AT PAR USE         |
| *=======        |               | =====   |           |               | ===== | =====            |         |            |                                  |
| * Coal Mod      | dule Output   |         |           |               |       |                  |         |            |                                  |
| COALOUT         |               |         |           |               |       | =====<br>TVDF    | INTTS   |            |                                  |
| COADOUI         | COTN TM       |         | MNIIMYR   | 1             |       | OUNTY            | TON ML  |            | Coal transportation ton-miles    |
|                 | COPRCLO       | (MNUMCR | MNUMYR    |               |       | OUNTY            | +BTU    |            | Supply of coal liquids           |
|                 | COPRCIG       | (MNUMCR | MNUMYR    |               |       | OUNTY            | + BTU   |            | Supply of coal gases             |
|                 | COIM          | (MNUMXR | CLTYPE    | MNUMYR)       |       | OUNTY            | t.BTU   |            | Coal exports                     |
|                 | COIMP         | (MNUMXR | CLTYPE    | MNUMYR)       |       | PRICE            | 87SBTU  |            | Coal export prices               |
|                 | COCCLO        | (MNUMCR | MNUMYR    | )             |       | PRICE            | 87\$BTU |            | Delivered costs of coal liquids  |
|                 | COCCLG        | (MNUMCR | MNUMYR    | )             |       | PRICE            | 87\$BTU |            | Delivered costs of coal gases    |
|                 | COSUPC        | (MNUMXR | . CLTYPE  | MNUMYR)       |       | OUNTY            | tBTU    |            | Coal supply curves               |
|                 | COELPRC       | (CLTYPE | MNUMYR    |               |       | PRICE            | 87\$BTU |            | Utility Coal price               |
|                 | CLSYNGPR      | ( 17    | MNUMYR    | )             |       | PRICE            | 87SBTU  |            | Synthetic NG Price from Coal     |
|                 | CLSYNGON      | i 17    | MNUMYR    | )             |       | OUNTY            | tBTU    |            | Synthetic NG quantity            |
|                 | COSBB         | ( 3     | MNUMYR    | )             |       | ÕUNTY            | tBTU    |            | Coal Prod (East, West Miss)      |
|                 | CÕSBT         | ( 3     | , MNUMYR  | )             |       | PARAM            | SCALAR  |            | Coal Conv Factor for Prod        |
|                 | CPSB          | ( 3     | , MNUMYR  |               |       | PRICE            | 87\$BTU |            | Coal Minemouth Price             |
|                 | CODBFT        | (MNUMCR | , 6       | MNUMYR)       |       | PARAM            | SCALAR  |            | Coal Conv Factor for Cons        |
|                 | CQDBFB        | (MNUMCR | , 6       | MNUMYR)       |       | QUNTY            | tBTU    |            | Imports, Exports, Stock Changes  |
|                 | PBCELNR       | (NDREGN | , MNUMYR  |               |       | PRICE            | 87\$BTU |            | VLS BIT COAL PRICE BY NERC       |
|                 | PBDELNR       | (NDREGN | , MNUMYR  | )             |       | PRICE            | 87\$BTU |            | LS BIT COAL PRICE BY NERC        |
|                 | PBMELNR       | (NDREGN | , MNUMYR  | )             |       | PRICE            | 87\$BTU |            | MS BIT COAL PRICE BY NERC        |
|                 | PBHELNR       | (NDREGN | , MNUMYR  | )             |       | PRICE            | 87\$BTU |            | HS BIT COAL PRICE BY NERC        |
|                 | PSCELNR       | (NDREGN | , MNUMYR  | )             |       | PRICE            | 87\$BTU |            | VLS SUB COAL PRICE BY NERC       |
|                 | PSDELNR       | (NDREGN | , MNUMYR  | )             |       | PRICE            | 87\$BTU |            | LS SUB COAL PRICE BY NERC        |
|                 | PSMELNR       | (NDREGN | , MNUMYR  | )             |       | PRICE            | 87\$BTU |            | MS SUB COAL PRICE BY NERC        |
|                 | PSHELNR       | (NDREGN | ,MNUMYR   | )             |       | PRICE            | 87\$BTU |            | HS SUB COAL PRICE BY NERC        |
|                 | PLCELNR       | (NDREGN | ,MNUMYR   | )             |       | PRICE            | 87\$BTU |            | VLS LIG COAL PRICE BY NERC       |
|                 | PLDELNR       | (NDREGN | , MNUMYR  | )             |       | PRICE            | 87\$BTU |            | LS LIG COAL PRICE BY NERC        |
|                 | PLMELNR       | (NDREGN | , MNUMYR  | )             |       | PRICE            | 87\$BTU |            | MS LIG COAL PRICE BY NERC        |
|                 | PLHELNR       | (NDREGN | , MNUMYR  |               |       | PRICE            | 87\$BTU |            | HS LIG COAL PRICE BY NERC        |
|                 | BBCELNR       | (NDREGN | , MNUMYR  | )             |       | LEVEL            | SCALAR  |            | VLS BIT COAL BTU FACT. BY NERC   |
|                 | BBDELNR       | (NDREGN | , MNUMYR  |               |       | LEVEL            | SCALAR  |            | LS BIT COAL BTU FACT. BY NERC    |
|                 | BBMELNR       | (NDREGN | , MNUMYR  |               |       | LEVEL            | SCALAR  |            | MS BIT COAL BTU FACT. BY NERC    |
|                 | BBHELNR       | (NDREGN | , MNUMYR  |               |       | LEVEL            | SCALAR  |            | HS BIT COAL BTU FACT. BY NERC    |
|                 | BSCELNR       | (NDREGN | , MNUMYR  |               |       | LEVEL            | SCALAR  |            | VLS SUB COAL BTU FACT. BY NERC   |
|                 | BSDELNR       | (NDREGN | , MNUMYR  |               |       | LEVEL            | SCALAR  |            | LS SUB COAL BTU FACT. BY NERC    |
|                 | BSMELNR       | (NDREGN | , MNUMYR  |               |       | LEVEL            | SCALAR  |            | MS SUB COAL BTU FACT. BY NERC    |
|                 | BSHELNR       | (NDREGN | , MNUMYR  |               |       | LEVEĹ            | SCALAR  |            | HS SUB COAL BTU FACT. BY NERC    |
|                 | BLCELNR       | (NDREGN | , MNUMYR  |               |       | LEVEL            | SCALAR  |            | VLS LIG COAL BTU FACT. BY NERC   |
|                 | BLDELNK       | (NDREGN | , MNUMYR  |               |       | LEVEL            | SCALAR  |            | LS LIG COAL BTU FACT. BY NERC    |
|                 | BLMELNK       | (NDREGN | , MINUMYR | 1             |       | 나밤V본L<br>        | SCALAR  |            | M5 LIG COAL BTU FACT. BY NERC    |
|                 | BLHELNK       | (NDREGN | , MNUMYR  |               |       | LEVEL            | SCALAR  |            | HS LIG COAL BTU FACT. BY NERC    |
|                 | SBCELNK       | (NDREGN | , MINUMYR |               |       | цёvёц<br>т вудят | SCALAR  |            | VLS BIT COAL SULF. FACT. BY NERC |
|                 | SBUELNK       | (NDREGN | , MINUMYR |               |       | LEVEL            | SCALAR  |            | LS BIT COAL SULF. FACT. BY NERC  |
|                 | SEMELINK      | INDREGN | , MINUMYR | 1             |       | ⊥≝∨ЁЬ            | SCALAR  |            | MS BIT COAL SULF. FACT. BY NERC  |

| COMMON<br>Block<br>Name | Variable Name                   |         | Variabl    | .e Dimens | sions |       | Var   | iable D    | escripto | ſS    | Variable Descriptio                |
|-------------------------|---------------------------------|---------|------------|-----------|-------|-------|-------|------------|----------|-------|------------------------------------|
|                         |                                 |         |            |           |       |       |       |            |          |       |                                    |
|                         |                                 |         |            |           |       |       |       |            |          |       |                                    |
|                         | SBHELNR                         | (NDREGN | , MNUMYR ) |           |       |       | LEVEL | SCALAR     |          |       | HS BIT COAL SULF. FACT. BY NERC    |
|                         | SSCELNR                         | (NDREGN | ,MNUMYR)   |           |       |       | LEVEL | SCALAR     |          |       | VLS SUB COAL SULF. FACT. BY NERC   |
|                         | SSDELNR                         | (NDREGN | ,MNUMYR)   |           |       |       | LEVEL | SCALAR     |          |       | LS SUB COAL SULF. FACT. BY NERC    |
|                         | SSMELNR                         | (NDREGN | , MNUMYR ) |           |       |       | LEVEL | SCALAR     |          |       | MS SUB COAL SULF. FACT. BY NERC    |
|                         | SSHELNR                         | (NDREGN | , MNUMYR ) |           |       |       | LEVEL | SCALAR     |          |       | HS SUB COAL SULF. FACT. BY NERC    |
|                         | SLCELNR                         | (NDREGN | , MNUMYR ) |           |       |       | LEVEL | SCALAR     |          |       | VLS LIG COAL SULF. FACT. BY NERC   |
|                         | SLDELNR                         | (NDREGN | , MNUMYR ) |           |       |       | LEVEL | SCALAR     |          |       | LS LIG COAL SULF. FACT. BY NERC    |
|                         | SLMELNR                         | (NDREGN | , MNUMYR ) |           |       |       | LEVEL | SCALAR     |          |       | MS LIG COAL SULF. FACT. BY NERC    |
|                         | SLHELNR                         | (NDREGN | , MNUMYR ) |           |       |       | LEVEL | SCALAR     |          |       | HS LIG COAL SULF. FACT. BY NERC    |
| *=======                |                                 |         |            |           |       |       |       |            |          | ===== |                                    |
| * Coal Moo              | dule Report                     |         |            |           |       |       |       |            |          |       |                                    |
| ^========               |                                 |         |            |           |       |       | ===== | ======     |          | ===== |                                    |
| COALREP                 | CONTRROP                        |         | MATTINE D  |           |       |       | LIPE  | UNIIS      |          |       |                                    |
|                         | COALPROD                        | (MNUMCR | , MINUMLR, | MINUMIR)  |       |       | QUNIY | mamona     |          |       | COAL DISTRIBUTION INCLUDING EXPORT |
|                         | COALPRODZ                       | (MNUMCR | , MNUMLR,  | MNUMYR)   |       |       | QUNTY | mSTONS     |          |       | COAL DISTRIBUTION INCLUDING EXPORT |
|                         | COALIMP                         | (MNUMCR | , MINUMIR) |           |       |       | QUNIY | CILS I ONS |          |       | COAL IMPORIS                       |
|                         | ADOULE                          |         | , MINUMIR) |           |       |       | OINTY | \$/ION     |          |       | COAL PRICE                         |
|                         |                                 | ( 4     | MNTIMVD )  |           |       |       | QUNTI | metons     |          |       | Appalachia Bicuminous Coal         |
|                         | TRUITE                          | ( 4     | MNTIMYD )  |           |       |       | QUNTI | metone     |          |       | Apparacilla Ligilice Coal          |
|                         | TRAILE                          | ( 4     | MNTIMVD )  |           |       |       | QUNTI | metons     |          |       | Interior Lignite Cool              |
|                         | MDGIII E                        | ( 4     | MNTIMVD )  |           |       |       | OUNTY | metons     |          |       | West Bituminous Cool               |
|                         | WESULF                          | ( 4     | MNUMUR )   |           |       |       | OUNTY | mSTONS     |          |       | West Sub-Bituminous Coal           |
|                         | WISHIF                          | ( 4     | MNUMYR)    |           |       |       | OUNTY | mSTONS     |          |       | West Lignite Coal                  |
|                         | WSCE                            | ( 4     | 10         | 6)        |       |       | OUNTY | mSTONS     |          |       | Steam Coal World Flows             |
|                         | WMCF                            | ( 4     | , 10,      | 6)        |       |       | OUNTY | mSTONS     |          |       | Metallurgical Coal World Flows     |
|                         | WTCF                            | ( 4     | , 10,      | 6)        |       |       | OUNTY | mSTONS     |          |       | Total Coal World Flows             |
| *=======                |                                 |         | ,,         | ======    |       |       | 20111 | ======     |          |       |                                    |
| * Industr:              | ial Module Output               |         |            |           |       |       |       |            |          |       |                                    |
| *=======                | =============================== |         |            |           |       |       |       |            | =        |       |                                    |
| INDOUT                  |                                 |         |            |           |       |       | TYPE  | UNITS      |          |       |                                    |
|                         | INGNELNU                        | (MNUMCR | , MNUMYR ) |           |       |       | QUNTY | tBTU       |          |       | Nonutility generation of electrici |
|                         | INSGELNU                        | (MNUMCR | , MNUMYR ) |           |       |       | QUNTY | tBTU       |          |       | Nonutility electricity sales to th |
|                         | INCAELNU                        | (MNUMCR | , MNUMYR ) |           |       |       | QUNTY | tBTU       |          |       | Nonutility capacity                |
|                         | INQNGNU                         | (MNUMCR | , MNUMYR ) |           |       |       | QUNTY | tBTU       |          |       | Nonutility consumption: NG         |
|                         | INQCLNU                         | (MNUMCR | , MNUMYR ) |           |       |       | QUNTY | tBTU       |          |       | Nonutility consumption: Steam Coal |
|                         | INQRENU                         | (MNUMCR | , MNUMYR ) |           |       |       | QUNTY | tBTU       |          |       | Nonutility consumption: Residual o |
|                         | INQBMNU                         | (MNUMCR | , MNUMYR ) |           |       |       | QUNTY | tBTU       |          |       | Nonutility consumption: Biomass    |
|                         | INQBMRN                         | (MNUMCR | , MNUMYR ) |           |       |       | QUNTY | tBTU       |          |       | Consumption of renewables: Biomass |
|                         | INQHYRN                         | (MNUMCR | , MNUMYR ) |           |       |       | QUNTY | tBTU       |          |       | Consumption of renewables: Hydro   |
|                         | INQSORN                         | (MNUMCR | , MNUMYR ) |           |       |       | QUNTY | tBTU       |          |       | Consumption of renewables: Solar   |
|                         | INQWIRN                         | (MNUMCR | , MNUMYR ) |           |       |       | QUNTY | tBTU       |          |       | Consumption of renewables: Wind    |
|                         | INQGORN                         | (MNUMCR | , MNUMYR ) |           |       |       | QUNTY | tBTU       |          |       | Consumption of renewables: Geother |
|                         | INQOTRN                         | (MNUMCR | ,MNUMYR)   |           |       |       | QUNTY | tBTU       |          |       | Consumption of renewables: Other   |
| *=======                |                                 | =====   |            | ====== :  |       | ===== | ===== |            | ===== =  | ===== |                                    |
| * Industr:              | ial Module Report               |         |            |           |       |       |       |            |          |       |                                    |
| *=======                |                                 | =====   |            |           | ===== | ===== | ===== | =====      | ===== =  | ===== |                                    |
| INDREP                  |                                 |         |            |           |       |       | TYPE  | UNITS      |          |       |                                    |
|                         | MANHP                           | ( 12    | , MNUMYR ) |           |       |       | QUNTY | tBTU       |          |       | MFG, HEAT & POWER                  |
|                         | NONHP                           | ( 8     | , MNUMYR ) |           |       |       | QUNTY | tBTU       |          |       | NON-MFG, HEAT & POWER              |
|                         | MISCFD                          | ( 6     | , MNUMYR ) |           |       |       | QUNTY | tBTU       |          |       | PAPER INDUSTRY CONSUMPTION         |
|                         | FUODCON                         | ( 8     | , MNUMYR ) |           |       |       | QUNTY | tBTU       |          |       | FOOD INDUSTRY CONSUMPTION          |
|                         | PAPERCON                        | ( 8     | , MNUMYR ) |           |       |       | QUNTY | tBTU       |          |       | PAPER INDUSTRY CONSUMPTION         |
|                         | CHEMCON                         | ( 8     | , MNUMYR ) |           |       |       | QUNTY | tBTU       |          |       | CHEMICAL INDUSTRY CONSUMPTION      |
|                         | GLASSCON                        | ( 8     | , MNUMYR ) |           |       |       | QUNTY | tBTU       |          |       | GLASS INDUSTRY CONSUMPTION         |
|                         | CEMENTCON                       | ( 8     | , MNUMYR ) |           |       |       | QUNTY | tBTU       |          |       | CEMENT INDUSTRY CONSUMPTION        |
|                         | STEELCON                        | ( 10    | , MNUMYR ) |           |       |       | QUNTY | tBTU       |          |       | STEEL INDUSTRY CONSUMPTION         |
|                         | ALUMCON                         | ( 8     | , MNUMYR ) |           |       |       | QUNTY | CB.I.O     |          |       | ALUMINUM INDUSTRY CONSUMPTION      |

| COMMON<br>Block<br>Name                 | Variable Name                          |                                         | Variab        | le Dimensions         | Var                         | iable T        | escript | ors | Variable Descriptio                      |
|-----------------------------------------|----------------------------------------|-----------------------------------------|---------------|-----------------------|-----------------------------|----------------|---------|-----|------------------------------------------|
| Hume                                    | Variable Name                          |                                         | vui iub.      |                       | , vu                        | TUDIC 1        | 0001100 | 010 |                                          |
| *                                       | REFCON                                 | ( 9                                     | , MNUMYR      | )                     | <br>QUNTY                   | tBTU           |         |     | REFINERY INDUSTRY CONSUMPTION            |
| * Resident                              | ====================================== | Common                                  | Blocks        |                       | <br>                        |                |         |     |                                          |
| *=======                                |                                        | =====                                   | =====         |                       | <br>                        |                | =====   |     |                                          |
| HTCN<br>*=======                        | HTRCON                                 | ( 26                                    | , 7           | , 9)<br>====== ====== | <br>TYPE<br>QUNTY<br>====== | UNITS<br>tBTU  |         |     | Space Heating Consumption                |
| CLCN                                    |                                        | , , , , , , , , , , , , , , , , , , , , |               |                       | TYPE                        | UNITS          |         |     |                                          |
| *                                       | COOLCN                                 | ( 26                                    | , 3           | , 9)                  | <br>QUNTY                   | tBTU           |         |     | Space Cooling Consumption                |
| HWCN                                    |                                        |                                         |               |                       | <br>TYPE                    | UNITS          |         |     |                                          |
|                                         | H2OCON                                 | ( 26                                    | , 4           | , 9)                  | QUNTY                       | tBTU           |         |     | Hot Water Heat Consumption               |
| *=======                                |                                        | ======                                  | ======        |                       | <br>=====<br>TVDF           | INITTO         | ======  |     |                                          |
| CRCN                                    | CKCON                                  | ( 26                                    | , 3           | . 9)                  | OUNTY                       | tBTU           |         |     | Cooking Consumption                      |
| *=======                                |                                        | . ======                                | ======        | ====== ======         | <br>                        | ======         | =====   |     |                                          |
| DRYCN                                   | DRYCON                                 | ( 26                                    | , 2           | , 9)                  | TYPE<br>QUNTY               | UNITS<br>tBTU  |         |     | Dryer Consumption                        |
| A = = = = = = = = = = = = = = = = = = = |                                        |                                         |               |                       | <br>TYPE                    | UNITS          |         |     |                                          |
| 112 011                                 | REFCON                                 | ( 26                                    | , 9           | )                     | QUNTY                       | tBTU           |         |     | Refrigeration Consumption                |
| *=======                                |                                        | =====                                   | =====         |                       |                             |                | =====   |     |                                          |
| FZCN                                    | FRZCON                                 | ( 26                                    | , 9           | )                     | OUNTY                       | tBTU           |         |     | Freezer Consumption                      |
| *=======                                |                                        | ======                                  | ======        |                       | <br>======                  | ======         | =====   |     |                                          |
| LTC                                     | TTCON                                  | 1 26                                    | 0             | \                     | TYPE                        | UNITS          |         |     | Lighting Congumption                     |
| *=======                                | ====================================== | ======                                  | , 9.          | ,<br>======           | <br>                        | LBIU<br>====== |         |     |                                          |
| APC                                     |                                        |                                         |               |                       | TYPE                        | UNITS          |         |     |                                          |
| +                                       | APCON                                  | ( 26                                    | , 9           | )                     | QUNTY                       | tBTU           |         |     | Appliance Consumption                    |
| SHC                                     |                                        |                                         |               |                       | <br>TYPE                    | UNITS          |         |     |                                          |
|                                         | SHTCON                                 | ( 26                                    | , 7           | , 9)                  | QUNTY                       | tBTU           |         |     | Secondary Heat Consumption               |
| *=====================================  |                                        | ======                                  | ======        |                       | <br>                        | =====          | =====   |     |                                          |
| * Resident                              | ====================================== | ======                                  | 1es<br>====== |                       | <br>                        |                |         |     |                                          |
| RESDREP                                 |                                        |                                         |               |                       | TYPE                        | UNITS          |         |     |                                          |
|                                         | RSEH                                   | (MNUMYR                                 | , 3           | )                     | LEVEL                       | MILL           |         |     | Existing Housing                         |
|                                         | RSNH                                   | (MNUMYR<br>(MNUMYD                      | , 3           | )                     | LEVEL                       | MILL<br>MITT   |         |     | New Housing                              |
|                                         | RSHTRCON                               | (MNUMYR                                 | , 3           | )                     | OUNTY                       | t.BTU          |         |     | Space Heating Consumption                |
|                                         | RSCOOLCN                               | (MNUMYR                                 | , 3           | )                     | QUNTY                       | tBTU           |         |     | Space Cooling Consumption                |
|                                         | RSH20CON                               | (MNUMYR                                 | , 5           | )                     | QUNTY                       | tBTU           |         |     | Hot Water Heat Consumption               |
|                                         | RSCKCON                                | (MNUMYR                                 | , 3           | )                     | QUNTY                       | tBTU           |         |     | Cooking Consumption                      |
|                                         | RSDRYCON                               | (MNUMYR                                 | , 2           | )                     | QUNTY                       | tBTU           |         |     | Dryer Consumption                        |
|                                         | RSREFCON                               | (MNUMIR<br>(MNUMVP                      | )             |                       | QUNIY                       | LBIU<br>+BTTI  |         |     | Freezer Consumption                      |
|                                         | RSLTCON                                | (MNUMYR                                 | )             |                       | OUNTY                       | tBTU           |         |     | Lighting Consumption                     |
|                                         | RSAPCON                                | (MNUMYR                                 | , 4           | )                     | QUNTY                       | tBTU           |         |     | Appliance Consumption                    |
|                                         | RSHTRS                                 | (MNUMYR                                 | , 9           | )                     | QUNTY                       | MILL           |         |     | Heating Equipment                        |
|                                         | RSCOOLERS                              | (MNUMYR                                 | , 5           | )                     | QUNTY                       | MILL           |         |     | Cooling Equipment                        |
|                                         | RSWATER                                | (MNUMYR                                 | , 5           | )                     | QUNTY                       | MILL           |         |     | Water Equipment                          |
|                                         | RSDRY                                  |                                         | , <u> </u>    | )                     | OUNTY                       | MTT.T.         |         |     | Drving Equipment                         |
|                                         | RSREF                                  | (MNUMYR                                 | ) 2.          | ,                     | OUNTY                       | MILL           |         |     | Refrigerator Equipment                   |
|                                         | RSFRZ                                  | (MNUMYR                                 | )             |                       | QUNTY                       | MILL           |         |     | Freezer Equipment                        |
|                                         | RSEEFHT<br>RSEEFCL                     | (MNUMYR<br>(MNUMYR                      | , 5<br>, 5    | )                     | HEATRT<br>HEATRT            | FRACT<br>FRACT |         |     | Heating Efficiency<br>Cooling Efficiency |
|                                         | -                                      |                                         |               |                       |                             |                |         |     | 2 1                                      |

| COMMON<br>Block |                                          |                                          |                   |         |          |        |                                      |                                  |          |        |                                                                                             |
|-----------------|------------------------------------------|------------------------------------------|-------------------|---------|----------|--------|--------------------------------------|----------------------------------|----------|--------|---------------------------------------------------------------------------------------------|
| Name            | Variable Name                            |                                          | Variabl           | e Dimer | nsions   |        | Var                                  | iable I                          | Descript | ors    | Variable Descriptio                                                                         |
|                 |                                          |                                          |                   |         |          |        |                                      |                                  |          |        |                                                                                             |
|                 | RSEEFHW<br>RSEEFRF<br>RSEEFFZ            | ( MNUMYR<br>( MNUMYR<br>( MNUMYR         | , 4)<br>)         |         |          |        | HEATRT<br>HEATRT<br>HEATRT           | FRACT<br>FRACT<br>FRACT          |          |        | Hot Water Efficiency<br>Refrigerator efficiency<br>Freezer Efficiency                       |
|                 | RSNEFHT                                  | (MNUMYR                                  | , 5)              |         |          |        | HEATRT                               | FRACT                            |          |        | Heating Efficiency                                                                          |
|                 | RSNEFCL<br>RSNEFHW<br>RSNEFRF<br>RSNEFFZ | (MNUMYR<br>(MNUMYR<br>(MNUMYR<br>(MNUMYR | , 5)<br>, 4)<br>) |         |          |        | HEATRT<br>HEATRT<br>HEATRT<br>HEATRT | FRACT<br>FRACT<br>FRACT<br>FRACT |          |        | Cooling Efficiency<br>Hot Water Efficiency<br>Refrigerator Efficiency<br>Freezer Efficiency |
|                 | QGERS                                    | (MNUMCR                                  | , MNUMYR )        |         |          |        | QUNTY                                | tBTU                             |          |        | Geothermal Consumption                                                                      |
| *=======        |                                          | =====                                    |                   |         |          |        | =====                                |                                  | =====    |        |                                                                                             |
| * Commerc       | ial Module Output                        |                                          |                   |         |          |        |                                      |                                  |          |        |                                                                                             |
| COMOUT          | CMpuCop                                  |                                          |                   |         |          |        | TYPE                                 | UNITS                            |          |        | Nonutility concretion of electricity                                                        |
|                 | CMnuGrid                                 | (MNUMCR                                  | , MNUMIR)         |         |          |        | OUNTY                                | t.BTU                            |          |        | Nonutility electricity sales to th                                                          |
|                 | CMnuCap                                  | (MNUMCR                                  | , MNUMYR )        |         |          |        | QUNTY                                | tBTU                             |          |        | Nonutility capacity                                                                         |
|                 | CMnuConNG                                | (MNUMCR                                  | , MNUMYR )        |         |          |        | QUNTY                                | tBTU                             |          |        | Nonutility consumption: NG                                                                  |
|                 | CMnuConSC                                | (MNUMCR                                  | , MNUMYR )        |         |          |        | QUNTY                                | tBTU                             |          |        | Nonutility consumption: Steam Coal                                                          |
|                 | CMnuConRS                                | (MNUMCR                                  | , MNUMYR)         |         |          |        | QUNTY                                | tBTU<br>+ DTTI                   |          |        | Nonutility consumption: Residual of                                                         |
|                 | CMrwConBio                               | (MNUMCR                                  | , MNUMYR)         |         |          |        | OUNTY                                | tBTU                             |          |        | Consumption of renewables: Biomass                                                          |
|                 | CMrwConHyd                               | (MNUMCR                                  | , MNUMYR )        |         |          |        | QUNTY                                | tBTU                             |          |        | Consumption of renewables: Hydro                                                            |
|                 | CMrwConSol                               | (MNUMCR                                  | , MNUMYR )        |         |          |        | QUNTY                                | tBTU                             |          |        | Consumption of renewables: Solar                                                            |
|                 | CMrwConWind                              | (MNUMCR                                  | , MNUMYR )        |         |          |        | QUNTY                                | tBTU                             |          |        | Consumption of renewables: Wind                                                             |
|                 | CMrwConGeo<br>CMrwConOth                 | (MNUMCR                                  | , MNUMYR)         |         |          |        | QUNTY                                | tBTU<br>+ pTTI                   |          |        | Consumption of renewables: Geother                                                          |
|                 | CMnuConDS                                | (MNUMCR                                  | , MNUMYR)         |         |          |        | OUNTY                                | tBTU                             |          |        | Nonutility Consumption of Dist                                                              |
| *=======        |                                          | ======                                   | ======            |         |          |        | ======                               | ======                           |          |        |                                                                                             |
| * Commerc       | ial Module Paramet                       | ers                                      |                   |         |          |        |                                      |                                  |          |        |                                                                                             |
| *=======        |                                          | ======                                   | ======            |         |          |        | ======<br>TVDE                       |                                  |          |        |                                                                                             |
| COMPARAM        | CMRisk Prem                              | ( 9                                      | )                 |         |          |        | PARAM                                | SCALAR                           |          |        | (premium over zero risk rate)                                                               |
|                 | CMLog_Parm_A                             | ( 11                                     | )                 |         |          |        | PARAM                                | SCALAR                           |          |        | (logistic survival function parm A                                                          |
|                 | CMLog_Parm_B                             | ( 11                                     | )                 |         |          |        | PARAM                                | SCALAR                           |          |        | (logistic survival function parm E                                                          |
|                 | CMDSM_Capital                            | ( 45                                     | , MNUMCR )        |         |          |        | PARAM                                | SCALAR                           |          |        | (dollar value of capital incentive                                                          |
|                 | CMDSM_Rate                               | ( 45                                     | , MNUMCR )        |         |          |        | DADAM                                | SCALAR                           |          |        | (DSM rate incentives)                                                                       |
|                 | CMMinFuelGrowth                          | ( 5                                      | , MNUMCR )        |         |          |        | PARAM                                | SCALAR                           |          |        | (minor fuels growth rate)                                                                   |
|                 | CMNonBldgGrowth                          | ( 8                                      | , MNUMCR )        |         |          |        | PARAM                                | SCALAR                           |          |        | (non-bldg growth rate)                                                                      |
|                 | CMTechPenRate                            | ( 45                                     | , 9,              | MNUMCR  | )        |        | PARAM                                | SCALAR                           |          |        | (technology penetration rate)                                                               |
|                 | CMmode                                   | ( 1                                      | )                 |         |          |        | PARAM                                | SCALAR                           |          |        | (0= PC Standalone; 1= NEMS Integra                                                          |
|                 | CMSILIAS                                 | ( 45                                     | )                 |         |          |        | PARAM                                | SCALAR                           |          |        | (compete technology (1) or use use                                                          |
|                 | EndUseConsump                            | ( 8                                      | , 9,              | 11      | , MNUMCR | )      | OUNTY                                | tBTU                             |          |        | End Use Consumption                                                                         |
| *=======        |                                          |                                          | ======            |         |          |        |                                      |                                  |          |        |                                                                                             |
| * Commerc       | ial Module Report                        | Variabl                                  | es                |         |          |        |                                      |                                  |          |        |                                                                                             |
| COMMERD         |                                          | ======                                   | ======            |         |          |        | =====<br>TVDF                        | ======<br>IINITTC                |          | ====== |                                                                                             |
| COMMINEF        | CMUSSurvFloorTot                         | (MNUMYR                                  | )                 |         |          |        | LEVEL                                | MILL                             |          |        | Surviving Floorspace                                                                        |
|                 | CMUSNewFloorTot                          | (MNUMYR                                  | )                 |         |          |        | LEVEL                                | MILL                             |          |        | Floorspace - New Additions                                                                  |
|                 | CMUSConsumption                          | ( 7                                      | , З,              | MNUMYR  | )        |        | QUNTY                                | tBTU                             |          |        | Consumption-by End-Use, Fuel                                                                |
|                 | CMSurvFloorTot                           | ( 11                                     | , MNUMYR )        |         |          |        | QUNTY                                | tBTU                             |          |        | Survival Flrspc-Bldg Type                                                                   |
|                 | CMEinalEndUseCon                         | ( 11<br>( 11                             | MNTIMYP)          |         |          |        | QUNTY<br>OUNTY                       | LBTU<br>FRTII                    |          |        | New Floorspace by Bld Type                                                                  |
|                 | CMUSAvgEff                               | ( 6                                      | ,                 | MNUMYR  | )        |        | OUNTY                                | tBTU                             |          |        | Avg Tech Eff by End Use, Fuel                                                               |
| *=======        | =======================================  |                                          | , 5, =====        | ======  | ,<br>    |        | 201111                               | ======                           |          |        |                                                                                             |
| * Transpo       | rtation Module Rep                       | ort Var                                  | iables            |         |          |        |                                      |                                  |          |        |                                                                                             |
| *=======        |                                          | ======                                   |                   | ======  | ======   | ====== | ======                               | ======                           | ======   |        |                                                                                             |

| COMMON<br>Block<br>Name | Variable Name |                                              | Variable Dimensions | Va    | riable Descriptors | Variable Descriptio               |
|-------------------------|---------------|----------------------------------------------|---------------------|-------|--------------------|-----------------------------------|
| Hame                    | Variable Name |                                              | Variable Dimensions | Vai   | Liable Descriptors |                                   |
|                         |               |                                              |                     |       |                    |                                   |
| TRANREP                 |               |                                              |                     | TYPE  | UNITS              |                                   |
|                         | TRQHWY        | ( 6,                                         | MNUMYR)             | QUNTY | tBTU               | Highway Energy Use                |
|                         | TRQNHWY       | ( 4,                                         | MNUMYR)             | QUNTY | tBTU               | Non-highway Energy Use            |
|                         | TRQENUSE      | ( 12,                                        | MNUMYR)             | QUNTY | tBTU               | Energy Use by Fuel Type           |
|                         | TRQLD         | ( 8,                                         | MNUMYR)             | QUNTY | tBTU               | Light-Duty Energy Use             |
|                         | TRQFTRK       | ( 5,                                         | MNUMYR)             | QUNTY | tBTU               | Freight Truck Energy Use          |
|                         | TRORRE        | ( 3,                                         | MNUMYR)             | QUNTY | tBTU               | Railroad Freight Energy Use       |
|                         | TRODOMS       | $\begin{pmatrix} & 3 \\ & & 2 \end{pmatrix}$ | MNUMYR)             | QUNIY |                    | International Chinning Energy Use |
|                         |               | ( 2,                                         | MNTIMZD )           | QUNII |                    | Air Transportation Energy Use     |
|                         | TROMIL        | ( 4                                          | MNIIMYP)            | OUNTY | +BTII              | Military Energy Use               |
|                         | TROBUS        | ( 5                                          | MNUMYR)             | OUNTY | +BTII              | Bus Transportation Energy Use     |
|                         | TRORRP        | ( 5                                          | MNUMYR)             | OUNTY | †BTII              | Passenger Rail Energy Use         |
|                         | TROBOAT       | (MNUMYR)                                     |                     | OUNTY | tBTU               | Recreational Boats Energy Use     |
|                         | TROLUB        | (MNUMYR)                                     |                     | OUNTY | tBTU               | Lubricants Energy Use             |
|                         | TREFFCAR      | ( 8,                                         | MNUMYR)             | OUNTY | MPG                | New Car Fuel Eff by Size Class    |
|                         | TREFFTRK      | ( 8,                                         | MNUMYR)             | ÕUNTY | MPG                | New Truck Fuel Eff by Size Class  |
|                         | TREFFALTC     | ( 4,                                         | MNUMYR)             | QUNTY | MPG                | Alt Fuel Cars Eff by Size Class   |
|                         | TREFFALTT     | ( 4,                                         | MNUMYR)             | QUNTY | MPG                | Alt Fuel Trucks Eff by Size Class |
|                         | TRSLSHRC      | ( 7,                                         | MNUMYR)             | LEVEL | FRACT              | New Car Sales Share               |
|                         | TRSLSHRT      | ( 7,                                         | MNUMYR)             | LEVEL | FRACT              | New Truck Sales Share             |
|                         | TRHPCAR       | (7,                                          | MNUMYR)             | QUNTY | 1000s              | New Car Average Horsepower        |
|                         | TRHPTRK       | (7,                                          | MNUMYR)             | QUNTY | 1000s              | New Truck Average Horsepower      |
|                         | TRLDQTEK      | ( 17,                                        | MNUMYR)             | QUNTY | tBTU               | Lt Duty Vehicle Energy Consumptn  |
|                         | TRLDSALC      | ( 17,                                        | MNUMYR)             | QUNTY | 1000s              | Lt Duty New Car Sales             |
|                         | TRLDSALT      | ( 17,                                        | MNUMYR)             | QUNTY | 1000s              | Lt Duty New Truck Sales           |
|                         | TRLDSTKC      | ( 17,                                        | MNUMYR)             | QUNTY | 1000s              | Lt Duty New Car Stock             |
|                         | TREDSTRT      | ( 17,                                        | MNUMYR)             | QUNTY | LUUUS              | Lt Duty New Truck Stock           |
|                         | IRLDMPGC      | ( 17,<br>( 17                                | MNUMIR)             | QUNIY | MPG                | Lt Duty New Car Efficiency        |
|                         | TREDMPGI      | ( 1/,                                        | MNUMYR)             | QUNIY | MPG                | Lt Duty New Irk Efficiency        |
|                         |               | ( 3,                                         | MNUMYR)             | QUNII | MPG<br>CONTAD      | It Duty Vehigle Miles Travelled   |
|                         | TRLDVMTE      | ( 12                                         | MNUMYR)             | LEVEL | SCALAR             | Lt Duty VMT Effects               |
|                         | TRTRAVID      | ( 11                                         | MNUMYR)             | OUNTY | SCALAR             | Travel Demand                     |
|                         | TRAIRSUS      | ( 2.                                         | MNUMYR)             | OUNTY | 1000s              | Aircraft Sales                    |
|                         | TRAIRSTK      | ( 2,                                         | MNUMYR)             | OUNTY | 1000s              | Aircraft Stock                    |
|                         | TRAIREFFN     | ( 3,                                         | MNUMYR)             | ÕUNTY | MPG                | Aircraft New Efficiency           |
|                         | TRAIREFFS     | ( 3,                                         | MNUMYR)             | QUNTY | MPG                | Aircraft Stock Efficiency         |
|                         | TRSTMDEM      | ( 2,                                         | MNUMYR)             | LEVEL | 1000s              | Seat Miles Demanded               |
|                         | TREFFTRKF     | ( 3,                                         | 5, MNUMYR)          | QUNTY | MPG                | Fuel Eff by Trk Type by Fuel      |
|                         | TRVMTTRK      | ( 3,                                         | 5, MNUMYR)          | QUNTY | 1000s              | VMT by Truck Type by Fuel         |
|                         | TRTMRR        | ( 2,                                         | MNUMYR)             | QUNTY | TON_ML             | Billion Ton Miles by Railroad     |
|                         | TRTMSHIP      | ( 2,                                         | MNUMYR)             | QUNTY | TON_ML             | Billion Ton Miles by Dom Ship     |
|                         | TRIMSHIP      | (MNUMYR)                                     |                     | QUNTY | tBTU               | International Shipping - Imports  |
|                         | TRXLDVMT      | (MNUMYR)                                     |                     | INDEX | SCALAR             | Light Duty Vehicle Index          |
|                         | TRXFRVMT      | (MNUMYR)                                     |                     | INDEX | SCALAR             | Freight Truck Index               |
|                         | TRAIR         | (MNUMYR)                                     |                     | INDEX | SCALAR             | Air Travel Index                  |
|                         | TRARALL       | (MNUMIR)                                     |                     | INDEX | SCALAR             | Ship Travel Index                 |
|                         | TRASHIP       | (MNTIMVD)                                    |                     | INDEX | SCALAR             | Nirgraft Efficiency Index         |
|                         | TRATICEFF     | (MNUMVR)                                     |                     | INDEX | SCALAR             | Freight Truck Efficiency Index    |
|                         | TRXRATLEFF    | (MNIIMVP)                                    |                     | TNDEX | SCALAR             | Rail Efficiency Index             |
|                         | TRXSHIPEFF    | (MNUMYR)                                     |                     | TNDEX | SCALAR             | Domestic Shipping Eff Index       |
|                         | TROLDV        | ( 9                                          | MNUMCR , MNUMYR )   | OUNTY | tBTU               | Lt Duty Vehicle Energy Use        |
|                         | TRORAILR      | ( 3.                                         | MNUMCR, MNUMYR)     | OUNTY | tBTU               | RR Passenger Energy Use           |
|                         | FLTECHRPT     | ( 2,                                         | 6, MNUMYR)          | QUNTY | 1000s              | Fleet Car/Truck Sales             |
|                         | FLTECHSTKRPT  | ( 2,                                         | 6, MNUMYR)          | QUNTY | 1000s              | Fleet Car/Truck Stock             |
|                         | FLTFCLDVBTU   | ( 2,                                         | 6, MNUMYR)          | QUNTY | tBTU               | Fleet Car/Truck Consumption       |

| COMMON<br>Block                        |                                                                                                  |                                                                                                                                                                                                  |                                                                     |                                                                        |                                                                                                                                                                                                       |
|----------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name                                   | Variable Name                                                                                    | Variable Dimensions                                                                                                                                                                              | Var                                                                 | iable Descriptors                                                      | Variable Descriptio                                                                                                                                                                                   |
|                                        |                                                                                                  |                                                                                                                                                                                                  |                                                                     |                                                                        |                                                                                                                                                                                                       |
|                                        | FLTECHVMTRPT<br>REGSALERPT<br>DEGRPT<br>TREFFFLT<br>EMLDTGAS<br>EMLDTDES<br>EMLDTMET<br>EMLDTMET | <pre>( 2, 6,MNUMYR)<br/>( 9, 5,MNUMYR)<br/>( 2,MNUMYR)<br/>( 4,MNUMYR)<br/>(MNPOLL,MNUMCR,MNUMYR)<br/>(MNPOLL,MNUMCR,MNUMYR)<br/>(MNPOLL,MNUMCR,MNUMYR)</pre>                                    | QUNTY<br>QUNTY<br>RATE<br>QUNTY<br>QUNTY<br>QUNTY<br>QUNTY<br>OUNTY | 1000s<br>MILL<br>PERCNT<br>MPG<br>mMTONS<br>mMTONS<br>mMTONS<br>mMTONS | Fleet Car/Truck VMT<br>Regional Car Sales<br>Degredation Factor<br>Fleet Vehicle Efficiency (EPA Rati<br>Emmissions Lt Dt Gas<br>Emmissions Lt Dt DES<br>Emmissions Lt Dt MET<br>Emmissions Lt Dt CNG |
|                                        | EMLDTHYD<br>EMLDTETH<br>EMLDTLPG<br>EMFRTGAS<br>EMFRTDES<br>EMFRTCNG<br>EMPLTDES                 | (MNPOLL, MNUMCR, MNUMYR)<br>(MNPOLL, MNUMCR, MNUMYR)<br>(MNPOLL, MNUMCR, MNUMYR)<br>(MNPOLL, MNUMCR, MNUMYR)<br>(MNPOLL, MNUMCR, MNUMYR)<br>(MNPOLL, MNUMCR, MNUMYR)<br>(MNPOLL, MNUMCR, MNUMYR) | QUNTY<br>QUNTY<br>QUNTY<br>QUNTY<br>QUNTY<br>QUNTY<br>QUNTY         | mMTONS<br>mMTONS<br>mMTONS<br>mMTONS<br>mMTONS<br>mMTONS               | Emmissions Lt Dt HYD<br>Emmissions Lt Dt ETH<br>Emmissions Lt Dt LPG<br>Emmissions Frght Gas<br>Emmissions Frght DES<br>Emmissions Frght CNG<br>Emmissions Frght CNG                                  |
|                                        | EMRLITES<br>EMDSTDES<br>EMDSTRES<br>EMDSTGAS<br>EMISTDES<br>EMISTRES                             | (MNPOLL, MNUMCR, MNUMYR)<br>(MNPOLL, MNUMCR, MNUMYR)<br>(MNPOLL, MNUMCR, MNUMYR)<br>(MNPOLL, MNUMCR, MNUMYR)<br>(MNPOLL, MNUMCR, MNUMYR)<br>(MNPOLL, MNUMCR, MNUMYR)                             | QUNTY<br>QUNTY<br>QUNTY<br>QUNTY<br>QUNTY<br>QUNTY<br>QUNTY         | MMTONS<br>mMTONS<br>mMTONS<br>mMTONS<br>mMTONS<br>mMTONS<br>mMTONS     | Emmissions Rail DES<br>Emmissions Dom DES<br>Emmissions Dom RES<br>Emmissions Dom GAS<br>Emmissions Int DES<br>Emmissions Int RES                                                                     |
|                                        | EMAITJET<br>EMAITAVG<br>EMMILT<br>EMBUST<br>EMRAILT<br>EMRECT                                    | (MNPOLL, MNUMCR, MNUMYR)<br>(MNPOLL, MNUMCR, MNUMYR)<br>(MNPOLL, MNUMCR, MNUMYR)<br>(MNPOLL, MNUMCR, MNUMYR)<br>(MNPOLL, MNUMCR, MNUMYR)<br>(MNPOLL, MNUMCR, MNUMYR)                             | QUNTY<br>QUNTY<br>QUNTY<br>QUNTY<br>QUNTY<br>QUNTY                  | mMTONS<br>mMTONS<br>mMTONS<br>mMTONS<br>mMTONS<br>mMTONS               | Emmissions Air Jet<br>Emmissions Air Avg<br>Emmissions Mil<br>Emmissions Bus<br>Emmissions Rail<br>Emmissions Rec Boat                                                                                |
| *===================================== | ======================================                                                           |                                                                                                                                                                                                  |                                                                     |                                                                        |                                                                                                                                                                                                       |
| *=======                               |                                                                                                  | ====== ===== ===== ====                                                                                                                                                                          |                                                                     |                                                                        |                                                                                                                                                                                                       |
| MACOUT                                 | MC_GDP<br>MC_GNP                                                                                 | (MNUMYR)<br>(MNUMYR)                                                                                                                                                                             | TYPE<br>LEVEL<br>LEVEL                                              | UNITS<br>b87\$<br>b87\$                                                | Real gross domestic product<br>Real gross national product                                                                                                                                            |
|                                        | MC_PGDP<br>MC_RMPUAANS<br>MC_REALRMGBLUS<br>MC_RMGBS3NS<br>MC_IFIXNR                             | (MIUMIR)<br>(MIUMIR)<br>(MIUMIR)<br>(MIUMIR)<br>(MIUMIR)                                                                                                                                         | RATE<br>RATE<br>RATE<br>RATE<br>LEVEL                               | PERCNT<br>PERCNT<br>PERCNT<br>b87\$                                    | Yield on AA utility bonds<br>Yield on U.S. govt 10-yr bonds<br>Avg market rate of US Govt 3 mo bi<br>Real gross put norres investment                                                                 |
|                                        | MC_ECIWSPNS<br>MC_RMMBCNEWNS<br>MC_RMMTGCCNS<br>MC_SQDTRUCKSL                                    | (MNUMYR)<br>(MNUMYR)<br>(MNUMYR)<br>(MNUMYR)<br>(MNUMYR)                                                                                                                                         | INDEX<br>RATE<br>RATE<br>LEVEL<br>BATE                              | 87=1.0<br>PERCNT<br>PERCNT<br>MILL<br>DEPCNT                           | Employment cost index-pvt wages &<br>Avg Yield-New issue-Hi grade Corp<br>Conventional commitment mortgage r<br>Truck deliveres-Light duty                                                            |
|                                        | MC_EXCH<br>MC_EX82<br>MC_IM82<br>MC_SQTRCARS                                                     | (MNUMYR)<br>(MNUMYR)<br>(MNUMYR)<br>(MNUMYR)<br>(MNUMYR)                                                                                                                                         | RATE<br>RATE<br>LEVEL<br>LEVEL<br>LEVEL                             | FCUR/\$<br>b87\$<br>b87\$<br>MILL<br>82=1 0                            | U.S. trade-weighted exchange rate<br>Real exports<br>Real imports<br>Unit sales of automobiles                                                                                                        |
|                                        | MC_CPI<br>MC_YD<br>MC_YP<br>MC_WSD<br>MC_MFGI                                                    | (MNUMCR, MNUMYR)<br>(MNUMCR, MNUMYR)<br>(MNUMCR, MNUMYR)<br>(MNUMCR, MNUMYR)<br>(MNUMCR, MNUMYR)                                                                                                 | LEVEL<br>LEVEL<br>LEVEL<br>INDEX                                    | 82=1.0<br>b87\$<br>b87\$<br>b87\$<br>b87\$<br>87=1.0                   | Real disposable personal income<br>Real personal income<br>Wage & Salary disbursements<br>Index of mfg gross output                                                                                   |
|                                        | MC_MFGWGRT<br>MC_POPAFO<br>MC_POPAFO<br>MC_POP16<br>MC_COMMFLSP<br>MC_EMPNA                      | (MNUMCR, MNUMYR)<br>(MNUMCR, MNUMYR)<br>(MNUMCR, MNUMYR)<br>(MNUMCR, MNUMYR)<br>(MNUMCR, 14, MNUMYR)<br>(MNUMCR, MFTYPE, MNUMYR)                                                                 | LEVEL<br>LEVEL<br>LEVEL<br>LEVEL<br>LEVEL<br>LEVEL                  | \$/HR<br>\$/HR<br>MILL<br>bSQFT<br>MILL                                | Manufacturing wage rate<br>Non-manufacturing wage rate<br>Pop-incl armed forces overseas<br>Pop-aged 16 and over<br>Commercial floorspace<br>Employment-non-agriculture                               |

| COMMON<br>Block |                                         |            |              |         |        |    |        |                |         |        |                                     |
|-----------------|-----------------------------------------|------------|--------------|---------|--------|----|--------|----------------|---------|--------|-------------------------------------|
| Name            | Variable Name                           |            | Variabi      | e Dimer | nsions |    | var    | lable D        | escript | ors    | variable Descriptio                 |
|                 |                                         |            |              |         |        |    |        |                |         |        |                                     |
|                 | MC_NMFGO                                | (MNUMCR    | ,NSICNM,     | MNUMYR  | )      |    | LEVEL  | m82\$          |         |        | Real gross output:non-mfg           |
|                 | MC_MFGO                                 | (MNUMCR    | , MNSICM,    | MNUMYR  | )      |    | LEVEL  | m82\$          |         |        | Real gross output:mfg               |
|                 | MC_EXDN87                               | (MNUMYR    | )            |         |        |    | LEVEL  | b87\$          |         |        | Exports of mershandise              |
|                 | MC_SHUMBL                               | (MNUMCR    | , MNUMYR )   |         |        |    | LEVEL  | MILL           |         |        | Shipments of mobile homes           |
|                 | MC_HUSTS1                               | (MNUMCR    | , MNUMYR )   |         |        |    | LEVEL  | MILL           |         |        | Housing starts-Single family        |
|                 | MC_HUSTS2                               | (MNUMCR    | , MNUMYR )   |         |        |    | LEVEL  | MILL           |         |        | Housing starts-Multi family         |
|                 | MC_KQMH                                 | (MNUMCR    | , MNUMYR )   |         |        |    | LEVEL  | MILL           |         |        | Housing stock-Mobile homes          |
|                 | MC_KQHUSTSI                             | (MNUMCR)   | , MNUMYR )   |         |        |    | LEVEL  | MILL           |         |        | Housing stock-Single family         |
|                 | MC_KQHUSTS2                             | (MNUMCR    | , MNUMYR )   |         |        |    | LEVEL  | MILL           |         |        | Housing stock-Multi family          |
|                 | MC_GFML87                               | (MNUMYR)   | )            |         |        |    | LEVEL  | D8/Ş           |         |        | Fed Govt Purchases-Delense          |
|                 | MC_SQTRCARSIMP                          | (MNUMYR)   | )            |         |        |    | LEVEL  | MILL           |         |        | Unit sales of autos-Foreign         |
|                 | MC_SQIRCARSDOM                          | (MINUMIER) | )            |         |        |    | LEVEL  | MILLL<br>bozc  |         |        | Donit Sales of autos-Domestic       |
|                 | MC_LONS                                 | (MNTIMYD)  | )            |         |        |    | LEVEL  | D0/3           |         |        | Real Consumption                    |
|                 | MC_INVEST                               | (MNTIMYD)  | )            |         |        |    | LEVEL  | D075           |         |        | Real Investment                     |
|                 | MC_UULCNE                               | (MNTIMVD)  | )            |         |        |    | TNDEY  | D075<br>92-1 0 |         |        | Unit Labor Cost Index               |
|                 | MC WDT                                  | (MNUMVP)   | )            |         |        |    | INDEX  | 82-1.0         |         |        | Droducer Drice Index                |
|                 | MC_WP1                                  | (MNUMVP)   | )            |         |        |    | INDEX  | 82-1.0         |         |        | DDI - Trangportation                |
| *               |                                         | ======     | ,            |         |        |    | ====== | ======         |         |        |                                     |
| * MACRO M       | odule Parameters                        |            |              |         |        |    |        |                |         |        |                                     |
| *========       | ======================================= |            |              |         |        |    |        |                |         |        |                                     |
| MACPARMS        |                                         |            |              |         |        |    | TYPE   | UNITS          |         |        |                                     |
|                 | MCNMMAC                                 | ( 1)       | )            |         |        |    | PARAM  | SCALAR         |         |        | NUMBER OF MACRO VARIABLES, NOT REG  |
|                 | MCNWLAG                                 | ( 1)       | )            |         |        |    | PARAM  | SCALAR         |         |        | NUMBER OF YEARS OF WPI LAGS FOR FO  |
|                 | MCNELAG                                 | ( 1)       | )            |         |        |    | PARAM  | SCALAR         |         |        | NUMBER OF YEARS OF ENDOG. LAGS FOR  |
|                 | MCNMIND                                 | ( 1)       | )            |         |        |    | PARAM  | SCALAR         |         |        | # OF FORECASTED INDUSTRY SECTORS I  |
|                 | MCLHISYR                                | ( 1)       | )            |         |        |    | PARAM  | SCALAR         |         |        | LAST HISTORICAL YEAR                |
|                 | MCBIMPRD                                | (MNUMCR)   | )            |         |        |    | PARAM  | SCALAR         |         |        | BASE YEAR MANUFACTURING OUTPUT, 198 |
|                 | MCNMMACREG                              | ( 1)       | )            |         |        |    | PARAM  | SCALAR         |         |        | NUMBER OF MACRO VARIABLES, REGIONA  |
|                 | MCNMFDVARS                              | ( 1)       | )            |         |        |    | PARAM  | SCALAR         |         |        | NUMBER OF FINAL DEMAND VARIABLES    |
|                 | MCNUMMNF                                | ( 1)       | )            |         |        |    | PARAM  | SCALAR         |         |        | # OF MANUFACTURING VARIABLES IN BA  |
|                 | MCNUMREGS                               | ( 1)       | )            |         |        |    | PARAM  | SCALAR         |         |        | NUMBER OF REGIONS                   |
|                 | MCNUMNONMFG                             | ( 1)       | )            |         |        |    | PARAM  | SCALAR         |         |        | # OF NO N-MANUF VARIABLES IN BASEL  |
|                 | MCRETCOD                                | ( 1)       | )            |         |        |    | PARAM  | SCALAR         |         |        | ERROR RETURN CODE                   |
|                 | MCTOTIND                                | ( 1)       | )            |         |        |    | PARAM  | SCALAR         |         |        | TOTAL # OF IND SECTORS FORECAST LE  |
|                 | MACINV                                  | ( 1)       | )            |         |        |    | PARAM  | SCALAR         |         |        | Investment Multiplication Factor    |
|                 | MACLC                                   | ( 1)       | )            |         |        |    | PARAM  | SCALAR         |         |        | Labor Force Multiplication Factor   |
|                 | MACRAW                                  | ( 1        | )            |         |        |    | PARAM  | SCALAR         |         |        | Productivity Multiplication Factor  |
|                 | MCRAMPINV                               | ( 1        | )            |         |        |    | PARAM  | SCALAR         |         |        | Investment Ramping Factor           |
|                 | MCRAMPLC                                | ( 1        | )            |         |        |    | PARAM  | SCALAR         |         |        | Labor Force Ramping Factor          |
|                 | MCRAMPRAW                               | ( 1        | )            |         |        |    | PARAM  | SCALAR         |         |        | Productivity Ramping Factor         |
|                 | MCNMDRVRS                               | ( 1        | )            |         |        |    | PARAM  | SCALAR         |         |        | Number of Macro Driver Variables    |
|                 | MCNMBDRVRS                              |            | )            |         |        |    | PARAM  | SCALAR         |         |        | Number of Macro baseline Driver Va  |
|                 | MCADJ                                   | ( 10       | , MNUMYR )   |         |        |    | PARAM  | SCALAR         |         |        | Adjustment Factors                  |
| +               | MCNMF.T.I.A.bF                          | (          | )            |         |        |    | PARAM  | SCALAR         |         |        | Number of Floorspace types          |
| * MACDO M       | adulo Boport Outpu                      | +          |              |         | ====== |    |        |                |         | ====== |                                     |
| * MACRO M       |                                         |            |              |         |        |    |        |                |         |        |                                     |
| MACDED          |                                         |            |              |         |        |    |        | INTTO          |         |        |                                     |
| MACKEP          | WDTOF                                   | (MNTTMVD   | \<br>\       |         |        |    | TNDEV  | 80-1 0         |         |        | ACCERCATE ENERCY DETCE INDEX        |
| *               | WP105                                   |            | ,            |         |        |    | INDEA  | 09-1.0         |         |        | AGGREGAIE ENERGI PRICE INDEA        |
| * Intorna       | tional Module Outr                      |            |              |         |        |    |        |                |         |        |                                     |
| *=======        | =======================                 | ======     |              |         |        |    |        |                |         |        |                                     |
| TNTOIT          |                                         |            |              |         |        |    | TYPE   | UNITS          |         |        |                                     |
| 1141001         | ττ ωορ                                  | (MNIIMYP   | 21           |         |        |    | PRICE  | 87\$BTT        |         |        | WORLD OTL PRICE                     |
|                 | O ITIMCRSC                              | (MNIIMVP   | , 2,         | 5       |        | ;) | OUNTY  | +BTTI          |         |        | CRIDE IMPORTS SUPPLY CURVE OUNTS    |
|                 | P ITIMCRSC                              | (MNIIMYR   | , J,<br>. 5  | 5       | , a    | () | PRICE  | 87\$BBT.       |         |        | CRIDE IMPORTS SUPPLY CURVE PRICES   |
|                 | ITIMRGSC                                | (MNUMYR    | , 5,<br>, 5. | 3       | , 2    | )  | QUNTY  | tBTU           |         |        | REF GASOLINE IMPORT SUPPLY CURVE    |

| COMMON<br>Block<br>Name                | Variable Name |                     | Variah        | e Dime            | nsions           |        | Var    | iable T         | Descript  | ors    | Variable Descriptio                |
|----------------------------------------|---------------|---------------------|---------------|-------------------|------------------|--------|--------|-----------------|-----------|--------|------------------------------------|
| Name                                   | Variable Name |                     | Var rab.      | Le Dimer          | IIB TOIIB        |        | Vai    | Table I         | Jeber The | 015    |                                    |
|                                        |               | ,                   | _             |                   |                  |        |        |                 |           |        |                                    |
|                                        | ITIMGSSC      | (MNUMYR<br>(MNUMYP  | , 5,          | , 3               | , 2<br>2         | )      | QUNTY  | tBTU<br>+ BTII  |           |        | GASOLINE "<br>DISTILLATE "         |
|                                        | ITIMIDSC      | (MNUMYR             | , 5           | 3                 | 2                | )      | OUNTY  | + BTU           |           |        | LO SIL DIS "                       |
|                                        | ITIMLRSC      | (MNUMYR             | , 5           | . 3               | 2                | )      | OUNTY  | tBTU            |           |        | LO SUL RES "                       |
|                                        | ITIMHRSC      | (MNUMYR             | , 5           | . 3               | , 2              | )      | QUNTY  | tBTU            |           |        | HI SUL RES "                       |
|                                        | ITIMJFSC      | (MNUMYR             | , 5           | , 3               | , 2              | )      | QUNTY  | tBTU            |           |        | JET FUEL "                         |
|                                        | ITIMLPSC      | (MNUMYR             | , 5           | , 3               | , 2              | )      | QUNTY  | tBTU            |           |        | LPG "                              |
|                                        | ITIMPFSC      | (MNUMYR             | , 5           | , 3               | , 2              | )      | QUNTY  | tBTU            |           |        | PETCHEM FEED "                     |
|                                        | ITIMOTSC      | (MNUMYR<br>(MNUMYD  | , 5,          | , 3<br>2          | , ∠<br>2         | )      | QUNTY  | tBIU<br>tBIU    |           |        | METHANOI "                         |
|                                        | TTIMMESC      | (MNUMIER<br>(MNUMVP | , D           | , 3               | ′ <sup>∠</sup> 2 | )      | QUNIY  | LBIU<br>+BTII   |           |        | MTRE2 "                            |
|                                        | REPORT        | (MNUMYR             | , 29          | , ,               | , 2              | /      | OUNTY  | tBTU            |           |        | REPORT WRITER VARIABLES            |
| *=======                               |               | ======              | ======        | ======            | =====            | ====== | ====== | ======          | ======    | =====  |                                    |
| * Uranium                              | Module Output |                     |               |                   |                  |        |        |                 |           |        |                                    |
| *=======                               |               | ======              |               |                   | =====            | ====== | =====  | ======          | ======    | =====  |                                    |
| UMMOU'I'                               | TIMDIM        | ( MNTTIMAZO         | ۱             |                   |                  |        | TYPE   | UNITS<br>076DTT |           |        | Lovelized nuclear prices           |
|                                        |               | (MNUMIER<br>(MNUMDR | )<br>MNITIMVP | 1                 |                  |        | OUNTY  | 675BIU<br>+BTTI |           |        | Natural uranium reactor demand     |
|                                        | UMOEUM        | (MNUMPR             | , MNUMYR      | ,<br>)            |                  |        | OUNTY  | tBTU            |           |        | Enriched uranium reactor demand    |
| *=======                               |               | ======              | ======        | ======            | ======           |        |        | ======          |           |        |                                    |
| * Capital                              | Expenditures  |                     |               |                   |                  |        |        |                 |           |        |                                    |
| *=======                               |               | ======              |               | ======            | =====            | ====== | =====  | ======          | ======    | ====== |                                    |
| CAPEXP                                 | CADEDE        |                     | 1             |                   |                  |        | TIPE   | UNITS<br>beze   |           |        | Capital expenditures for refineric |
|                                        | CAPER         | (MNIIMYR            | )             |                   |                  |        | PRICE  | b87\$           |           |        | Capital expenditures at the wellbe |
|                                        | CAPENT        | (MNUMYR             | )             |                   |                  |        | PRICE  | b87\$           |           |        | Capital expenditures for NGTDM     |
|                                        | CAPEEL        | (MNUMYR             | )             |                   |                  |        | PRICE  | b87\$           |           |        | Capital expenditures for EMM       |
|                                        | CAPECL        | (MNUMYR             | )             |                   |                  |        | PRICE  | b87\$           |           |        | Capital expenditures for Coal Modu |
| *===================================== |               |                     |               |                   |                  |        |        | ======          | ======    |        |                                    |
| *========                              |               |                     |               |                   |                  |        |        |                 |           |        |                                    |
| DSM                                    |               |                     |               |                   |                  |        | TYPE   | UNITS           |           |        |                                    |
|                                        | DSMQELRS      | (MNUMCR             | ,DSMPRS       | MNUMYR            | )                |        | QUNTY  | tBTU            |           |        | DSM program savings from residenti |
|                                        | DSMQELCM      | (MNUMCR             | ,DSMPCM       | , MNUMYR          | )                |        | QUNTY  | tBTU            |           |        | DSM program savings from commercia |
| *=======                               |               | ======              |               |                   | ======           | ====== | ====== | ======          | ======    | =====  |                                    |
| * Emissior                             | 1 Output      |                     |               |                   |                  |        |        |                 |           |        |                                    |
| EMISSION                               |               |                     |               |                   |                  |        | TYPE   | UNITS           |           |        |                                    |
|                                        | EMRFSA        | (MNUMYR             | )             |                   |                  |        | QUNTY  | TONS            |           |        | Sulfur allowances                  |
|                                        | EMELPSO2      | (MNUMYR             | )             |                   |                  |        | QUNTY  | \$/TON          |           |        | Sulfur dioxide emission allowance  |
|                                        | EMUMM         | (MNUMYR             | )             |                   |                  |        | QUNTY  | tMTONS          |           |        | Spent nuclear fuel discharges      |
|                                        | EMRS          | ( 4                 | , MNPOLL      | MNUMYR            | )                |        | QUNTY  | mMTONS          |           |        | Resd Emissions of Air Pollutants   |
|                                        | EMRSC         | (MNUMCR             | , MNPOLL      | MNUMYR<br>MNTIMVD | )                |        | QUNTY  | mMTONS          |           |        | Comm Emissions by Nir Dollutants   |
|                                        | EMCMC         |                     | MNPOLL        | MNTIMYR           | )                |        | OUNTY  | mMTONS          |           |        | Comm Emissions by Region           |
|                                        | EMINC         | ( 4                 | , MNPOLL      | MNUMYR            | )                |        | OUNTY  | mMTONS          |           |        | Ind Emis by Fuel-Combustion        |
|                                        | EMINCC        | (MNUMCR             | ,MNPOLL       | MNUMYR            | )                |        | QUNTY  | mMTONS          |           |        | Ind Emis by Region-Comb            |
|                                        | EMINCN        | (MNUMCR             | , MNPOLL      | MNUMYR            | )                |        | QUNTY  | mMTONS          |           |        | Ind Emis by Reg-Noncomb            |
|                                        | EMTR          | ( 5                 | ,MNPOLL       | , MNUMYR          | )                |        | QUNTY  | mMTONS          |           |        | Transportation Emissions by Fuel   |
|                                        | EMTRC         | (MNUMCR             | , MNPOLL      | MNUMYR            | )                |        | QUNTY  | mMTONS          |           |        | Trans Emissions by Region          |
|                                        | EMIRS         | (MNIIMCD            | , MNPOLL      | MNUMYR<br>MNTIMVD | )                |        | QUNTY  | mMTONS          |           |        | MCTDM Emissions by Trans Modes     |
|                                        | EMOGC         | (MNUMCR             | , MNPOLL      | MNUMYR            | )                |        | OUNTY  | mMTONS          |           |        | Oil&Gas Emissions by Region        |
|                                        | EMOGCS        | ( 2                 | ,MNPOLL       | MNUMYR            | )                |        | QUNTY  | mMTONS          |           |        | O&G Emis by Activity (Onshore/Offs |
|                                        | EMOGF         | ( 2                 | ,MNPOLL       | MNUMYR            | )                |        | QUNTY  | mMTONS          |           |        | O&G Emis by Fuel (Oil, NG)         |
|                                        | EMEL          | ( 4                 | , MNPOLL      | MNUMYR            | )                |        | QUNTY  | mMTONS          |           |        | EMM Emissions by Fuel Type         |
|                                        | EMELC         | (MNUMCR             | , MNPOLL      | MNUMYR            | )                |        | QUNTY  | mMTONS          |           |        | EMM Emissions by Region            |
|                                        | EMPMC         | ( 4                 | ,MNPOLL       | , MNUMYR          | )                |        | QUNTY  | mMTONS          |           |        | Petroleum Emis by Fuel-Combustion  |

| COMMON<br>Block                 |                                                |                                                                     |                                        |                  |                                  |                             |          |     |                                                                                                              |
|---------------------------------|------------------------------------------------|---------------------------------------------------------------------|----------------------------------------|------------------|----------------------------------|-----------------------------|----------|-----|--------------------------------------------------------------------------------------------------------------|
| Name                            | Variable Name                                  | Variab                                                              | Le Dimension                           | S                | Var                              | nable D                     | escripto | ors | Variable Descriptio                                                                                          |
|                                 |                                                |                                                                     |                                        |                  |                                  |                             |          |     |                                                                                                              |
|                                 | EMPMCC<br>EMPMCN<br>EMCD                       | (MNUMCR, MNPOLL,<br>(MNUMCR, MNPOLL,                                | MNUMYR)<br>MNUMYR)                     |                  | QUNTY<br>QUNTY<br>QUNTY          | mMTONS<br>mMTONS            |          |     | PMM Emis by Regn-Comb<br>PMM Emis by Reg-Noncomb                                                             |
|                                 | EMCPS                                          | ( 3, MNPOLL,                                                        | MNUMYR)                                |                  | QUNTY                            | mMTONS                      |          |     | Coal Supply Emissions by Activity                                                                            |
|                                 | EMCS<br>EMRN<br>EMRNC<br>EMCARDON              | (MNUMCR, MNPOLL,<br>( 3, MNPOLL,<br>(MNUMCR, MNPOLL,                | , MNUMYR )<br>, MNUMYR )<br>, MNUMYR ) |                  | QUNTY<br>QUNTY<br>QUNTY          | mMTONS<br>mMTONS<br>mMTONS  |          |     | Coal Synthetics Emissions by Reg<br>Renewable Emissions by Fuel<br>Renewable Emissions by Region             |
|                                 | EMCARBON<br>EMRNET<br>EMRNEC<br>EMBIDIX        | (MNETOH, MNPOLL,<br>(MNETOH, MNPOLL,<br>(MNETOH, MNPOLL,            | , MNUMYR )<br>, MNUMYR )               |                  | QUNTY<br>QUNTY<br>QUNTY          | mMTONS<br>mMTONS<br>875BTU  |          |     | Ethanol Emissions by Vol<br>Ethanol Emissions by Reg<br>Btu Tax by Euel                                      |
|                                 | EMETAX<br>EMEMTAX<br>EMLIM                     | ( 15, MNUMYR)<br>( 15, MNUMYR)<br>( MNPOLL, MNUMYR)<br>( 3, MNUMYR) |                                        |                  | QUNTY<br>QUNTY<br>QUNTY<br>OUNTY | 87\$BTU<br>\$/TON<br>\$/TON |          |     | Excise (Consumption) Tax by Fuel<br>Emissions Tax by Air Pollutant<br>Emission Constraints by (CO2.SOX.N     |
| *=======                        |                                                | ============                                                        |                                        |                  | ======                           | ======                      | ======   |     |                                                                                                              |
| * Cogene<br>*=======<br>COGEN   | ration<br>==================================== |                                                                     |                                        |                  | =====<br>TYPE                    | ======<br>UNITS             |          |     |                                                                                                              |
|                                 | CGOTCAP<br>CGOTGEN<br>CGOTHR                   | (MNUMNR, MNUMYR,<br>(MNUMNR, MNUMYR,<br>(4)                         | 4)<br>, 4)                             |                  | QUNTY<br>QUNTY<br>HEATRT         | MWATT<br>GWTHRS<br>BTUKWH   |          |     | OTHER COGEN CAPACITY (MEGAWATTS)<br>OTHER COGEN GENERATION (GIGAWATT H<br>HEAT RATES BY FUEL FOR OTHER FACIL |
|                                 | CGREQ<br>CGRECAP<br>CGREGEN                    | (MNUMCR, MNUMYR,<br>(MNUMCR, MNUMYR,<br>(MNUMCR, MNUMYR)            | 4, 4, 4, 4,                            | 2)<br>2, 2<br>2) | QUNTY<br>) QUNTY<br>OUNTY        | tBTU<br>MWATT<br>GWTHRS     |          |     | REFINERY FUEL CONSUMPT (TRILLION B<br>REFINERY COGEN CAPACITY<br>GENERATION                                  |
|                                 | CGOGQ<br>CGOGCAP                               | (MNUMCR, MNUMYR,<br>(MNUMCR, MNUMYR,                                | 4,<br>4,                               | 2)<br>2, 2       | HEATRT<br>)QUNTY                 | BTUKWH<br>MWATT             |          |     | EOR HEAT RATES BY FUEL (TRILLION B<br>OIL & GAS COGEN CAPACITY                                               |
|                                 | CGOGGEN<br>CGINDQ                              | (MNUMCR, MNUMYR)<br>(MNUMCR, MNUMYR)                                | 4,<br>4,                               | 2)<br>2)         | QUNTY<br>QUNTY                   | GWTHRS<br>tBTU              |          |     | GENERATION<br>INDUSTRIAL FUEL CONSUMPT                                                                       |
|                                 | CGINDCAP<br>CGINDGEN                           | (MNUMCR, MNUMYR,<br>(MNUMCR, MNUMYR,                                | 4,<br>4,                               | 2, 2<br>2)       | ) QUNTY<br>QUNTY                 | MWATT<br>GWTHRS             |          |     | INDUSTRIAL COGEN CAPACITY<br>GENERATION                                                                      |
|                                 | CGCOMQ<br>CGCOMQ<br>CGCOMCAP                   | (MNUMCR, MNUMYR,<br>(MNUMCR, MNUMYR,                                | 4)                                     | 2)               | QUNTY<br>OUNTY                   | GWTHRS<br>GWTHRS<br>MWATT   |          |     | NONUTIL ELEC SALES TO GRID<br>NONUTIL CAPACITY                                                               |
|                                 | GRIDSHR<br>CGTLCAP                             | (MNUMCR, MNUMYR)<br>(MNUMNR, MNUMYR)                                |                                        | ,                | LEVEL<br>QUNTY                   | SCALAR<br>MWATT             |          |     | GRID/OWN USE SHARES<br>TOTAL COGEN CAPACITY                                                                  |
| *=======                        | CGTLGEN<br>=======                             | (MNUMNR, MNUMYR)                                                    | 2)                                     |                  | QUNTY<br>=====                   | GWTHRS                      |          |     | COGEN GENERATION GRID AND OWN USE                                                                            |
| * Renewab<br>*=======<br>WRENEW | le Information                                 |                                                                     |                                        | == ======        | ======<br>TYDE                   | =====                       | ======   |     |                                                                                                              |
| MICHINEN                        | WCAHYEL<br>WCFHYEL                             | (MNUMNR, MNUMYR)                                                    | )                                      |                  | QUNTY<br>QUNTY                   | UNIT1<br>UNIT1              |          |     | UTIL HYDRO GENER CAPACITY MW<br>UTIL HYDRO CAPACITY FACTOR FRACT                                             |
|                                 | WCCHYEL<br>WOCHYEL                             | (MNUMNR, MNUMYR)<br>(MNUMNR, MNUMYR)                                | )                                      |                  | PRICE<br>PRICE                   | UNIT1<br>UNIT1              |          |     | UTIL HYDRO CAPITAL COST \$/KW<br>UTIL HYDRO FIXED OP COST mills/Kw                                           |
|                                 | WVCHYEL<br>WHRHYEL<br>WLTHYFL                  | (MNUMNR, MNUMYR)<br>(MNUMNR, MNUMYR)                                |                                        |                  | PRICE<br>QUNTY<br>OUNTY          | UNIT1<br>UNIT1<br>UNIT1     |          |     | UTIL HYDRO VAR OP COST mills/Kwh<br>UTIL HYDRO HEAT RATE BTU/KWH<br>UTIL HYDRO INIT LIFF YRS                 |
|                                 | WCAGFEL<br>WCFGFEL                             | (MNUMNR, MNUMYR)<br>(MNUMNR, MNUMYR)                                | )                                      |                  | QUNTY<br>QUNTY                   | UNIT1<br>UNIT1              |          |     | UTIL FLASH GEOTH GENER CAPACITY MW<br>UTIL FLASH GEOTH CAPACITY FACTOR F                                     |
|                                 | WCCGFEL<br>WOCGFEL                             | (MNUMNR, MNUMYR)<br>(MNUMNR, MNUMYR)                                |                                        |                  | PRICE<br>PRICE                   | UNIT1<br>UNIT1              |          |     | UTIL FLASH GEOTH CAPITAL COST \$/KW<br>UTIL FLASH GEOTH FIXED OP COST mil                                    |
|                                 | WVCGFEL<br>WHRGFEL<br>WLIGFEL                  | (MNUMNR, MNUMYR)<br>(MNUMNR, MNUMYR)<br>(1)                         | )                                      |                  | QUNTY                            | UNITI<br>UNITI<br>UNITI     |          |     | UTIL FLASH GEOTH VAR OP COST mills<br>UTIL FLASH GEOTH HEAT RATE BTU/KWH<br>UTIL FLASH GEOTH UNIT LIFF VPS   |
|                                 | WCAGBEL<br>WCFGBEL                             | (MNUMNR, MNUMYR)<br>(MNUMNR, MNUMYR)                                | )                                      |                  | QUNTY<br>OUNTY                   | UNIT1<br>UNIT1              |          |     | UTIL BINARY GEOTH GENER CAPACITY M<br>UTIL BINARY GEOTH CAPACITY FACTOR                                      |
|                                 | WCCGBEL<br>WOCGBEL                             | (MNUMNR, MNUMYR)                                                    | )                                      |                  | PRICE                            | UNIT1<br>UNIT1              |          |     | UTIL BINARY GEOTH CAPITAL COST \$/K<br>UTIL BINARY GEOTH FIXED OP COST mi                                    |

| COMMON<br>Block |               |                     |        |                   |                                      |
|-----------------|---------------|---------------------|--------|-------------------|--------------------------------------|
| Name            | Variable Name | Variable Dimensions | Var    | iable Descriptors | Variable Descriptio                  |
|                 |               |                     |        |                   |                                      |
|                 | WVCGBEL       | (MNIIMNR MNIIMYR)   | PRICE  | נואדיד1           | UTTI. BINARY GEOTH VAR OP COST mill  |
|                 | WHRGBEL       | (MNIIMNE MNIIMYE)   | OUNTY  | UNIT1             | UTTL BINARY GEOTH HEAT RATE BTU/KW   |
|                 | WITCPEI       |                     | OUNTY  | UNITT1            | UTTI DINARI GEOTII IIEAI RAIE DIO/RA |
|                 | WCLCEDS       |                     | OUNTY  | UNITT1            | DESTDEN CEOTU CAD MMPTII             |
|                 | WCRGERS       | (MINUMER, MINUMER)  | QUINTI |                   | RESIDEN GEOTH CAP FINDIO             |
|                 | WCFGERS       | (MINUMER, MINUMER)  | QUNIY  | UNIII             | RESIDEN GEOTH CAP FACTOR HOURS       |
|                 | WCCGERS       | (MNUMCR, MNUMYR)    | PRICE  | UNITI             | RESIDEN GEOTH CAP COST \$/MMBTU-YR   |
|                 | WOCGERS       | (MNUMCR, MNUMYR)    | PRICE  | UNITI             | RESIDEN GEOTH FIXED OP COST MILLS/   |
|                 | WVCGERS       | (MNUMCR, MNUMYR)    | PRICE  | UNITI             | RESIDEN GEOTH VAR OP COST MILLS/KW   |
|                 | WHRGERS       | (MNUMCR, MNUMYR)    | QUNTY  | UNITI             | RESIDEN GEOTH HEAT RATE COP          |
|                 | WLIGERS       |                     | QUNTY  | UNITI             | RESIDEN GEOTH LIFE YRS               |
|                 | WCAGECM       | (MNUMCR, MNUMYR)    | QUNTY  | UNITI             | COMMERC GEOTH CAP MMBTU              |
|                 | WCFGECM       | (MNUMCR, MNUMYR)    | QUNTY  | UNITI             | COMMERC GEOTH CAP FACTOR HOURS       |
|                 | WCCGECM       | (MNUMCR, MNUMYR)    | PRICE  | UNITI             | COMMERC GEOTH CAP COST \$/MMBTU-YR   |
|                 | WOCGECM       | (MNUMCR, MNUMYR)    | PRICE  | UNITI             | COMMERC GEOTH FIXED OP COST mills/   |
|                 | WVCGECM       | (MNUMCR, MNUMYR)    | PRICE  | UNIT1             | COMMERC GEOTH VAR OP COST mills/Kw   |
|                 | WHRGECM       | (MNUMCR, MNUMYR)    | QUNTY  | UNIT1             | COMMERC GEOTH HEAT RATE COP          |
|                 | WLIGECM       | ( 1)                | QUNTY  | UNIT1             | COMMERC GEOTH LIFE YRS               |
|                 | WCAMSEL       | (MNUMNR, MNUMYR)    | QUNTY  | UNIT1             | UTIL MSW GENER CAPACITY MW           |
|                 | WCFMSEL       | (MNUMNR, MNUMYR)    | QUNTY  | UNIT1             | UTIL MSW CAPACITY FACTOR FRACT       |
|                 | WCCMSEL       | (MNUMNR, MNUMYR)    | PRICE  | UNIT1             | UTIL MSW CAPITAL COST \$/KW          |
|                 | WOCMSEL       | (MNUMNR, MNUMYR)    | PRICE  | UNIT1             | UTIL MSW FIXED OP COST mills/Kw      |
|                 | WVCMSEL       | (MNUMNR, MNUMYR)    | PRICE  | UNIT1             | UTIL MSW VAR OP COST mills/Kwh       |
|                 | WHRMSEL       | (MNUMNR, MNUMYR)    | QUNTY  | UNIT1             | UTIL MSW HEAT RATE BTU/KWH           |
|                 | WHCMSEL       | (MNUMNR, MNUMYR)    | QUNTY  | UNIT1             | UTIL MSW HEAT CONT BTU/LB            |
|                 | WLIMSEL       | ( 1)                | OUNTY  | UNIT1             | UTIL MSW UNIT LIFE YRS               |
|                 | WCAMSCM       | (MNUMCR, MNUMYR)    | ÕUNTY  | UNIT1             | COMMERC MSW CAP MW                   |
|                 | WCFMSCM       | (MNUMCR, MNUMYR)    | OUNTY  | UNTT1             | COMMERC MSW CAP FACTOR FRACT         |
|                 | WCCMSCM       | (MNUMCR, MNUMYR)    | PRICE  | UNTT1             | COMMERC MSW CAP COST \$/KW           |
|                 | WOCMSCM       | (MNUMCR, MNUMYR)    | PRICE  | UNTT1             | COMMERC MSW FIXED OP COST mills/Kw   |
|                 | WVCMSCM       | (MNUMCR MNUMYR)     | PRICE  | UNIT1             | COMMERC MSW VAR OP COST mills/Kwh    |
|                 | WHRMSCM       | (MNUMCR MNUMYR)     | OUNTY  | UNIT1             | COMMERC MSW HEAT RATE BTU/KWH        |
|                 | WHCMSCM       | (MNUMCR MNUMYR)     | OUNTY  | UNIT1             | COMMERC MSW HEAT CONT BTU/LB         |
|                 | WILTMSCM      |                     | OUNTY  | UNIT1             | COMMERC MSW LIFE VRS                 |
|                 | WCAMSIN       |                     | OUNTY  | UNITT1            | TNDUST MSW CAD MW                    |
|                 | WCEMSIN       | (MNUMCR, MNUMVR)    | OUNTY  | UNITT1            | INDUST MOW CAD FACTOR FRACT          |
|                 | WCCMSIN       | (MNUMCR, MNUMVR)    | DBICE  |                   | INDUST MSW CAP FACION FRACI          |
|                 | WOCMSIN       | (MNUMCR, MNUMVR)    | DRICE  |                   | INDUST MSW CAP COSI S/KW             |
|                 | WUCMEIN       | (MNUMCE, MNUMYE)    | PRICE  |                   | INDUST MOW VAD OD COST mills/Kw      |
|                 | WUDMCIN       | (MNUMCR, MNUMUR)    | OINTY  |                   | INDUSI MSW VAR OP COSI MIIIS/RWH     |
|                 | WIRMSIN       | (MINUMER, MINUMIR)  | QUNTI  |                   | INDUSI MSW MEAI RAIE BIU/RWM         |
|                 | WHEMSIN       | (MINUMER, MINUMER)  | QUNIY  |                   | INDUSI MSW HEAI CONI BIU/LB          |
|                 | WLIMSIN       |                     | QUNIY  | UNIII             | INDUSI MSW LIFE IRS                  |
|                 | WCABMEL       | (MINUMINE, MINUMIE) | QUNIY  | UNIII             | UTIL WOOD GENER CAPACITY MW          |
|                 | WCFBMEL       | (MNUMNR, MNUMYR)    | QUNTY  | UNITI             | UTIL WOOD CAPACITY FACTOR FRACT      |
|                 | WCCBMEL       | (MNUMNR, MNUMYR)    | PRICE  | UNITI             | UTIL WOOD CAPITAL COST \$/KW         |
|                 | WOCBMEL       | (MNUMNR, MNUMYR)    | PRICE  | UNITI             | UTIL WOOD FIXED OP COST mills/kw     |
|                 | WVCBMEL       | (MNUMNR, MNUMYR)    | PRICE  | UNITI             | UTIL WOOD VAR OP COST mills/Kwh      |
|                 | WHRBMEL       | (MNUMNR, MNUMYR)    | QUNTY  | UNITI             | UTIL WOOD HEAT RATE BTU/KWH          |
|                 | WHCBMEL       | (MNUMNR, MNUMYR)    | QUNTY  | UNITI             | UTIL WOOD HEAT CONT MMBTU/TON        |
|                 | WLIBMEL       |                     | QUNTY  | UNITI             | UTIL WOOD UNIT LIFE YRS              |
|                 | WCABMRS       | (MNUMCR, MNUMYR)    | QUNTY  | UNITI             | RESIDEN WOOD CAP MMBTU               |
|                 | WCFBMRS       | (MNUMCR, MNUMYR)    | QUNTY  | UNITI             | RESIDEN WOOD CAP FACTOR FRACT        |
|                 | WCCBMRS       | (MNUMCR, MNUMYR)    | PRICE  | UNIT1             | RESIDEN WOOD CAP COST \$/MMBTU-YR    |
|                 | WOCBMRS       | (MNUMCR, MNUMYR)    | PRICE  | UNIT1             | RESIDEN WOOD FIXED OP COST mills/K   |
|                 | WVCBMRS       | (MNUMCR, MNUMYR)    | PRICE  | UNIT1             | RESIDEN WOOD VAR OP COST mills/Kwh   |
|                 | WHRBMRS       | (MNUMCR, MNUMYR)    | QUNTY  | UNIT1             | RESIDEN WOOD HEAT RATE MMBTU/TON     |
|                 | WLIBMRS       | ( 1)                | QUNTY  | UNIT1             | RESIDEN WOOD LIFE YRS                |
|                 | WCABMCM       | (MNUMCR, MNUMYR)    | QUNTY  | UNIT1             | COMMERC WOOD CAP MMBTU               |
|                 | WCFBMCM       | (MNUMCR, MNUMYR)    | OUNTY  | UNIT1             | COMMERC WOOD CAP FACTOR FRACT        |

|   | COMMON<br>Block |               |                     |               |                    |                                     |
|---|-----------------|---------------|---------------------|---------------|--------------------|-------------------------------------|
| _ | Name            | Variable Name | Variable Dimensions | Var           | riable Descriptors | Variable Descriptio                 |
|   |                 |               |                     |               |                    |                                     |
|   |                 | WCCBMCM       | (MNIIMCR.MNIIMYR)   | PRICE         | וואדיד1            | COMMERC WOOD CAP COST S/MMBTU-YR    |
|   |                 | WOCBMCM       | (MNUMCE MNUMYE)     | PRICE         | UNIT1              | COMMERC WOOD FIXED OP COST mills/K  |
|   |                 | WUCDMCM       | (MNIIMOD MNIIMVD)   | DRICE         |                    | COMMERC WOOD VAR OD COST mills/Kut  |
|   |                 | WIDDMCM       | (MNUMCD MNUMYD)     | OINTRY        |                    | COMMERC WOOD VAR OF COST MILLS/RWI  |
|   |                 | WIRDINGN      |                     | QUINTI        |                    | COMMERC WOOD HEAT KATE MMBT0/TON    |
|   |                 | WLIBMCM       |                     | QUNIY         | UNITI              | COMMERC WOOD LIFE IRS               |
|   |                 | WCABMIN       | (MNUMCR, MNUMYR)    | QUNTY         | UNITI              | INDUST WOOD CAP MMBTU               |
|   |                 | WCFBMIN       | (MINUMCR, MINUMYR)  | QUNTY         | UNITI              | INDUST WOOD CAP FACTOR FRACT        |
|   |                 | WCCBMIN       | (MINUMCR, MINUMYR)  | PRICE         | UNITI              | INDUST WOOD CAP COST \$/MMBTU-YR    |
|   |                 | WOCBMIN       | (MNUMCR, MNUMYR)    | PRICE         | UNITI              | INDUST WOOD FIXED OP COST MILLS/KW  |
|   |                 | WVCBMIN       | (MNUMCR, MNUMYR)    | PRICE         | UNITI              | INDUST WOOD VAR OP COST mills/kwh   |
|   |                 | WHRBMIN       | (MNUMCR, MNUMYR)    | QUNTY         | UNITI              | INDUST WOOD HEAT RATE MMBTU/TON     |
|   |                 | WLIBMIN       | ( <u>1</u> )        | QUNTY         | UNITI              | INDUST WOOD LIFE YRS                |
|   |                 | WCASTEL       | (MNUMNR, MNUMYR)    | QUNTY         | UNITI              | UTIL SOLAR TH GENER CAPACITY MW     |
|   |                 | WCFSTEL       | (MNUMNR, MNUMYR)    | QUNTY         | UNITI              | UTIL SOLAR TH CAPACITY FACTOR FRAC  |
|   |                 | WCCSTEL       | (MNUMNR, MNUMYR)    | PRICE         | UNITI              | UTIL SOLAR TH CAPITAL COST \$/KW    |
|   |                 | WOCSTEL       | (MNUMNR, MNUMYR)    | PRICE         | UNIT1              | UTIL SOLAR TH FIXED OP COST mills/  |
|   |                 | WVCSTEL       | (MNUMNR, MNUMYR)    | PRICE         | UNITI              | UTIL SOLAR TH VAR OP COST mills/Kw  |
|   |                 | WHRSTEL       | (MNUMNR, MNUMYR)    | QUNTY         | UNIT1              | UTIL SOLAR TH HEAT RATE BTU/KWH     |
|   |                 | WHCSTEL       | (MNUMNR, MNUMYR)    | QUNTY         | UNIT1              | UTIL SOLAR TH HEAT CONT BTU/SFT     |
|   |                 | WLISTEL       | ( 1)                | QUNTY         | UNIT1              | UTIL SOLAR TH UNIT LIFE YRS         |
|   |                 | WCASWRS       | (MNUMCR, MNUMYR)    | QUNTY         | UNIT1              | RESIDEN SOL TH CAP MMBTU            |
|   |                 | WCFSWRS       | (MNUMCR, MNUMYR)    | QUNTY         | UNIT1              | RESIDEN SOL TH CAP FACTOR HOURS     |
|   |                 | WCCSWRS       | (MNUMCR, MNUMYR)    | PRICE         | UNIT1              | RESIDEN SOL TH CAP COST \$/MMBTU-YF |
|   |                 | WOCSWRS       | (MNUMCR, MNUMYR)    | PRICE         | UNIT1              | RESIDEN SOL TH FIXED OP COST mills  |
|   |                 | WVCSWRS       | (MNUMCR, MNUMYR)    | PRICE         | UNIT1              | RESIDEN SOL TH VAR OP COST mills/K  |
|   |                 | WHRSWRS       | (MNUMCR, MNUMYR)    | QUNTY         | UNIT1              | RESIDEN SOL TH HEAT RATE MMBTU/SFT  |
|   |                 | WLISWRS       | ( 1)                | QUNTY         | UNIT1              | RESIDEN SOL TH LIFE YRS             |
|   |                 | WCASSRS       | (MNUMCR, MNUMYR)    | QUNTY         | UNIT1              | RESIDEN SOL TH CAP MMBTU            |
|   |                 | WCFSSRS       | (MNUMCR, MNUMYR)    | QUNTY         | UNIT1              | RESIDEN SOL TH CAP FACTOR HOURS     |
|   |                 | WCCSSRS       | (MNUMCR, MNUMYR)    | PRICE         | UNIT1              | RESIDEN SOL TH CAP COST \$/MMBTU-YF |
|   |                 | WOCSSRS       | (MNUMCR, MNUMYR)    | PRICE         | UNIT1              | RESIDEN SOL TH FIXED OP COST mills  |
|   |                 | WVCSSRS       | (MNUMCR, MNUMYR)    | PRICE         | UNIT1              | RESIDEN SOL TH VAR OP COST mills/K  |
|   |                 | WHRSSRS       | (MNUMCR, MNUMYR)    | QUNTY         | UNIT1              | RESIDEN SOL TH HEAT RATE MMBTU/SFT  |
|   |                 | WLISSRS       | ( 1)                | QUNTY         | UNIT1              | RESIDEN SOL TH LIFE YRS             |
|   |                 | WCASWCM       | (MNUMCR, MNUMYR)    | QUNTY         | UNIT1              | COMMERC SOL TH CAP MMBTU            |
|   |                 | WCFSWCM       | (MNUMCR, MNUMYR)    | QUNTY         | UNIT1              | COMMERC SOL TH CAP FACTOR HOURS     |
|   |                 | WCCSWCM       | (MNUMCR, MNUMYR)    | PRICE         | UNIT1              | COMMERC SOL TH CAP COST \$/MMBTU-YF |
|   |                 | WOCSWCM       | (MNUMCR, MNUMYR)    | PRICE         | UNIT1              | COMMERC SOL TH FIXED OP COST mills  |
|   |                 | WVCSWCM       | (MNUMCR, MNUMYR)    | PRICE         | UNIT1              | COMMERC SOL TH VAR OP COST mills/K  |
|   |                 | WHRSWCM       | (MNUMCR, MNUMYR)    | OUNTY         | UNIT1              | COMMERC SOL TH HEAT RATE MMBTU/SFT  |
|   |                 | WLISWCM       | ( 1)                | ÕUNTY         | UNIT1              | COMMERC SOL TH LIFE YRS             |
|   |                 | WCASSCM       | (MNUMCR, MNUMYR)    | ÕUNTY         | UNIT1              | COMMERC SOL TH CAP MMBTU            |
|   |                 | WCFSSCM       | (MNUMCR, MNUMYR)    | ÕUNTY         | UNIT1              | COMMERC SOL TH CAP FACTOR HOURS     |
|   |                 | WCCSSCM       | (MNUMCR, MNUMYR)    | PRICE         | UNIT1              | COMMERC SOL TH CAP COST \$/MMBTU-YE |
|   |                 | WOCSSCM       | (MNUMCR, MNUMYR)    | PRICE         | UNTT1              | COMMERC SOL TH FIXED OP COST mills  |
|   |                 | WVCSSCM       | (MNUMCR, MNUMYR)    | PRICE         | UNTT1              | COMMERC SOL TH VAR OP COST mills/K  |
|   |                 | WHRSSCM       | (MNUMCR MNUMYR)     | OUNTY         | UNTT1              | COMMERC SOL TH HEAT RATE MMBTU/SFT  |
|   |                 | WLISSCM       | ( 1)                | OUNTY         | UNTT1              | COMMERC SOL TH LIFE YRS             |
|   |                 | WCAPVEL       | (MNUMNR, MNUMYR)    | OUNTY         | UNTT1              | UTIL PHOTOV GENER CAPACITY MW       |
|   |                 | WCFPVEL       | (MNUMNR, MNUMYR)    | OUNTY         | UNTT1              | UTIL PHOTOV CAPACITY FACTOR FRACT   |
|   |                 | WCCPVEL       | (MNUMNR MNUMYR)     | OUNTY         | UNTT1              | ITTI, PHOTOV CAPITAL COST \$/KW     |
|   |                 | WOCPVEL       | (MNUMNR MNUMYR)     | PRICE         | UNTT1              | ITTI, PHOTOV FIXED OP COST mille/Ku |
|   |                 | WVCPVEL       | (MNUMNR MNUMYR)     | PRICE         | UNTT1              | IITTI, PHOTOV VAR OP COST mille/Kwh |
|   |                 | WHRPVEL       | (MNUMNR MNUMYR)     | OUNTY         | UNTT1              | ITTI, PHOTOV HEAT RATE BTI/KWH      |
|   |                 | WHCPVEL       | (MNUMNR MNUMYR)     | OUNTY         | UNITT1             | UTTI, PHOTOV HEAT CONT BTILSET      |
|   |                 | WI.TOVEL      | ( 1)                | OUNTV         | UNITT1             | ITTI, PHOTOV INIT LIFF VPQ          |
|   |                 | WCAPVRS       | (MNIIMCR MNIIMYR)   | OUNTY         | UNITT1             | RESIDEN SOL DV CAP MMRTH            |
|   |                 | WCFPVRS       | (MNUMCR MNUMYR)     | OUNTY         | UNTT1              | RESIDEN SOL PV CAP FACTOR HOURS     |
|   |                 |               | ( , C               | ~ · · · · · · | V-1                |                                     |

| - | COMMON<br>Block |               |                                         |                       |         |                 |             |                                     |
|---|-----------------|---------------|-----------------------------------------|-----------------------|---------|-----------------|-------------|-------------------------------------|
| - | Name            | Variable Name | Variab                                  | le Dimensions         | Var     | iable D         | Descriptors | Variable Description                |
|   |                 |               |                                         |                       |         |                 |             |                                     |
|   |                 |               | ()0000000000000000000000000000000000000 | ,                     |         |                 |             |                                     |
|   |                 | WCCPVRS       | (MNUMCR, MNUMYR                         | )                     | PRICE   | UNITI           |             | RESIDEN SOL PV CAP COST \$/MMBTU-YR |
|   |                 | WOCPVRS       | (MNUMCR, MNUMYR                         | )                     | PRICE   | UNITI           |             | RESIDEN SOL PV FIXED OP COST mills  |
|   |                 | WVCPVRS       | (MNUMCR, MNUMYR                         | )                     | PRICE   | UNITI           |             | RESIDEN SOL PV VAR OP COST mills/K  |
|   |                 | WHRPVRS       | (MNUMCR, MNUMYR                         | )                     | QUNTY   | UNIT1           |             | RESIDEN SOL PV HEAT RATE BTU/KWH    |
|   |                 | WHCPVRS       | (MNUMCR, MNUMYR)                        | )                     | QUNTY   | UNIT1           |             | RESIDEN SOL PV HEAT CONT MMBTU/SFT  |
|   |                 | WLIPVRS       | ( 1)                                    |                       | QUNTY   | UNIT1           |             | RESIDEN SOL PV LIFE YRS             |
|   |                 | WCAPVCM       | (MNUMCR, MNUMYR)                        | )                     | QUNTY   | UNIT1           |             | COMMERC SOL PV CAP MMBTU            |
|   |                 | WCFPVCM       | (MNUMCR, MNUMYR)                        | )                     | QUNTY   | UNIT1           |             | COMMERC SOL PV CAP FACTOR HOURS     |
|   |                 | WCCPVCM       | (MNUMCR, MNUMYR)                        | )                     | PRICE   | UNIT1           |             | COMMERC SOL PV CAP COST \$/MMBTU-YR |
|   |                 | WOCPVCM       | (MNUMCR, MNUMYR)                        | )                     | PRICE   | UNIT1           |             | COMMERC SOL PV FIXED OP COST mills  |
|   |                 | WVCPVCM       | (MNUMCR, MNUMYR)                        | )                     | PRICE   | UNIT1           |             | COMMERC SOL PV VAR OP COST mills/K  |
|   |                 | WHRPVCM       | (MNUMCR, MNUMYR                         | )                     | QUNTY   | UNIT1           |             | COMMERC SOL PV HEAT RATE BTU/KWH    |
|   |                 | WHCPVCM       | (MNUMCR, MNUMYR                         | )                     | QUNTY   | UNIT1           |             | COMMERC SOL PV HEAT CONT MMBTU/SFT  |
|   |                 | WLIPVCM       | ( 1)                                    |                       | OUNTY   | UNIT1           |             | COMMERC SOL PV LIFE YRS             |
|   |                 | WCAWIEL       | (MNUMNR, MNUMYR                         | )                     | ÕUNTY   | UNIT1           |             | UTIL WIND GENER CAPACITY MW         |
|   |                 | WCFWIEL       | (MNUMNR, MNUMYR                         | )                     | ÕUNTY   | UNIT1           |             | UTIL WIND CAPACITY FACTOR FRACT     |
|   |                 | WCCWIEL       | (MNUMNR, MNUMYR                         | )                     | PRICE   | UNIT1           |             | UTIL WIND CAPITAL COST \$/KW        |
|   |                 | WOCWIEL       | (MNUMNR, MNUMYR                         | )                     | PRICE   | UNTT1           |             | UTTI, WIND FIXED OP COST mills/Kw   |
|   |                 | WVCWTEL       | (MNUMNR, MNUMYR                         | )                     | PRICE   | UNTT1           |             | UTTL WIND VAR OP COST mills/Kwh     |
|   |                 | WHRWIFI.      | (MNIIMNE MNIIMVE)                       | )                     | OUNTY   | UNITT1          |             | UTTI, WIND HEAT PATE BTI/KWH        |
|   |                 | WHOWTEL       | (MILIMNE MILIMVE)                       | )                     | OUNTY   | UNITT1          |             | UTIL WIND HEAT CONT DTU/COM         |
|   |                 | WICWIEL       |                                         | )                     | OUNTY   | UNITT1          |             | UTTI WIND UNIT I TEE VDG            |
|   |                 | WDFTOH        |                                         | MNIIMVP MNFTOH)       | OUNTY   | UNITT1          |             | FTHANOL DRICE/STED                  |
|   |                 | WOFTOH        | (MNCPOD MNUMCP                          | MNUMVP MNETOH)        | OUNTY   | UNITT1          |             | ETHANOL OUAN/STED                   |
|   |                 | WEINNGEI      | (MNDOLL MNUMVD)                         | , MINOPITE, MINEION / | OUNTY   | UNITT1          |             | LITTI EMISSIONS EDOM MON LDS/MMDTI  |
|   |                 | WEMMONET      | (MNDOLL, MNUMVP)                        | )                     | OUNTY   | UNITT1          |             | UTTI EMISSIONS FROM MSW LBS/MMBIU   |
|   |                 | WEMOREL       | (MNDOLL, MNUMUR)                        | )                     | QUNII   | UNITT1          |             | UTIL EMISSIONS FROM BIOMASS LBS/MM  |
|   |                 | WENGFEL       | (MINPOLL, MINOMIR                       | )                     | QUNII   | UNITT1          |             | Vor Available                       |
|   |                 | WCAV          | (WINTECH)                               | \<br>\                | DDIGE   | UNITE1          |             | Iear Avallable                      |
|   |                 | WCSU          | (WNIECH, MNOMIR                         | )                     | PRICE   | UNIII<br>INITE1 |             | Subsidy (mills/kwii)                |
|   |                 | WCSI          | (WNIECH, MNUMIR                         | )                     | PRICE   | UNIII<br>INITE1 |             | Subsidy (\$/\$ invested)            |
|   |                 | WCLT.         | (WINTECH)                               |                       | QUNTY   | UNITI           |             | Construction Lead Time (yr)         |
|   |                 | WCPC          | (WINTECH, 8                             | )                     | QUNTY   | UNITI           |             | Percent Constucted (Iract)          |
|   |                 | WPOWIEL       | (MNUMYR)                                |                       | QUN'I'Y | UNITI           |             | Wind Planned Outage (fract of year  |
|   |                 | WCRWIEL       | (MNUMNR, MNUMYR                         | )                     | QUN'I'Y | UNITI           |             | Wind Capacity Credit (fract)        |
|   |                 | WSCWIEL       | (MNUMNR, MNUMYR                         | , MNUMCL )            | QUNTY   | UNITI           |             | Avail Wind Capacity (MW)            |
|   |                 | WSFWIEL       | (MNUMNR, MNUMYR                         | , MNUMCL, MNUMWI)     | QUNTY   | UNITI           |             | Wind Cap Factor (DEC)               |
|   |                 | WSSSTEL       | (MNUMNR, MNUMYR                         | , MNUMSO)             | QUNTY   | UNIT1           |             | Solar Thermal Supply Shape (by tim  |
|   |                 | WSSPVEL       | (MNUMNR, MNUMYR                         | , MNUMSO )            | QUNTY   | UNIT1           |             | Photovoltaics Supply Shape (by tim  |
|   |                 | WQCMSINEL     | ( 4, 4                                  | , MNUMYR )            | QUNTY   | UNIT1           |             | MSW Electricity for Industries (TB  |
|   |                 | WQCMSINST     | ( 4, 4                                  | , MNUMYR )            | QUNTY   | UNIT1           |             | MSW Steam for Industries (TBtu)     |
|   | *======         |               |                                         |                       |         |                 |             |                                     |
|   | * Conversi      | ion Factors   |                                         |                       |         |                 |             |                                     |
|   | *=======        |               |                                         |                       |         |                 |             |                                     |
|   | CONVFACT        |               |                                         |                       | TYPE    | UNITS           |             |                                     |
|   |                 | CFASQ         | ( 1)                                    |                       | CONFAC  | mBTU/B          |             | Asphalt and Road Oil.               |
|   |                 | CFBUQ         | ( 1)                                    |                       | CONFAC  | mBTU/B          |             | Butane.                             |
|   |                 | CFDSQ         | ( 1)                                    |                       | CONFAC  | mBTU/B          |             | Distillate.                         |
|   |                 | CFETQ         | ( 1)                                    |                       | CONFAC  | mBTU/B          |             | Ethanol.                            |
|   |                 | CFIBQ         | ( 1)                                    |                       | CONFAC  | mBTU/B          |             | Isobutane.                          |
|   |                 | CFJFK         | ( 1)                                    |                       | CONFAC  | mBTU/B          |             | Jet Fuel. Kerosene                  |
|   |                 | CFJFN         | ( 1)                                    |                       | CONFAC  | mBTU/B          |             | Jet Fuel. Naphtha                   |
|   |                 | CFKSQ         | ( 1)                                    |                       | CONFAC  | mBTU/B          |             | Kerosene.                           |
|   |                 | CFLGQ         | (MNUMYR)                                |                       | CONFAC  | mBTU/B          |             | Liquid Petroleum Gas.               |
|   |                 | CFMGQ         | (MNUMYR)                                |                       | CONFAC  | mBTU/B          |             | Motor Gasoline.                     |
|   |                 | CFOTÕ         | (MNUMYR)                                |                       | CONFAC  | mBTIJ/R         |             | Other Petr. (lubes, av gas)         |
|   |                 | CFPPO         | ( 1)                                    |                       | CONFAC  | mBTIJ/R         |             | Pentanes Plus.                      |
|   |                 | CFPFO         | (MNUMYR)                                |                       | CONFAC  | mBTIJ/R         |             | Petrochemical Feedstocks.           |
|   |                 | CFPCO         | ( 1)                                    |                       | CONFAC  | mBTIJ/R         |             | Petroleum Coke.                     |
|   |                 | · •           | . ,                                     |                       |         |                 |             |                                     |

| COMMON<br>Block<br>Name | Variable Name |      | Variabl | e Dimensions |       | Var    | iable D | escriptors |         |       | Variable Descriptio |
|-------------------------|---------------|------|---------|--------------|-------|--------|---------|------------|---------|-------|---------------------|
|                         |               |      |         |              |       |        | / _     |            | _       |       |                     |
|                         | CFPRQ         | (    | 1)      |              |       | CONFAC | mBTU/B  |            | Propane | ÷.    |                     |
|                         | CFRSQ         | (    | 1)      |              |       | CONFAC | mBTU/B  |            | Residua | il Fü | uel.                |
|                         | CFSGO         | (    | 1)      |              |       | CONFAC | mBTU/B  |            | Still G | las.  |                     |
|                         | CFNGŨ         | (    | 1)      |              |       | CONFAC | tBTU/C  |            | Natural | Gas.  | Util - 1034         |
|                         | CFNGN         | (    | 1)      |              |       | CONFAC | tBTU/C  |            | Natural | Gas.  | Nonutil - 1030      |
|                         | CFNGC         | (    | 1)      |              |       | CONFAC | tBTU/C  |            | Natural | Gas.  | Consum/Prod-1031    |
|                         | CFNGI         | (    | 1)      |              |       | CONFAC | tBTU/C  |            | Natural | Gas.  | Imports - 1004      |
| *=======                |               | ==== |         |              | ===== |        |         |            |         |       |                     |

Appendix B

Alphabetical List of NEMS Variables

# Appendix B. Alphabetical List of NEMS Variables

This appendix lists the NEMS Global Data Structure variables in alphabetical order, rather than by COMMON blocks, as shown in Appendix A.

| COMMON   | Variable       | COMOTIT  | CMnuConRS         | FMISSION | FMCMC     | TPANPFD  | FITTECHSTREDT |
|----------|----------------|----------|-------------------|----------|-----------|----------|---------------|
| COMMON   | Variable       | COMOUL   |                   | EMISSION | EMCINC    | TRANCEP  | FLIECHSIKKFI  |
| NONEDI   | A D G M O I    | COMMON   | variable          | EMISSION | EMCP      | TRANKEP  | FLIECHVMIRPI  |
| NCNTRL   | ABSTOL         |          |                   | COMMON   | Variable  | TRANKEP  | FLIFCLDVBIU   |
| COALREP  | ABSULF         | COMOUT   | CMnuConSC         |          |           | COMMON   | Variable      |
| COALREP  | ALSULF         | COMOUT   | CMnuGen           | EMISSION | EMCPS     |          |               |
| INDREP   | ALUMCON        | COMOUT   | CMnuGrid          | EMISSION | EMCS      | OGSMOUT  | FNGEXPORT     |
| APC      | APCON          | COMOUT   | CMrwConBio        | TRANREP  | EMDSTDES  | OGSMOUT  | FNGIMPORT     |
| NCNTRL   | BASEYR         | COMOUT   | CMrwConGeo        | TRANREP  | EMDSTGAS  | OGSMOUT  | FNGIMPRIC     |
| COALOUT  | BBCELNR        | COMOUT   | CMrwConHyd        | TRANREP  | EMDSTRES  | INDRED   | FOODCON       |
| CONLOUT  | DDDEL ND       | COMOUT   | CMrsuConOth       | EMICCION | EMEL      | NONTOI   | FRCTOL        |
| COALOUI  | BBUELINK       | COMOUT   | CMEWCONOCH        | EMISSION | EMEL      | NCNIKL   | FRCIOL        |
| COALOUT  | BBHELNR        | COMOUT   | CMrwConSol        | EMISSION | EMELC     | FZCN     | FRZCON        |
| COALOUT  | BBMELNR        | COMOUT   | CMrwConWind       | EMISSION | EMELPSO2  | INDREP   | GLASSCON      |
| COALOUT  | BLCELNR        | COMPARAM | CMBehav_Rule      | EMISSION | EMEMTAX   | UGOILOUT | GRATMAX       |
| COALOUT  | BLDELNR        | COMPARAM | CMDSM_Capital     | EMISSION | EMETAX    | UGOILOUT | GRATMIN       |
| COALOUT  | BLHELNR        | COMPARAM | CMDSM_Rate        | TRANREP  | EMFRTCNG  | UGOILOUT | GRATPAR       |
| COALOUT  | BLMELNR        | COMMREP  | CMFinalEndUseCon  | TRANREP  | EMFRTDES  | COGEN    | GRIDSHR       |
| COALOUT  | BSCELNR        | COMPARAM | CMLog Parm A      | TRANREP  | EMFRTGAS  | UGOTLOUT | GSHRMAX       |
| COALOUT  | BSDFLNR        | COMDARAM | CMLog Parm B      | FMISSION | FMINC     | UCOLLOUT | CSHPMIN       |
| COALOUT  | DOUELND        | COMPADAM | CMMinEuclCrowth   | EMISSION | EMINC     | UCOLLOUT | COUDDAD       |
| COALOUI  | DOWELNE        | COMPARAM | CMMIIIFUEIGIOWCII | EMISSION | EMINCC    | UGUILUUI | GSHRPAR       |
| COALOUI  | BSMELINK       | COMMREP  | CMNewFirSpace     | EMISSION | EMINCN    | NCNIRL   | HISTORY       |
| CAPEXP   | CAPECL         | COMPARAM | CMNonBldgGrowth   | TRANKEP  | EMISTDES  | HTCN     | HTRCON        |
| CAPEXP   | CAPEEL         | COMPARAM | CMRisk_Prem       | TRANREP  | EMISTRES  | HWCN     | H2OCON        |
| CAPEXP   | CAPENT         | COMMREP  | CMSurvFloorTot    | TRANREP  | EMLDTCNG  | COALREP  | IBSULF        |
| CAPEXP   | CAPEOG         | COMPARAM | CMSTElas          | TRANREP  | EMLDTDES  | COALREP  | ILSULF        |
| CAPEXP   | CAPERF         | COMPARAM | CMTechPenRate     | TRANREP  | EMLDTETH  | INDOUT   | INCAELNU      |
| TNDREP   | CEMENTCON      | COMPARAM | CMTechShareOpt    | TRANREP  | EMLDTGAS  | TNDOUT   | TNGNELNU      |
| CONTRACT | CENSO          | COMMERD  | CMUSAwaEff        | TDANDED  | EMI DTUTU | INDOUT   | TNORMUI       |
| CONVEACE | CFASQ          | COMMETER | CMUSAVGELL        | TRANKEP  |           | INDOUT   | INOBMINO      |
| CONVFACT | CFBUQ          | COMMREP  | CMUSConsumption   | TRANKEP  | EMLDTLPG  | INDOUT   | INQBMRN       |
| CONVFACT | CFDSQ          | COMMREP  | CMUSNewFloorTot   | TRANREP  | EMLDTMET  | INDOUT   | INQCLNU       |
| CONVFACT | CFETQ          | COMMREP  | CMUSSurvFloorTot  | EMISSION | EMLIM     | INDOUT   | INQGORN       |
| CONVFACT | CFIBQ          | NCNTRL   | CNVTST            | TRANREP  | EMMILT    | INDOUT   | INQHYRN       |
| CONVFACT | CFJFK          | COALREP  | COALIMP           | EMISSION | EMNT      | INDOUT   | INQNGNU       |
| CONVFACT | CFJFN          | COALREP  | COALPRICE         | EMISSION | EMOGC     | INDOUT   | INOOTRN       |
| CONVEACT | CEKSO          | COALREP  | COALPROD          | EMISSION | EMOGCS    | TNDOUT   | TNORENII      |
| CONVENCE | CELCO          | CONTRED  | COAL DROD?        | EMICCION | EMOCE     | INDOUT   | TNOSOBN       |
| CONVERCE | CFLGQ          | COALICEP | COALFRODZ         | EMISSION | EMOGI     | INDOUT   | INQUITIN      |
| CONVFACI | CFMGQ          | COALOUI  | COCCLG            | EMISSION | EMPMC     | INDOUT   | INQWIRN       |
| CONVFACT | CFNGC          | COALOUT  | COCCLQ            | EMISSION | EMPMCC    | INDOU'I' | INSGELNU      |
| CONVFACT | CFNGI          | COALOUT  | COELPRC           | EMISSION | EMPMCN    | NCNTRL   | IRELAX        |
| CONVFACT | CFNGN          | COALOUT  | COIM              | TRANREP  | EMRAILT   | INTOUT   | IT_WOP        |
| CONVFACT | CFNGU          | COALOUT  | COIMP             | TRANREP  | EMRECT    | INTOUT   | ITIMDSSC      |
| CONVFACT | CFOTQ          | CLCN     | COOLCN            | EMISSION | EMRFSA    | INTOUT   | ITIMGSSC      |
| CONVFACT | CFPCO          | COALOUT  | COPRCLG           | TRANREP  | EMRLTDES  | INTOUT   | ITIMHRSC      |
| CONVEACT | CEPEO          | COALOUT  | COPRCIO           | TRANREP  | EMRLTRES  | TNTOUT   | TTIMIESC      |
| CONVEACT | CEDDO          | COALOUT  | COSTIDC           | FMISSION | FMPN      | INTOUT   | TTIMLDSC      |
| CONVEACE | CEDRO          | COALOUT  | COTN TM           | EMISSION | EMENC     | INTOUT   | TTIMIDSC      |
| CONVEACE | CFFRQ          | COALOUT  | COIN_IM           | EMISSION | EMRINC    | INTOUT   | IIIMBFSC      |
| CONVFACT | CFRSQ          | COALOUT  | CPSB              | EMISSION | EMRNEC    | INTOUT   | TTIMLRSC      |
| CONVFACT | CFSGQ          | COALOUT  | CODREB            | EMISSION | EMRNET    | TNI:001  | TTIMMESC      |
| COGEN    | CGCOMCAP       | COALOUT  | CQDBFT            | EMISSION | EMRS      | INTOUT   | ITIMMTSC      |
| COGEN    | CGCOMGEN       | COALOUT  | CQSBB             | EMISSION | EMRSC     | NCNTRL   | ITIMNG        |
| COGEN    | CGCOMQ         | COALOUT  | CQSBT             | EMISSION | EMTR      | INTOUT   | ITIMOTSC      |
| COGEN    | CGINDCAP       | NCNTRL   | CTEST             | EMISSION | EMTRC     | INTOUT   | ITIMPFSC      |
| COGEN    | CGINDGEN       | NCNTRL   | CURTTR            | EMISSION | EMTRS     | TNTOUT   | TTIMRGSC      |
| COGEN    | CGINDO         | NCNTRL   | CURTYR            | EMISSION | EMIIMM    | NCNTRI.  | T4SCNT        |
| COGEN    | CCOCCAP        | NCNTPT   |                   | NONTET   | FNDVR     | NONTET   | TASTTE        |
| COGEN    | COOCAF         | DMMOUT   | DBDOMP            | NONTRE   | ENDIK     | NONTRE   | I A OWND      |
| COGEN    | CGOGGEN        | PMMOUI   | DCRDWHP           | NCNIRL   | EAC       | NCNIRL   | LASIIR        |
| COGEN    | CGOGQ          | TRANREP  | DEGRPT            | OGSMOUT  | EXDRYF"I  | NCNTRL   | LOOPOP        |
| COGEN    | CGOTCAP        | DRYCN    | DRYCON            | NCNTRL   | EXE       | LTC      | LTCON         |
| COGEN    | CGOTGEN        | DSM      | DSMQELCM          | OGSMOUT  | EXFTAGE   | NCNTRL   | MACFDBK       |
| COGEN    | CGOTHR         | DSM      | DSMQELRS          | NCNTRL   | EXG       | MACPARMS | MACINV        |
| COGEN    | CGRECAP        | NCNTRL   | DSMSWTCH          | OGSMOUT  | EXGASFT   | MACPARMS | MACLC         |
| COGEN    | CGREGEN        | OGSMOUT  | DVDRYFT           | NCNTRL   | EXT       | MACPARMS | MACRAW        |
| COGEN    | CGREO          | OGSMOUT  | DVETAGE           | NCNTRL   | EXK       | TNDREP   | MANHP         |
| COGEN    | CCTLCAD        | OCOMOTIT | DVGASET           | NONTET   | FYI.      | NONTOT   | MAYTTR        |
| COGEN    | COTLORN        | OGGMOUT  | DVGASFI           | NONTRE   | EXL       | MAGOIT   | MAATIK        |
| COGEN    | CGILGEN        | OGSMOUT  | DVOILFI           | NCNIRL   | EAM       | MACOUI   | MC_COMMFLSP   |
| INDREP   | CHEMCON        | OGSMOUT  | DVSPEND           | NCNTRL   | EXIV      | MACOUT   | MC_CONS       |
| CKCN     | CKCON          | COMPARAM | EndUseConsump     | NCNTRL   | EXO       | MACOUT   | MC_CPI        |
| COALOUT  | CLSYNGPR       | NCNTRL   | ECPSTART          | OGSMOUT  | EXOILFT   | MACOUT   | MC_ECIWSPNS   |
| COALOUT  | CLSYNGQN       | NCNTRL   | ELASSW            | NCNTRL   | EXR       | MACOUT   | MC_EMPNA      |
| NGTDMOUT | CLSYNGWP       | TRANREP  | EMAITAVG          | OGSMOUT  | EXSPEND   | MACOUT   | MC EXCH       |
| COMPARAM | CMmode         | TRANRED  | EMATTITET         | NCNTRI   | EXT       | MACOUT   | MC EXDN87     |
| COMOLIT  | CMnuCan        | FMTSSTON | FMRTAY            | NONTRI.  | FYW       | MACOUT   | MC FY82       |
| COMOTIN  | CMmuConDia     |          | EMDIOT            | NONTRE   | ECDI      | MACOUT   | MC CDD        |
| COMOUT   | CMIIUCOIIB10   | TRANKEP  | LMBUSI            | NCNTRL   | r CKL     | MACOUT   | MC_GDP        |
| COMOUT   | CMINUCONDS     | EMISSION | LMCARBON          | NCNTRL   | FIRSIR    | MACOU'I' | MC_GFML87     |
| COMOUT   | ('MID11('ODN(- | EMISSION | EIVIC IM          | TRANREP  | FLCECHRPT | MACOUT   | MC (INP       |

| COMMON   | Variable                     | COMMON              | Variable           | COMMON             | Variable          | COMMON           | Variable            |
|----------|------------------------------|---------------------|--------------------|--------------------|-------------------|------------------|---------------------|
| MACOUT   | MC GOVT                      | OGSMOUT             | OGELSNGOF          | EFPOUT             | PELTRNR           | MPBLK            | PRSAS               |
| MACOUT   | MC HUSTS1                    | OGSMOUT             | OGELSNGON          | UEFPOUT            | PELWH             | MPBLK            | PRSCM               |
| MACOUT   | MC_HUSTS2                    | OGSMOUT             | OGEORCOGC          | EFPOUT             | PELWHNR           | MPBLK            | PRSEL               |
| MACOUT   | MC_IFIXNR                    | OGSMOUT             | OGEORCOGG          | MPBLK              | PENAS             | MPBLK            | PRSIN               |
| MACOUT   | MC_IM82                      | NGTDMREP            | OGIMCAN            | EFPOUT             | PENASNR           | MPBLK            | PRSTR               |
| MACOUT   | MC_INVEST                    | NGTDMREP            | OGIMLNG            | MPBLK              | PENCM             | NCNTRL           | PRTDBGC             |
| MACOUT   | MC_JULCNF<br>MC_KOHUSTS1     | NGIDMREP            | OGIMMEX            | MPRLK              | PENCMINR          | NCNIRL<br>NCNTRL | PRIDEGE             |
| MACOUT   | MC_KOHUSTS2                  | OGSMOUT             | OGNGPRD            | EFPOUT             | PENINNR           | NCNTRL           | PRTDBGI             |
| MACOUT   | MC_KQMH                      | OGSMOUT             | OGNGRSV            | MPBLK              | PENRS             | NCNTRL           | PRTDBGK             |
| MACOUT   | MC_MFGI                      | OGSMOUT             | OGNGWHP            | EFPOUT             | PENRSNR           | NCNTRL           | PRTDBGL             |
| MACOUT   | MC_MFGO                      | OGSMOUT             | OGNOWELL           | MPBLK              | PENTR             | NCNTRL           | PRTDBGM             |
| MACOUT   | MC_MFGWGRT                   | OGSMOUT             | OGPCRWHP           | EFPOUT             | PENTRNR           | NCNTRL           | PRTDBGN             |
| MACOUT   | MC_NMFGO                     | OGSMOUT             | OGPNGEXP           | MPBLK              | PEPAS             | NCNTRL           | PRTDBGO             |
| MACOUT   | MC_NMFGWGKI<br>MC_PGDP       | OGSMOUT             | OGPNGIMP           | MPBLK              | PEPCM             | NCNTRL           | PRTDBGR             |
| MACOUT   | MC_POPAFO                    | NGTDMREP            | OGPRDNG            | EFPOUT             | PEPCMNR           | NCNTRL           | PRTDBGW             |
| MACOUT   | MC_POP16                     | NGTDMOUT            | OGPRDNGOF          | MPBLK              | PEPIN             | COALOUT          | PSCELNR             |
| MACOUT   | MC_REALRMGBLUS               | NGTDMOUT            | OGPRDNGON          | EFPOUT             | PEPINNR           | COALOUT          | PSDELNR             |
| MACOUT   | MC_RMGBS3NS                  | OGSMOUT             | OGPRRCAN           | MPBLK              | PEPRS             | COALOUT          | PSHELNR             |
| MACOUT   | MC_RMMBCNEWNS                | OGSMOUT             | OGPRRCO            | EFPOUT<br>MDDI K   | PEPRSNR           | COALOUT          | PSMELNR             |
| MACOUT   | MC_RMMIGCONS<br>MC_RMPHIAANS | OGSMOUT             | OGPRENGON          | EFPOIIT            | PEPIK<br>PEPTRNR  | MPBLK            | PTPAS               |
| MACOUT   | MC_RUC                       | NGTDMREP            | OGPRSUP            | MPBLK              | PETTR             | MPBLK            | PTPEL               |
| MACOUT   | MC_SHUMBL                    | NGTDMREP            | OGPRSUP3           | NGTDMOUT           | PGCELGR           | MPBLK            | PTPIN               |
| MACOUT   | MC_SQDTRUCKSL                | OGSMOUT             | OGQANGTS           | MPBLK              | PGFAS             | MPBLK            | PTPRF               |
| MACOUT   | MC_SQTRCARS                  | OGSMOUT             | OGQCRREP           | MPBLK              | PGFCM             | MPBLK            | PTPRS               |
| MACOUT   | MC_SQTRCARSDOM               | OGSMOUT             | OGQCRRSV           | MPBLK              | PGFEL             | MPBLK            | PTPTR               |
| MACOUT   | MC_SQTRCARSIMP               | OGSMOUT             | OGQEORCON          | NGTDMOUT<br>MDDL K | PGFELGR           | MPBLK            | PUREL               |
| MACOUT   | MC_WPI<br>MC_WPI14           | OGSMOUT             | OGQEORNGC          | MPBLK              | PGFIN             | OBLK             | Q_IIIMCRSC<br>OASIN |
| MACOUT   | MC_WSD                       | OGSMOUT             | OGOEORPR           | MPBLK              | PGFTR             | UEFDOUT          | OBCELNR             |
| MACOUT   | MC_YD                        | OGSMOUT             | OGQLNGMAX          | MPBLK              | PGIAS             | UEFDOUT          | QBDELNR             |
| MACOUT   | MC_YP                        | OGSMOUT             | OGQNGEXP           | MPBLK              | PGICM             | UEFDOUT          | QBHELNR             |
| MACPARMS | MCADJ                        | OGSMOUT             | OGQNGIMP           | MPBLK              | PGIEL             | QBLK             | QBMAS               |
| MACPARMS | MCBIMPRD                     | OGSMOUT             | OGQNGREP           | NGTDMOUT           | PGIELGR           | QBLK             | QBMCM               |
| MACPARMS | MCLHISIR                     | OGSMOUT             | OGONGRAV           | MDBLK              | PGIIN             | UFFDOUT          | OBMELNR             |
| MACPARMS | MCNMBDRVRS                   | OGSMOUT             | OGRESCAN           | MPBLK              | PGINS             | OBLK             | OBMIN               |
| MACPARMS | MCNMDRVRS                    | OGSMOUT             | OGRESCO            | MPBLK              | PGPTR             | QBLK             | QBMRF               |
| MACPARMS | MCNMFDVARS                   | OGSMOUT             | OGRESNGOF          | MPBLK              | PHYTR             | QBLK             | QBMRS               |
| MACPARMS | MCNMFLTYPE                   | OGSMOUT             | OGRESNGON          | MPBLK              | PJFTR             | QBLK             | QBMSN               |
| MACPARMS | MCNMIND                      | OGSMOUT             | OGSPEND            | MPBLK              | PKSAS             | UEFDOUT          | QBTELNR             |
| MACPARMS | MCNMMAC                      | OGSMOUT<br>NCTDMPED | OGTECHON           | MPBLK              | PKSCM             | QBLK             | QCIIN               |
| MACPARMS | MCNIIMMNF                    | INTOUT              | P ITIMCRSC         | MPBLK              | PKSRS             | OBLK             | OCLCM               |
| MACPARMS | MCNUMNONMFG                  | INDREP              | PAPERCON           | COALOUT            | PLCELNR           | OBLK             | OCLEL               |
| MACPARMS | MCNUMREGS                    | MPBLK               | PASIN              | COALOUT            | PLDELNR           | QBLK             | QCLIN               |
| MACPARMS | MCNWLAG                      | COALOUT             | PBCELNR            | MPBLK              | PLGAS             | QBLK             | QCLRF               |
| MACPARMS | MCRAMPINV                    | COALOUT             | PBDELNR            | MPBLK              | PLGCM             | QBLK             | QCLRS               |
| MACPARMS | MCRAMPLC                     | COALOUT             | PBHELNR            | MPBLK              | PLGIN             | QBLK             | QCLSN               |
| MACPARMS | MCRAMPRAW                    | MDBLK               | PEMELINR           | MPBLK              | PLGRS<br>PLGTR    | OBLK             | ODSCM               |
| MACPARMS | MCTOTIND                     | MPBLK               | PCLCM              | COALOUT            | PLHELNR           | OBLK             | ODSEL               |
| INDREP   | MISCFD                       | MPBLK               | PCLEL              | COALOUT            | PLMELNR           | QBLK             | QDSIN               |
| NCNTRL   | MMAC                         | MPBLK               | PCLIN              | MPBLK              | PLPIN             | QBLK             | QDSRF               |
| NCNTRL   | MODELON                      | MPBLK               | PCLRS              | MPBLK              | PMCIN             | QBLK             | QDSRS               |
| NCNTRL   | MORDER                       | MPBLK               | PCLSN              | MPBLK              | PMETR             | QBLK             | QDSTR               |
| NGTOMREP | NCRL                         | MDBLK               | PCIPLI_PADD        | MPBLK              | PMGAS             | OBLK             | OELAS               |
| NGTDMREP | NGSTRCAP                     | MPBLK               | PDSCM              | MPBLK              | PMGIN             | OBLK             | OELCM               |
| INDREP   | NONHP                        | MPBLK               | PDSEL              | MPBLK              | PMGTR             | QBLK             | QELIN               |
| NCNTRL   | NYRS                         | MPBLK               | PDSIN              | MPBLK              | PNGAS             | QBLK             | QELRF               |
| OGSMOUT  | OGADFACT                     | MPBLK               | PDSRS              | MPBLK              | PNGCM             | QBLK             | QELRS               |
| OGSMOUT  | OGANGTSMX                    | MPBLK               | PDSTR              | MPBLK              | PNGEL             | QBLK             | QELTR               |
| OGSMOUT  | OGCNBLOSS                    | FEDOIL              | PELAS<br>DFLASNP   | MDBLK              | PNGIN             | OBLK             | OFNCM               |
| OGSMOUT  | OGCNCON                      | UEFPOUT             | PELAV              | MPBLK              | PNGTR             | OBLK             | OENIN               |
| OGSMOUT  | OGCNDEM                      | MPBLK               | PELCM              | MPBLK              | POTAS             | QBLK             | QENRF               |
| OGSMOUT  | OGCNDMLOSS                   | EFPOUT              | PELCMNR            | MPBLK              | POTIN             | QBLK             | QENRS               |
| OGSMOUT  | OGCNEXLOSS                   | UEFPOUT             | PELCP              | MPBLK              | POTTR             | QBLK             | QENTR               |
| OGSMOUT  | OGCNFLW                      | EFPOUT              | PELCPNR            | MPBLK<br>MDBL V    | PPFIN             | QBLK             | QEPAS               |
| OGSMOUT  | OGCINPARM1<br>OGCINPARM2     | UFF 500.1           | PELFL<br>DFI.FI.NP | MDRIV              | PRHAD<br>DRHFT.   | OBLK             | OFDIN               |
| OGSMOUT  | OGCNPMARKUP                  | MPBLK               | PELIN              | UGOILOUT           | PRHELCR           | OBLK             | OEPRF               |
| OGSMOUT  | OGCNPPRD                     | EFPOUT              | PELINNR            | MPBLK              | PRHTR             | QBLK             | QEPRS               |
| OGSMOUT  | OGCNQPRD                     | UEFPOUT             | PELOM              | MPBLK              | PRLAS             | QBLK             | QEPTR               |
| OGSMOUT  | OGCOPRD                      | EFPOUT              | PELOMNR            | MPBLK              | PRLCM             | QBLK             | QETTR               |
| OGSMOUT  | OGCORSV                      | MPBLK               | PELRS              | MPBLK              | PRLEL             | UEFDOUT          | QGCELGR             |
| OGSMOUT  | OGDIFWOP                     | EFPOUT<br>IEFPOUT   | PELKSNK<br>DELTI.  | UGULLOUT<br>MDBL.K | PRLELCK<br>DRI.IN | OBLK             | QGEAS               |
| OGSMOUT  | OGELSCAN                     | EFPOUT              | PELTLNR            | MPBLK              | PRLTR             | OBLK             | OGEIN               |
| OGSMOUT  | OGELSCO                      | MPBLK               | PELTR              | NGTDMOUT           | PRNG_PADD         | RESDREP          | QGERS               |
|          |                              |                     |                    |                    | —                 |                  |                     |

| COMMON         | Variable        | COMMON          | Variable          | COMMON         | Variable         | COMMON                | Variable             |
|----------------|-----------------|-----------------|-------------------|----------------|------------------|-----------------------|----------------------|
| OBLK           | OGFAS           | OBLK            | ORSRF             | OSBLK          | OSLPIN           | OSBLK                 | OSWIAS               |
| OBLK           | OGFCM           | OBLK            | ORSTR             | OSBLK          | OSMCIN           | OSBLK                 | OSWIEL               |
| QBLK           | QGFEL           | QSBLK           | QSASIN            | UEFDOUT        | QSMELNR          | QSBLK                 | QSWIIN               |
| UEFDOUT        | QGFELGR         | QSBLK           | QSBMAS            | QSBLK          | QSMETR           | QBLK                  | QTPAS                |
| QBLK           | QGFIN           | QSBLK           | QSBMCM            | QSBLK          | QSMGAS           | QBLK                  | QTPCM                |
| QBLK           | QGFRF           | QSBLK           | QSBMEL            | QSBLK          | QSMGCM           | QBLK                  | QTPEL                |
| QBLK           | QGFRS           | QSBLK           | QSBWIN            | QSBLK          | QSMGIN           | QBLK                  | QTPIN<br>OTDRE       |
| OBLK           | OGTAS           | OSBLK           | OSBMRS            | OSBLK          | OSMSAS           | OBLK                  | OTPRS                |
| OBLK           | OGICM           | OSBLK           | OSBMSN            | OSBLK          | OSMSEL           | OBLK                  | OTPTR                |
| QBLK           | QGIEL           | ŨEFDOUT         | QSCELNR           | QSBLK          | QSMSIN           | QBLK                  | QTRAS                |
| UEFDOUT        | QGIELGR         | QSBLK           | QSCIIN            | QSBLK          | QSNGAS           | QBLK                  | QTRCM                |
| QBLK           | QGIIN           | QSBLK           | QSCLAS            | QSBLK          | QSNGCM           | QBLK                  | QTREL                |
| QBLK           | QGIRF           | QSBLK           | QSCLCM            | QSBLK          | QSNGEL           | QBLK                  | QTRIN                |
| QBLK           | QGIRS           | QSBLK           | QSCLEL<br>OSCI IN | QSBLK          | QSNGIN           | QBLK                  | QTRRS                |
| OBLK           | OGPTR           | OSBLK           | OSCLER            | OSBLK          | OSNGRS           | OBLK                  | OTRTR                |
| OBLK           | OHOAS           | OSBLK           | OSCLRS            | OSBLK          | OSNGTR           | OBLK                  | OTSAS                |
| <i></i> двlк   | QHOEL           | QSBLK           | QSCLSN            | QSBLK          | QSOTAS           | <i>Q̃</i> ₿LK         | QTSCM                |
| QBLK           | QHOIN           | UEFDOUT         | QSDELNR           | QSBLK          | QSOTIN           | QBLK                  | QTSEL                |
| QBLK           | QHYTR           | QSBLK           | QSDSAS            | QSBLK          | QSOTRF           | QBLK                  | QTSIN                |
| QBLK           | QJFTR           | QSBLK           | QSDSCM            | QSBLK          | QSOTTR           | QBLK                  | QTSRF                |
| QBLK           | QKSAS           | QSBLK           | QSDSEL            | QSBLK          | QSPCAS           | QBLK                  | QTSRS                |
| OBLK           | OKSCM           | OSBLK           | Q2D2DE<br>Q2D2DIN | OSBLK<br>OSBLK | OSPCEL           | OBLK                  | OTSTR                |
| OBLK           | OKSRS           | OSBLK           | OSDSRS            | OSBLK          | OSPCRF           | OBLK                  | OUREL                |
| UEFDOUT        | OLCELNR         | OSBLK           | OSDSTR            | OSBLK          | OSPFIN           | OBLK                  | OWIAS                |
| UEFDOUT        | QLDELNR         | QSBLK           | QSEIEL            | QSBLK          | QSPVAS           | QBLK                  | QWIEL                |
| QBLK           | QLGAS           | QSBLK           | QSELAS            | QSBLK          | QSPVCM           | QBLK                  | QWIIN                |
| QBLK           | QLGCM           | QSBLK           | QSELCM            | QSBLK          | QSPVEL           | RFCN                  | REFCON               |
| QBLK           | QLGIN           | QSBLK           | QSELIN            | QSBLK          | QSPVIN           | INDREP                | REFCON               |
| QBLK           | QLGRF           | QSBLK           | QSELRF            | QSBLK          | QSPVRS           | TRANREP               | REGSALERPT           |
| QBLK           | QLGRS           | QSBLK           | QSELRS            | QSBLK          | QSRHAS           | INTOUT<br>MMRDT       | REPORT               |
| UEFDOUT        | OLHELNR         | OSBLK           | OSENAS            | OSBLK          | OSRHTR           | PMMOUT                | RECAPEXP             |
| UEFDOUT        | OLMELNR         | OSBLK           | OSENCM            | OSBLK          | OSRLAS           | PMMRPT                | RFCGCAPADDPD         |
| QBLK           | QLPIN           | <b>Q</b> SBLK   | QSENIN            | QSBLK          | QSRLCM           | PMMRPT                | RFCGCAPCD            |
| UEFDOUT        | QLTELNR         | QSBLK           | QSENRF            | QSBLK          | QSRLEL           | PMMRPT                | RFCGCAPPD            |
| QBLK           | QMCIN           | QSBLK           | QSENRS            | QSBLK          | QSRLIN           | PMMRPT                | RFDPRDAST            |
| QBLK           | QMETR           | QSBLK           | QSENTR            | QSBLK          | QSRLRF           | PMMRPT                | RFDPRDCOK            |
| QBLK           | QMGAS           | QSBLK           | QSEPAS            | QSBLK          | QSRLTR           | PMMRPT<br>DMMPDT      | RFDPRDDSL            |
| OBLK           | OMGIN           | OSBLK           | OSEPIN            | OSBLK          | OSRSCM           | PMMRPT                | REDERDKER            |
| OBLK           | OMGTR           | OSBLK           | OSEPRF            | OSBLK          | OSRSEL           | PMMRPT                | RFDPRDLPG            |
| <b>Õ</b> BLK   | QMSAS           | QSBLK           | QSEPRS            | QSBLK          | QSRSIN           | PMMRPT                | RFDPRDN2H            |
| QBLK           | QMSEL           | QSBLK           | QSEPTR            | QSBLK          | QSRSRF           | PMMRPT                | RFDPRDN6B            |
| QBLK           | QMSIN           | QSBLK           | QSETTR            | QSBLK          | QSRSTR           | PMMRPT                | RFDPRDN6I            |
| QBLK           | QNGAS           | QSBLK           | QSGEAS            | QSBLK          | QSSGIN           | PMMRPT                | RFDPRDOTH            |
| QBLK           | QNGCM           | QSBLK           | QSGEEL            | QSBLK          | QSSGRF           | PMMRPT<br>DMMDDT      | RFDPRDPCF            |
| OBLK           | ONGEL           | OSBLK           | QSGEIN            | OSBLK<br>OSBLK | QSSIAS           | DMMRDT                | RFDPRDRFG            |
| OBLK           | ONGRE           | OSBLK           | OSGFCM            | OSBLK          | OSSTEL           | PMMRPT                | REDPRDSTG            |
| <b>Õ</b> BLK   | QNGRS           | QSBLK           | QSGFEL            | QSBLK          | QSSTIN           | PMMRPT                | RFDPRDTRG            |
| QBLK           | QNGTR           | QSBLK           | QSGFIN            | QSBLK          | QSSTRS           | PMMRPT                | RFDPRDTRH            |
| QBLK           | QOTAS           | QSBLK           | QSGFRF            | QBLK           | QSTAS            | PMMRPT                | RFDSCUM              |
| QBLK           | QOTIN           | QSBLK           | QSGFRS            | QBLK           | QSTCM            | PMMPARAM              | RFDSTAX              |
| QBLK           | QOTRE           | QSBLK           | QSGFTR            | QBLK           | QSTEL            | PMMRPT                | RFDSTCAP             |
| OBLK           | OPCAS           | OSBLK           | OSGICM            | OBLK           | OSTIN            | PMMRPI                | RFELDIRPD            |
| OBLK           | OPCEL           | OSBLK           | OSGIEL            | OSBLK          | OSTPAS           | PMMRPT                | RFIMCR               |
| <b>Õ</b> BLK   | QPCIN           | QSBLK           | QSGIIN            | QSBLK          | QSTPCM           | PMMRPT                | RFIMTP               |
| QBLK           | QPCRF           | QBLK            | QSGIN             | QSBLK          | QSTPEL           | PMMRPT                | RFIPQCHH             |
| QBLK           | QPFIN           | QSBLK           | QSGIRF            | QSBLK          | QSTPIN           | PMMRPT                | RFIPQCHL             |
| QBLK           | QPVAS           | QSBLK           | QSGIRS            | QSBLK          | QSTPRF           | PMMRPT                | RFIPQCHV             |
| QBLK           | QPVCM           | QSBLK           | QSGITR            | QSBLK          | QSTPRS           | PMMRPT                | RFIPQCLL             |
| OBIK           | OPVEL           | OBLK            | OSCRE             | OSBLK          | OSTRIK           | DMMRDT                | RFIPQCMA             |
| OBLK           | OPVRS           | UEFDOUT         | OSHELNR           | OSBLK          | OSTRCM           | PMMRPT                | REIPOJE              |
| QBLK           | QRHAS           | QSBLK           | QSHOAS            | QSBLK          | QSTREL           | PMMRPT                | RFIPQLG              |
| QBLK           | QRHEL           | QSBLK           | QSHOEL            | QSBLK          | QSTRIN           | PMMRPT                | RFIPQME              |
| UGOILOUT       | QRHELGR         | QSBLK           | QSHOIN            | QSBLK          | QSTRRS           | PMMRPT                | RFIPQMG              |
| QBLK           | QRHTR           | QSBLK           | QSHYTR            | QBLK           | QSTRS            | PMMRPT                | RFIPQMT              |
| QBLK           | UKLAS<br>ODI GM | USBLK<br>OGDI V | USJ FTR           | QSBLK          | QSTRSN           | PMMRPT                | KFIPQRH              |
| OBI-K<br>OBI-K | ORLEL           | OSBI'K          | OSKSCM            | OSBLK<br>OSBLK | OSTSAS           | DWWB D.L.             | REDUIDEDA<br>VLIEČKP |
| UGOILOUT       | ORLELGR         | OSBI-K          | OSKSIN            | OSBLK          | OSTSCM           | PMMOUT                | RFPONGL              |
| QBLK           | QRLIN           | QSBLK           | QSKSRS            | QSBLK          | QSTSEL           | PMMRPT                | RFPQUFC              |
| QBLK           | QRLRF           | QSBLK           | QSLGAS            | QSBLK          | QSTSIN           | PMMRPT                | RFQARO               |
| QBLK           | QRLTR           | QSBLK           | QSLGCM            | QSBLK          | QSTSRF           | PMMOUT                | RFQDCRD              |
| QBLK           | QRSAS           | QSBLK           | QSLGIN            | QSBLK          | QSTSRS           | PMMOUT                | RFQDINPOT            |
| QBLK           | QKSCM           | USBLK<br>OGDI V | USLGRF'           | QSBLK          | QSTSSN           | PMMRPT                | KFQDS<br>DEOEL       |
| OBI-K<br>OBI-K | ORSIN           | OSBI'N<br>ÖPRTK | UST CLERS         | OSBI K         | QSISIK<br>OSUBEL | DWWDDJ<br>FINIWK B.T. | KEOEAGDD<br>KEAGPT   |
| אחמא           | XICD TI         | אודרפע          | ZOTIOTIK          |                | 2001011          | r runtf 1             | ICT QUACKD           |

| COMMON   | Variable  | COMMON   | Variable              | COMMON   | Variable           | COMMON   | Variable           |
|----------|-----------|----------|-----------------------|----------|--------------------|----------|--------------------|
| PMMRPT   | RFOEXPRDT | TRANREP  | TREFFTRKF             | UDATOUT  | UCAPNUU            | WRENEW   | WCAPVRS            |
| PMMRPT   | RFQICRD   | TRANREP  | TRHPCAR               | UDATOUT  | UCAPOSN            | WRENEW   | WCASSCM            |
| PMMRPT   | RFQIN     | TRANREP  | TRHPTRK               | UDATOUT  | UCAPOSU            | WRENEW   | WCASSRS            |
| PMMRPT   | RFQJF     | TRANREP  | TRIMSHIP              | UDATOUT  | UCAPPSN            | WRENEW   | WCASTEL            |
| PMMRPT   | RFQKS     | TRANKEP  | TRLDMPGC<br>TRL DMPGE | UDATOUT  | UCAPPSU            | WRENEW   | WCASWCM            |
| PMMRPT   | RFOMG     | TRANKEP  | TRLDMPGT              | UDATOUT  | UCAPPVN            | WRENEW   | WCASWRS            |
| PMMRPT   | RFQOTH    | TRANREP  | TRLDQTEK              | UDATOUT  | UCAPRNN            | WRENEW   | WCAWIEL            |
| PMMRPT   | RFQPCK    | TRANREP  | TRLDSALC              | UDATOUT  | UCAPRNU            | WRENEW   | WCCBMCM            |
| PMMRPT   | RFQPF     | TRANREP  | TRLDSALT              | UDATOUT  | UCAPSTN            | WRENEW   | WCCBMEL            |
| PMMOUT   | RFQPRCG   | TRANREP  | TRLDSTKC              | UDATOUT  | UCAPSTU            | WRENEW   | WCCBMIN            |
| PMMOUT   | RFQPRDT   | TRANKEP  | TREDSTRT              | UDATOUT  | UCAPTLN            | WRENEW   | WCCBMRS            |
| PMMRPT   | RFORH     | TRANREP  | TRLDVMTE              | UDATOUT  | UCAPWDN            | WRENEW   | WCCGECM            |
| PMMRPT   | RFQRL     | TRANREP  | TRQAIRT               | UDATOUT  | UCAPWDU            | WRENEW   | WCCGERS            |
| PMMRPT   | RFQSECT   | TRANREP  | TRQBOAT               | UDATOUT  | UCAPWNN            | WRENEW   | WCCGFEL            |
| PMMRPT   | RFQSTG    | TRANREP  | TRQBUS                | UDATOUT  | UCAPWNU            | WRENEW   | WCCHYEL            |
| PMMOUT   | RFQTDCRD  | TRANREP  | TRODOMS               | ULDSMOUT | UDSMCAP            | WRENEW   | WCCMSCM            |
| PMMOUT   | REREV     | TRANKEP  | TROFTRK               | ULDSMOUT | UDSMERF            | WRENEW   | WCCMSEL            |
| PMMOUT   | RFSAL     | TRANREP  | TROHWY                | UEFDOUT  | UGNCLNR            | WRENEW   | WCCPVCM            |
| PMMPARAM | RFSHROR   | TRANREP  | TRQINTS               | UEFDOUT  | UGNDSNR            | WRENEW   | WCCPVEL            |
| PMMPARAM | RFSHROX   | TRANREP  | TRQLD                 | UEFDOUT  | UGNGCNR            | WRENEW   | WCCPVRS            |
| PMMPARAM | RFSHRRF   | TRANREP  | TRQLDV                | UEFDOUT  | UGNGENR            | WRENEW   | WCCSSCM            |
| PMMPARAM | RFSHRTR   | TRANKEP  | TRQLUB                | UEF DOUT | UGNGFNR            | WRENEW   | WCCSSRS            |
| PMMOUT   | RESPRER   | TRANKEP  | TRONHWY               | UEFDOUT  | UGNGINR            | WRENEW   | WCCSIEL            |
| PMMPARAM | RFSWDH    | TRANKEP  | TRORAILR              | UEFDOUT  | UGNHYNR            | WRENEW   | WCCSWRS            |
| NCNTRL   | RLXPC     | TRANREP  | TRQRRF                | UEFDOUT  | UGNMSNR            | WRENEW   | WCCWIEL            |
| RESDREP  | RSAPCON   | TRANREP  | TRQRRP                | UEFDOUT  | UGNPSNR            | WRENEW   | WCFBMCM            |
| RESDREP  | RSCKCON   | TRANREP  | TRSLSHRC              | UEFDOUT  | UGNPVNR            | WRENEW   | WCFBMEL            |
| RESDREP  | RSCOOK    | TRANREP  | TRSLSHRT              | UEFDOUT  | UGNRHNR            | WRENEW   | WCFBMIN            |
| RESDREP  | RSCOOLERS | TRANKEP  | TRSIMDEM              | UEFDOUT  | UGNRLNR            | WRENEW   | WCFBMRS            |
| RESDREP  | RSDRY     | TRANKEP  | TRIMIC                | UEFDOUT  | UGNTLNR            | WRENEW   | WCFGECM            |
| RESDREP  | RSDRYCON  | TRANREP  | TRTRAVLD              | UEFDOUT  | UGNUBCR            | WRENEW   | WCFGERS            |
| RESDREP  | RSEEFCL   | TRANREP  | TRVMTTRK              | UEFDOUT  | UGNUPCR            | WRENEW   | WCFGFEL            |
| RESDREP  | RSEEFFZ   | TRANREP  | TRXAIR                | UEFDOUT  | UGNURNR            | WRENEW   | WCFHYEL            |
| RESDREP  | RSEEFHT   | TRANREP  | TRXAIREFF             | UEFDOUT  | UGNWDNR            | WRENEW   | WCFMSCM            |
| RESDREP  | RSEEFRF   | TRANKEP  | TRXFRVMT              | UMMOUT   | UGINMINIK          | WRENEW   | WCFMSEL            |
| RESDREP  | RSEH      | TRANREP  | TRXLDVMT              | UMMOUT   | UMQEUM             | WRENEW   | WCFPVCM            |
| RESDREP  | RSFRZ     | TRANREP  | TRXRAIL               | UMMOUT   | UMQNUM             | WRENEW   | WCFPVEL            |
| RESDREP  | RSFRZCON  | TRANREP  | TRXRAILEFF            | UEFDOUT  | UPRCLNR            | WRENEW   | WCFPVRS            |
| RESDREP  | RSHSEADD  | TRANREP  | TRXSHIP               | UEFDOUT  | UPRDSNR            | WRENEW   | WCFSSCM            |
| RESDREP  | RSHIRCON  | IRANREP  | IRASHIPEFF            | UEFDOUT  | UPRGENR            | WRENEW   | WCFSSRS<br>WCFSTEL |
| RESDREP  | RSH20CON  | UECPOUT  | UADDCCU               | UEFDOUT  | UPRGINR            | WRENEW   | WCFSWCM            |
| RESDREP  | RSLTCON   | UECPOUT  | UADDCSN               | UEFDOUT  | UPRHONR            | WRENEW   | WCFSWRS            |
| RESDREP  | RSNEFCL   | UECPOUT  | UADDCSU               | UEFDOUT  | UPRRHNR            | WRENEW   | WCFWIEL            |
| RESDREP  | RSNEFFZ   | UECPOUT  | UADDCTN               | UEFDOUT  | UPRRLNR            | WRENEW   | WCLT               |
| RESDREP  | RSNEFHT   | UECPOUT  | UADDCTU               | UEFDOUT  | UPRURNR            | WRENEW   | WCPC<br>WCRWIFI.   |
| RESDREP  | RSNEFRF   | UECPOUT  | UADDHYT               | UEFDOUT  | UTCO2              | WRENEW   | WCSI               |
| RESDREP  | RSNH      | UECPOUT  | UADDMST               | UETTOUT  | UTDMDE             | WRENEW   | WCSU               |
| RESDREP  | RSREF     | UECPOUT  | UADDNUN               | UETTOUT  | UTDMDF             | WRENEW   | WEMBMEL            |
| RESDREP  | RSREFCON  | UECPOUT  | UADDNUU               | UETTOUT  | UTDMME             | WRENEW   | WEMGFEL            |
| NONTRI   | RSWATER   | UECPOUT  | UADDOSN               | UETTOUT  | UTDMMF             | WRENEW   | WEMMSEL            |
| COALOUT  | SBCELNR   | UECPOUT  | UADDPSN               | UETTOUT  | UTEXDF             | WRENEW   | WHCMSCM            |
| COALOUT  | SBDELNR   | UECPOUT  | UADDPST               | UETTOUT  | UTEXME             | WRENEW   | WHCMSEL            |
| COALOUT  | SBHELNR   | UECPOUT  | UADDPSU               | UETTOUT  | UTEXMF             | WRENEW   | WHCMSIN            |
| COALOUT  | SBMELNR   | UECPOUT  | UADDPVT               | UETTOUT  | UTEXPE             | WRENEW   | WHCPVCM            |
| NCNTRL   | SCALPR    | UECPOUT  | UADDRNN               | UETTOUT  | UTEXPF             | WRENEW   | WHCPVEL            |
| COALOUT  | SLCELNR   | UECPOUT  | UADDRING              | UETTOUT  | UTIMPE             | WRENEW   | WHCFVRS            |
| COALOUT  | SLDELNR   | UECPOUT  | UADDTLN               | UEFDOUT  | UTNOX              | WRENEW   | WHCWIEL            |
| COALOUT  | SLHELNR   | UECPOUT  | UADDTLU               | UEFDOUT  | UTSO2              | WRENEW   | WHRBMCM            |
| COALOUT  | SLMELNR   | UECPOUT  | UADDWDT               | COALREP  | WBSULF             | WRENEW   | WHRBMEL            |
| COALOUT  | SSCELNR   | UECPOUT  | UADDWNT               | WRENEW   | WCABMCM            | WRENEW   | WHRBMIN            |
| COALOUT  | SSHELNR   | UDATOUT  | UCAPCCU               | WRENEW   | WCABMIN            | WRENEW   | WHRGBEL            |
| COALOUT  | SSMELNR   | UDATOUT  | UCAPCSN               | WRENEW   | WCABMRS            | WRENEW   | WHRGECM            |
| INDREP   | STEELCON  | UDATOUT  | UCAPCSU               | WRENEW   | WCAGBEL            | WRENEW   | WHRGERS            |
| TRANREP  | TRAIREFFN | UDATOUT  | UCAPCTN               | WRENEW   | WCAGECM            | WRENEW   | WHRGFEL            |
| TRANREP  | TRAIREFFS | UDATOUT  | UCAPCTU               | WRENEW   | WCAGERS            | WRENEW   | WHRHYEL            |
| TRANKEP  | TRAIRSTK  | UDATOUT  | UCAPGEN               | WRENEW   | WCAGFEL<br>WCAHYEL | WRENEW   | WHRMSET            |
| TRANREP  | TREFFALTC | UDATOUT  | UCAPHYN               | WRENEW   | WCAMSCM            | WRENEW   | WHRMSIN            |
| TRANREP  | TREFFALTT | UDATOUT  | UCAPHYU               | WRENEW   | WCAMSEL            | WRENEW   | WHRPVCM            |
| TRANREP  | TREFFCAR  | UDATOUT  | UCAPMSN               | WRENEW   | WCAMSIN            | WRENEW   | WHRPVEL            |
| TRANREP  | TREFFFLT  | UDATOUT  | UCAPMSU               | WRENEW   | WCAPVCM            | WRENEW   | WHRPVRS            |
| TRANKEL  | IKEFFIKK  | UDATOU'I | UCAPNUN               | MERINEM  | WCAFVEL            | MICEINEW | WIRSSCM            |

| COMMON  | Variable            | COMMON           | Variable         | COMMON  | Variable         | COMMON | Variable |
|---------|---------------------|------------------|------------------|---------|------------------|--------|----------|
| WRENEW  | WHRSSRS             | NCNTRL           | WWOP             | MXPBLK  | XPRSAS           | MXOBLK | XOLGAS   |
| WRENEW  | WHRSTEL             | PMMOUT           | XDCRDWHP         | MXPBLK  | XPRSCM           | MXOBLK | XOLGCM   |
| WRENEW  | WHRSWCM             | MXPBLK           | XIT_WOP          | MXPBLK  | XPRSEL           | MXQBLK | XQLGIN   |
| WRENEW  | WHRSWRS             | MXPBLK           | XOGWPRNG         | MXPBLK  | XPRSIN           | MXQBLK | XQLGRF   |
| WRENEW  | WHRWIEL             | MXPBLK           | XPASIN           | MXPBLK  | XPRSTR           | MXQBLK | XQLGRS   |
| WRENEW  | WLIBMCM             | MXPBLK           | XPCLAS           | MXPBLK  | XPTPAS           | MXQBLK | XQLGTR   |
| WRENEW  | WLIBMEL             | MXPBLK<br>MXPBLK | XPCLCM<br>XPCLEL | MXPBLK  | XPTPCM<br>XPTPEL | MXOBLK | XOMCIN   |
| WRENEW  | WLIBMRS             | MXPBLK           | XPCLIN           | MXPBLK  | XPTPIN           | MXOBLK | XOMETR   |
| WRENEW  | WLIGBEL             | MXPBLK           | XPCLRS           | MXPBLK  | XPTPRF           | MXQBLK | XQMGAS   |
| WRENEW  | WLIGECM             | MXPBLK           | XPCLSN           | MXPBLK  | XPTPRS           | MXQBLK | XQMGCM   |
| WRENEW  | WLIGERS             | MXPBLK           | XPDSAS           | MXPBLK  | XPTPTR           | MXQBLK | XQMGIN   |
| WRENEW  | WLIGFEL             | MXPBLK           | XPDSCM           | MXPBLK  | XPUREL           | MXQBLK | XQMGTR   |
| WRENEW  | WLIHYEL             | MXPBLK           | XPDSEL           | MXOBLK  | XQASIN           | MXQBLK | XQMSAS   |
| WRENEW  | WLIMSEL             | MXPBLK           | XPDSRS           | MXOBLK  | XOBMCM           | MXOBLK | XOMSIN   |
| WRENEW  | WLIMSIN             | MXPBLK           | XPDSTR           | MXQBLK  | XQBMEL           | MXQBLK | XQNGAS   |
| WRENEW  | WLIPVCM             | MXPBLK           | XPELAS           | MXQBLK  | XQBMIN           | MXQBLK | XQNGCM   |
| WRENEW  | WLIPVEL             | UECPOUT          | XPELAVN          | MXQBLK  | XQBMRF           | MXQBLK | XQNGEL   |
| WRENEW  | WLIPVRS             | MXPBLK           | XPELCM           | MXQBLK  | XQBMRS           | MXQBLK | XQNGELCN |
| WRENEW  | WLISSCM             | MXPBLK           | XPELIN           | MXQBLK  | XQBMSN           | MXQBLK | XQNGELFN |
| WRENEW  | WLISSRS<br>WIISTREI | MYDBLK           | XPELKS<br>XDFLTP | MXOBLK  | XOCLAS           | MXOBLK | XONGELIN |
| WRENEW  | WLISWCM             | MXPBLK           | XPENAS           | MXOBLK  | XOCLCM           | MXOBLK | XONGRE   |
| WRENEW  | WLISWRS             | MXPBLK           | XPENCM           | MXQBLK  | XQCLEL           | MXQBLK | XQNGRS   |
| WRENEW  | WLIWIEL             | MXPBLK           | XPENIN           | MXQBLK  | XQCLIN           | MXQBLK | XQNGTR   |
| COALREP | WLSULF              | MXPBLK           | XPENRS           | MXQBLK  | XQCLRF           | MXQBLK | XQOTAS   |
| COALREP | WMCF                | MXPBLK           | XPENTR           | MXQBLK  | XQCLRS           | MXQBLK | XQOTIN   |
| WRENEW  | WOCBMCM             | MXPBLK           | XPEPAS           | MXQBLK  | XQCLSN           | MXQBLK | XQOTRF   |
| WRENEW  | WOCBMEL             | MXPBLK           | XPEPCM           | MXOBLK  | XQDSAS           | MXOBLK | XQUITR   |
| WRENEW  | WOCBMRS             | MXPBLK           | XPEPRS           | MXOBLK  | XODSEL           | MXOBLK | XOPCEL   |
| WRENEW  | WOCGBEL             | MXPBLK           | XPEPTR           | MXQBLK  | XQDSIN           | MXQBLK | XQPCIN   |
| WRENEW  | WOCGECM             | MXPBLK           | XPETTR           | MXQBLK  | XQDSRF           | MXQBLK | XQPCRF   |
| WRENEW  | WOCGERS             | MXPBLK           | XPGFAS           | MXQBLK  | XQDSRS           | MXQBLK | XQPFIN   |
| WRENEW  | WOCGFEL             | MXPBLK           | XPGFCM           | MXQBLK  | XQDSTR           | MXQBLK | XQPVAS   |
| WRENEW  | WOCHIEL             | MYDDIV           | XDCEIN           | MXOBIK  | XOFI AS          | MXQBLK | XOPVCM   |
| WRENEW  | WOCMSEL             | MXPBLK           | XPGFIN           | MXOBLK  | XOELCM           | MXOBLK | XOPVEL   |
| WRENEW  | WOCMSIN             | MXPBLK           | XPGFTR           | MXOBLK  | XOELIN           | MXOBLK | XOPVRS   |
| WRENEW  | WOCPVCM             | MXPBLK           | XPGIAS           | MXQBLK  | XQELRF           | MXQBLK | XQRHAS   |
| WRENEW  | WOCPVEL             | MXPBLK           | XPGICM           | MXQBLK  | XQELRS           | MXQBLK | XQRHEL   |
| WRENEW  | WOCPVRS             | MXPBLK           | XPGIEL           | MXQBLK  | XQELTR           | MXQBLK | XQRHTR   |
| WRENEW  | WOCSSCM             | MXPBLK           | XPGIIN           | MXQBLK  | XQENAS           | MXQBLK | XQRLAS   |
| WRENEW  | WOCSSRS<br>WOCSTEL  | MXPBLK<br>MXPBLK | XPGIRS           | MXOBLK  | XOENIN           | MXOBLK | XORLEN   |
| WRENEW  | WOCSWCM             | MXPBLK           | XPGPTR           | MXOBLK  | XOENRF           | MXOBLK | XORLIN   |
| WRENEW  | WOCSWRS             | MXPBLK           | XPHYTR           | MXQBLK  | XQENRS           | MXQBLK | XQRLRF   |
| WRENEW  | WOCWIEL             | MXPBLK           | XPJFTR           | MXQBLK  | XQENTR           | MXQBLK | XQRLTR   |
| WRENEW  | WPETOH              | MXPBLK           | XPKSAS           | MXQBLK  | XQEPAS           | MXQBLK | XQRSAS   |
| MACREP  | WPI05               | MXPBLK           | XPKSCM           | MXQBLK  | XQEPCM           | MXQBLK | XQRSCM   |
| WRENEW  | WOCMSINEL           | MXPBLK<br>MXPBLK | XPKSIN           | MXOBLK  | XOEDEE           | MXOBLK | XORSEL   |
| WRENEW  | WOCMSINST           | MXPBLK           | XPLGAS           | MXOBLK  | XOEPRS           | MXOBLK | XORSRF   |
| WRENEW  | WQETOH              | MXPBLK           | XPLGCM           | MXQBLK  | XQEPTR           | MXQBLK | XQRSTR   |
| COALREP | WSCF                | MXPBLK           | XPLGIN           | MXQBLK  | XQETTR           | MXQBLK | XQSGIN   |
| WRENEW  | WSCWIEL             | MXPBLK           | XPLGRS           | MXQBLK  | XQGEAS           | MXQBLK | XQSGRF   |
| WRENEW  | WSFWIEL             | MXPBLK           | XPLGTR           | MXQBLK  | XQGEEL           | MXQBLK | XQSTAS   |
| WRENEW  | WSSPVEL<br>WSSSTEL  | MXPBLK<br>MXPBLK | XPLPIN           | MXOBLK  | XOGEAS           | MXOBLK | XOSTEL   |
| COALREP | WSSULF              | MXPBLK           | XPMETR           | MXOBLK  | XOGFCM           | MXOBLK | XOSTIN   |
| COALREP | WTCF                | MXPBLK           | XPMGAS           | MXQBLK  | XQGFEL           | MXQBLK | XQSTRS   |
| WRENEW  | WVCBMCM             | MXPBLK           | XPMGCM           | MXQBLK  | XQGFIN           | MXQBLK | XQTPAS   |
| WRENEW  | WVCBMEL             | MXPBLK           | XPMGIN           | MXQBLK  | XQGFRF           | MXQBLK | XQTPCM   |
| WRENEW  | WVCBMIN             | MXPBLK           | XPMGTR           | MXQBLK  | XQGFRS           | MXQBLK | XQTPEL   |
| WRENEW  | WVCBMRS             | MXPBLK           | XPNGAS           | MXOBLK  | XQGFTR           | MXQBLK | XQTPIN   |
| WRENEW  | WVCGECM             | MXPBLK           | XPNGEL           | MXOBLK  | XOGICM           | MXOBLK | XOTPRS   |
| WRENEW  | WVCGERS             | MXPBLK           | XPNGIN           | MXQBLK  | XQGIEL           | MXQBLK | XQTPTR   |
| WRENEW  | WVCGFEL             | MXPBLK           | XPNGRS           | MXQBLK  | XQGIIN           | MXQBLK | XQTRAS   |
| WRENEW  | WVCHYEL             | MXPBLK           | XPNGTR           | MXQBLK  | XQGIRF           | MXQBLK | XQTRCM   |
| WRENEW  | WVCMSCM             | MXPBLK           | XPOTAS           | MXQBLK  | XQGIRS           | MXQBLK | XQTREL   |
| WRENEW  | WVCMSEL             | MAPBLK           | APOTIN<br>XDOTTR | MXOBIV  | AUGITR           | MXOBIN | XQTRIN   |
| WRENEW  | WVCPVCM             | MXPBLK           | XPPFIN           | MXOBI'K | XOHOAS           | MXOBLK | XOTRSN   |
| WRENEW  | WVCPVEL             | MXPBLK           | XPRHAS           | MXOBLK  | XQHOEL           | MXOBLK | XQTRTR   |
| WRENEW  | WVCPVRS             | MXPBLK           | XPRHEL           | MXQBLK  | XQHOIN           | MXQBLK | XQTSAS   |
| WRENEW  | WVCSSCM             | MXPBLK           | XPRHTR           | MXQBLK  | XQHYTR           | MXQBLK | XQTSCM   |
| WRENEW  | WVCSSRS             | MXPBLK           | XPRLAS           | MXQBLK  | XQJFTR           | MXQBLK | XQTSEL   |
| WRENEW  | WVCSTEL             | MXPBLK           | XPRLCM           | MXQBLK  | XQKSAS           | MXQBLK | XQTSIN   |
| WRENEW  | WVCSWRS             | MXDBI.K          | XPRLIN           | MXOBIK  | XOKSIN           | MXOBIK | XOLSEL   |
| WRENEW  | WVCWIEL             | MXPBLK           | XPRLTR           | MXQBLK  | XQKSRS           | MXQBLK | XQTSSN   |
|         |                     | l                |                  |         | -                |        |          |

| COMMON                                                             | Variable                                                             | COMMON | Variable | COMMON | Variable | COMMON | Variable |
|--------------------------------------------------------------------|----------------------------------------------------------------------|--------|----------|--------|----------|--------|----------|
| MXQBLK<br>MXQBLK<br>MXQBLK<br>MXQBLK<br>MXQBLK<br>PMMOUT<br>NCNTRL | XQTSTR<br>XQUREL<br>XQWIAS<br>XQWIEL<br>XQWIIN<br>XRFQDCRD<br>YEARPR |        |          |        |          |        |          |
|                                                                    |                                                                      |        |          |        |          |        |          |
|                                                                    |                                                                      |        |          |        |          |        |          |
|                                                                    |                                                                      |        |          |        |          |        |          |
|                                                                    |                                                                      |        |          |        |          |        |          |
|                                                                    |                                                                      |        |          |        |          |        |          |
|                                                                    |                                                                      |        |          |        |          |        |          |
|                                                                    |                                                                      |        |          |        |          |        |          |
|                                                                    |                                                                      |        |          |        |          |        |          |
|                                                                    |                                                                      |        |          |        |          |        |          |
|                                                                    |                                                                      |        |          |        |          |        |          |
Appendix C

Bibliography

# Appendix C. Bibliography

This appendix gives a detailed list of documents that describe the National Energy Modeling System. All reports listed in this appendix, unless cited otherwise, were produced by the Energy Information Administration.

# **NEMS System Design Reports**

The NEMS System Design Reports were written by the Energy Information Administration as the primary design documents, prior to initial coding of the NEMS modules. The documents in this section were the primary source for most of the information published in the body of this document.

# **Overall Systems Design and Integration**

"Development Plan for the National Energy Modeling System," Office of Integrated Analysis and Forecasting, draft July 21, 1992.

"Integrating Module Component Design Report," National Energy Modeling System Branch, Office of Integrated Analysis and Forecasting, December 21, 1992.

"International Energy Module, World Oil Market, Petroleum Product Supply and Oxygenates Supply Components," Energy Demand and Integration Division, International, Economic and Integrated Forecasting Branch, Office of Integrated Analysis and Forecasting, July 31, 1992.

"Requirements for a National Energy Modeling System," Office of Integrated Analysis and Forecasting, May 18, 1992.

"System Design for the National Energy Modeling System," Office of Integrated Analysis and Forecasting, January 16, 1992.

# Macroeconomic Activity

"Interindustry Submodule," International, Economic and Integrated Forecasting Branch, Energy Demand and Integration Division, Office of Integrated Analysis and Forecasting, August 28, 1992.

"National Submodule," International, Economic and Integrated Forecasting Branch, Energy Demand and Integration Division, Office of Integrated Analysis and Forecasting, May 1992.

"Regional Submodule," International, Economic and Integrated Forecasting Branch, Energy Demand and Integration Division, Office of Integrated Analysis and Forecasting, September 18, 1992.

# Demand

"Commercial Sector Component Design Report," Energy Demand Analysis Branch, Office of Integrated Analysis and Forecasting, January 21, 1993.

"Industrial Sector Component Design Report," Energy Demand Analysis Branch, Energy Demand and Integration Division, Office of Integrated Analysis and Forecasting, July 7, 1992.

"Residential Sector Component Design Report," Energy Demand Analysis Branch, Office of Integrated Analysis and Forecasting, January 19, 1993.

"Transportation Sector Component Design Report," Energy Demand Analysis Branch, Office of Integrated Analysis and Forecasting, January 21, 1993.

# Electricity

"Overview of the Electricity Market Module of the National Energy Modeling System," Energy Supply and Conversion Division, Nuclear and Electricity Analysis Branch, Office of Integrated Analysis and Forecasting.

"Capacity Planning," Nuclear and Electricity Analysis Branch, Energy Supply and Conversion Division, Office of Integrated Analysis and Forecasting, August 1992.

"Finance and Pricing Submodule," Nuclear and Electricity Analysis Branch, Energy Supply and Conversion Division, Office of Integrated Analysis and Forecasting, December 7, 1992.

"Fuel Dispatch," Nuclear and Electricity Analysis Branch, Energy Supply and Conversion Division, Office of Integrated Analysis and Forecasting, May 28, 1992.

"Transmission and Trade," Nuclear and Electricity Analysis Branch, Energy Supply and Conversion Division, Office of Integrated Analysis and Forecasting, January 13, 1993.

"Load and Demand-Side Management Submodule," Nuclear and Electricity Analysis Branch, Energy Supply and Conversion Division, Office of Integrated Analysis and Forecasting, October 1992.

"Nonutility Generation Supply," Nuclear and Electricity Analysis Branch, Energy Supply and Conversion Division, Office of Integrated Analysis and Forecasting, May 11, 1992.

# Coal

"Overview of the Coal Market Module of the National Energy Modeling System," Energy Supply and Conversion Division, Coal, Uranium and Renewable Fuels Analysis Branch, Office of Integrated Analysis and Forecasting, April 1992.

"Coal Distribution," Coal, Uranium and Renewable Fuels Analysis Branch, Energy Supply and Conversion Division, Office of Integrated Analysis and Forecasting, April 1992.

"Coal Production Submodule," Coal, Uranium, and Renewable Fuels Analysis Branch, Energy Supply and Conversion Division, Office of Integrated Analysis and Forecasting, May 1992.

"Coal Synthetics Submodule," Coal, Uranium and Renewable Fuels Analysis Branch, Energy Supply and Conversion Division, Office of Integrated Analysis and Forecasting, October 1992.

# Renewable Fuels

"Overview of the Renewable Fuels Module of the National Energy Modeling System," Energy Supply and Conversion Division, Coal, Uranium and Renewable Fuels Analysis Branch, Office of Integrated Analysis and Forecasting, July 2, 1992.

"Biofuels (Ethanol) Supply Submodule," Coal, Uranium and Renewable Fuels Analysis Branch, Energy Supply and Conversion Division, Office of Integrated Analysis and Forecasting, July 2, 1992.

"Biomass Supply Submodule of the Renewable Fuels Module," Coal, Uranium and Renewable Fuels Analysis Branch, Energy Supply and Conversion Division, Office of Integrated Analysis and Forecasting, January 14, 1993.

"Geothermal Electricity Submodule," Coal, Uranium and Renewable Fuels Analysis Branch, Energy Supply and Conversion Division, Office of Integrated Analysis and Forecasting, December 15, 1992.

"Hydropower Submodule," Coal, Uranium and Renewable Fuels Analysis Branch, Energy Supply and Conversion Division, Office of Integrated Analysis and Forecasting, June 25, 1992.

# Oil and Gas Supply

"Alaska Oil and Gas Supply," Oil and Gas Analysis Branch, Energy Supply and Conversion Division, Office of Integrated Analysis and Forecasting, May 7, 1992.

"Basic Framework and Onshore Lower 48 Conventional Oil and Gas Supply," Oil and Gas Analysis Branch, Energy Supply and Conversion Division, Office of Integrated Analysis and Forecasting, January 21, 1993.

"Capacity Expansion Module for the Natural Gas Transmission and Distribution Model of the National Energy Modeling System," Oil and Gas Analysis Branch, Energy Supply and Conversion Division, Office of Integrated Analysis and Forecasting, December 29, 1992.

"Detailed NEMS Refinery Model Design Report," Oil and Gas Analysis Branch, Energy Supply and Conversion Division, Office of Integrated Analysis and Forecasting, May 1992.

"Foreign Natural Gas Supply," Oil and Gas Analysis Branch, Energy Supply and Conversion Division, Office of Integrated Analysis and Forecasting, January 27, 1993.

"Natural Gas Annual Flow Module," Oil and Gas Analysis Branch, Energy Supply and Conversion Division, Office of Integrated Analysis and Forecasting, June 24, 1992.

"Offshore Lower 48 Conventional Oil and Gas Supply," Oil and Gas Analysis Branch, Energy Supply and Conversion Division, Office of Integrated Analysis and Forecasting, July 1992.

"Petroleum Market Module," Oil and Gas Analysis Branch, Energy Supply and Conversion Division, Office of Integrated Analysis and Forecasting, December 16, 1992.

"Pipeline Tariff Module for the Natural Gas Transmission and Distribution Model of the National Energy Modeling System," Oil and Gas Analysis Branch, Energy Supply and Conversion Division, Office of Integrated Analysis and Forecasting, December 29, 1992.

"Unconventional Gas Recovery," Oil and Gas Analysis Branch, Energy Supply and Conversion Division, Office of Integrated Analysis and Forecasting, July 1992.

# Model Documentation Reports

This section lists the documentation reports for NEMS, planned as of the writing of this edition of this *Integrating Module Documentation Report*. All eventually will be authored by the Energy Information Administration.

# Macroeconomic Activity

"Interindustry Submodule," International, Economic and Integrated Forecasting Branch, Energy Demand and Intergration Division, Office of Integrated Analysis and Forecasting, forthcoming December 1993.

"National Submodule," International, Economic and Integrated Forecasting Branch, Energy Demand and Intergration Division, Office of Integrated Analysis and Forecasting, forthcoming December 1993.

"Regional Submodule," International, Economic and Integrated Forecasting Branch, Energy Demand and Integration Division, Office of Integrated Analysis and Forecasting, forthcoming December 1993.

# Oil and Gas Supply

"Annual Flow Component," Oil and Gas Analysis Branch, Energy Supply and Conversion Division, Office of Integrated Analysis and Forecasting, forthcoming December 1993.

"Capacity Expansion Component," Oil and Gas Analysis Branch, Energy Supply and Conversion Division, Office of Integrated Analysis and Forecasting, forthcoming December 1993.

"Distribution Tariffs Component," Oil and Gas Analysis Branch, Energy Supply and Conversion Division, Office of Integrated Analysis and Forecasting, forthcoming December 1993.

"Petroleum Market Module," Oil and Gas Analysis Branch, Energy Supply and Conversion Divison, Office of Integrated Analysis and Forecasting, forthcoming December 1993.

"Pipeline Tariffs Component," Oil and Gas Analysis Branch, Energy Supply and Conversion Divison, Office of Integrated Analysis and Forecasting, forthcoming December 1993.

#### Coal

"Coal Distribution Component," Coal, Uranium and Renewable Fuels Analysis Branch, Energy Supply and Conversion Division, Office of Integrated Analysis and Forecasting, forthcoming December 1993.

"Coal Export Component," Coal, Uranium and Renewable Fuels Analysis Branch, Energy Supply and Converison Division, Office of Integrated Analysis and Forecasting, forthcoming December 1993.

"Coal Production Component," Coal, Uranium and Renewable Fuels Analysis Branch, Energy Supply and Converison Division, Office of Integrated Analysis and Forecasting, forthcoming December 1993.

"Coal Synthetics Component," Coal, Uranium and Renewable Fuels Analysis Branch, Energy Supply and Converison Division, Office of Integrated Analysis and Forecasting, forthcoming December 1993.

# Electricity Market Module

"Capacity Planning," Nuclear and Electricity Analysis Branch, Energy Supply and Conversion Division, Office of Integrated Analysis and Forecasting, forthcoming December 1993.

"Financial and Pricing Component," Nuclear and Electricity Analysis Branch, Energy Supply and Conversion Division, Office of Integrated Analysis and Forecasting, forthcoming December 1993.

"Fuel Dispatch Component," Nuclear and Electricity Analysis Branch, Energy Supply and Conversion Division, Office of Integrated Analysis and Forecasting, forthcoming December 1993.

"Load and Demand-side Management Component," Nuclear and Electricity Analysis Branch, Energy Supply and Conversion Division, Office of Integrated Analysis and Forecasting, forthcoming December 1993.

"Nonutility Generation Supply Component," Nuclear and Electricity Analysis Branch, Energy Supply and Conversion Division, Office of Integrated Analysis and Forecasting, forthcoming December 1993.

"Transmission and Trade Component," Nuclear and Electricity Analysis Branch, Energy Supply and Conversion Division, Office of Integrated Analysis and Forecasting, forthcoming December 1993.

# **Demand Components**

"Commercial Demand Module," Energy Demand Analysis Branch, Office of Integrated Analysis and Forecasting, forthcoming December 1993.

"Industrial Demand Module," Energy Demand Analysis Branch, Office of Integrated Analysis and Forecasting, forthcoming December 1993.

"Residential Demand Module," Energy Demand Analysis Branch, Office of Integrated Analysis and Forecasting, forthcoming December 1993.

"Transportation Demand Module," Energy Demand Analysis Branch, Office of Integrated Analysis and Forecasting, forthcoming December 1993.

# **Overall Systems Design and Integration**

"NEMS Methodology Summary," National Energy Modeling System Branch, Office of Integrated Analysis and Forecasting, forthcoming in January 1994.

"International Energy Module," Energy Demand and Integration Division, International, Economic and Integrated Forecasting Branch, Office of Integrated Analysis and Forecasting, forthcoming December 1993.

# **Other Documents**

Reports listed in this section describe earlier models. They are listed here because they contain information summarized in this report.

"Documentation of the Integrating Module of the Intermediate Future Forecasting System," Energy Information Administration, Reserves and Natural Gas Division, Office of Oil and Gas, U.S. Department of Energy, May 1991.

"The Integrating Model of the Project Independence Evaluation System, Volume 3: User's Guide," U.S. Department of Energy, Energy Information Administration, Assistant Administrator for Applied Analysis, March 1979.

"The Integrating Model of the Project Independence Evaluation System, Volume 5: Code Documentation," U.S. Department of Energy, Energy Information Administration, Assistant Administrator for Applied Analysis, July 1978.

"The Integrating Model of the Project Independence Evaluation System, Volume 6: Data Documentation, Part 1," U.S. Department of Energy, Energy Information Administration, Assistant Administrator for Applied Analysis, February 1979.

"Model Documentation of the Gas Analysis Modeling System," Energy Information Administration, U.S. Department of Energy, Office of Oil and Gas, May 1991.

"Project Independence Report," Federal Energy Administration, November 1974.

"Research into the Methodology of the LEAP Model," U.S. Department of Energy, Energy Information Administration, Assistant Administrator for Applied Analysis, December 1979.

Appendix D

**Model Abstract** 

# **Appendix D. Model Abstract**

Model Name: National Energy Modeling System

Acronym: NEMS

**Description:** NEMS represents a general equilibrium solution of the interactions between the U.S. energy markets and the economy. The model achieves a supply and demand balance in the end-use demand regions, defined as the nine Census Divisions, by solving for the prices of each energy type such that the quantities producers are willing to supply equal the quantities consumers wish to consume. The system reflects market economics, industry structure, and energy policies and regulations that influence market behavior.

**Purpose:** The objective of NEMS is to account for the many interactions of the different segments of the energy industries and to provide an internally consistent forecast of prices and quantities for which supply equals demand. This equilibrium solution accounts for the main economic factors that affect supply and demand, allows price competition of fuels, and accounts for policies and regulations that cause deviations from purely economic behavior.

Last Model Update: October 1993.

Part of Another Model? No.

Model Interfaces: NEMS integrates the efforts of the following submodels:

Oil and Gas Market Module Natural Gas Transmission and Distribution Module Coal Market Module Renewable Fuels Module Electricity Market Module Petroleum Market Module Residential Sector Demand Module Commercial Sector Demand Module Transportation Sector Demand Module Industrial Sector Demand Module Macroeconomic Activity Module International Energy Activity Module

**Sponsor:** Office of Integrated Analysis and Forecasting, Energy Information Administration; U.S. Department of Energy.

Model Contacts: Ms. Susan H. Shaw (202) 586-4838

**Documentation:** "NEMS Methodology Summary," National Energy Modeling System Branch, Office of Integrated Analysis and Forecasting, forthcoming in January 1994.

# Archive Media and Installation Manual(s): Forthcoming.

**Energy System Described by Model:** NEMS is a general equilibrium model of domestic energy supply and demand. It represents the domestic production of oil natural gas, refined petroleum products, coal and electricity. It also represents the two major energy conversion activities, the refining of crude oil into petroleum products and the conversion of fossil fuels, nuclear power, hydropower, and other renewable sources into electricity. Consumption of energy is represented by four end-use sectors: residential, commercial, industrial, and transportation.

# **Coverage:**

• **Geographic:** Nine Bureau of Census Divisions. Some component analytical modules represent energy production or conversion at different levels of regional detail. All equilibration takes place at the Census Division level.

**Time Unit/Frequency:** Annual through 2015

• **Product(s):**Natural gas, electricity, coal, steam coal, metallurgical coal, distillate fuel oil, residual fuel oil, motor gasoline, jet fuel, liquefied petroleum gases, petrochemical feedstocks, kerosene, other petroleum products, hydropower, and other renewable sources.

**Economic Sector(s):** Residential, commercial, industrial, and transportation end-use consumption; coal supply; oil and gas production and natural gas markets; utility and nonutility capacity, and generation of electricity; oil product pricing.

# **Modeling Features:**

• **Model Structure:** NEMS provides an equilibrium framework in which the economic forces of supply and demand can be simulated. Its modular structure allows each individual module to be represented in a different fashion if desired.

• **Modeling Technique:** NEMS is a simulation of the impacts of present and planned energy market conditions upon the supplies of and demands for energy products. Different techniques are applied in different sectors, as appropriate.

• **Special Features:** The primary design feature of NEMS is its modularity. That is, the model is organized by fuel production—oil, natural gas, coal, and electricity—and by end-use consumption sector. Any of these modules can be replaced by a simple representation when detailed results are not required. The modularity also allows any single module or group of modules to be run independently as a debugging aid or for stand-alone analysis. Furthermore, modularity also allows the flexibility for each sector to be represented in the most appropriate way, highlighting the particular issues important for the sector, including the most appropriate regional structure.

**Non-DOE Input Sources:** All data sources are listed under the appropriate modules of NEMS, which are listed in the Model Interfaces section.

**DOE Data Input Sources:** All data sources are listed under the appropriate modules of NEMS, which are listed in the Model Interfaces section.

#### Inventory of Parameter Estimates: None.

#### General Description of Output Data: The following are generally used in published reports:

Total Energy Supply and Disposition Domestic Production by Fuel Type Imports and Exports by Fuel Type Electric Utility and Nonutility Fuel Consumption, Generation and Capacity Electricity Disposition and End-Use Sectoral and Regional Prices Petroleum Supply, Disposition and End-Use Sectoral and Regional Prices Natural Gas Supply, Disposition and End-Use Sectoral and Regional Prices Coal Supply, Disposition and End-Use Sectoral and Regional Prices Consumption of Energy by Fuel, Sector and Region

#### **Computing Environment:**

Hardware Used: IBM 3090QX.

Language Used: FORTRAN 77.

Core Requirement: Over 16,000K, when all modules are being executed.

Estimated Run Time: 24 hours.

**Special Features:** NEMS is designed to operate in a mainframe computing environment that allows in excess of 16 megabytes of main memory.

#### Independent Expert Reviews Conducted: None.

Status of Evaluation Efforts by Sponsor: Currently undergoing evaluation.

**References:** Energy Information Administration, *The National Energy Modeling System: An Overview*, DOE/EIA-0581 (Washington, DC, May 1994).

Appendix E

Carbon Emission Calculations

# **Appendix E. Carbon Emission Calculations**

# **Overview**

NEMS is used by EIA to project the energy, economic, environmental, and security impacts on the United States of various policies and assumptions. In response to concerns over the impact on the climate of greenhouse gases, NEMS develops projections of the total anthropogenic carbon emissions from fossil energy consumption. The Integrating Module calculates carbon emissions from energy production, conversion, and end-use consumption.

Carbon emissions from energy consumption are dependent on the carbon content of the fuel and how completely the fuel is consumed in combustion. In NEMS, carbon emissions are calculated by multiplying fuel consumption by two factors: a carbon emissions coefficient that reflects the carbon content of the fuel, and a combustion fraction that reflects how completely the fuel is burned. The carbon emissions coefficients are presented in Table E1. These coefficients are expressed in millions of metric tons of carbon emitted per quadrillion Btus combusted. The combustion fractions are assumed to be .99 for non-gaseous fuels and .995 for gaseous fuels.<sup>8</sup>

# **Carbon Emissions of Renewable Fuels**

Renewable fuels include hydroelectric power, biomass, photovoltaic, geothermal, and wind energy. Any carbon emitted by the renewable source is considered balanced by the carbon sequestration that occurred in its creation. Therefore, following convention, net emissions of carbon from renewable sources is taken as zero, and no emission coefficient is reported.

# **Sector Specific Calculations**

Table E2 lists the NEMS variables used to calculate the carbon emissions. Sector specific adjustments are listed below.

Residential and Commercial: No major adjustments were needed.

121

<sup>&</sup>lt;sup>8</sup>As an example of the carbon emissions calculation, if gasoline consumption was 20 quadrillion Btus, then combustion is assumed to be 19.8 quadrillion Btus, or 20 times .99, and carbon emissions are calculated as 384 million metric tons of carbon, or 19.8 quadrillion Btus times the carbon coefficient of 19.41.

#### Table E1. Emission Factors

|                                | Million Metric Tons        | Proportion of Nonfuel Use |
|--------------------------------|----------------------------|---------------------------|
| Fuel Type                      | Carbon per Quadrillion Btu | Sequestered <sup>a</sup>  |
|                                |                            |                           |
| Petroleum                      |                            |                           |
| Motor Gasoline                 | 19.41                      | -                         |
| Liquefied Petroleum Gas        | 17.16                      | 0.80                      |
| Jet Fuel                       | 19.74                      | -                         |
| Distillate Fuel                | 19.95                      | -                         |
| Residual Fuel                  | 21.49                      | -                         |
| Asphalt and Road Oil           | 20.62                      | 1.00                      |
| Lubricants                     | 20.24                      | 0.50                      |
| Petrochemical Feed             | 19.37                      | 0.80                      |
| Kerosene                       | 19.72                      | -                         |
| Petroleum Coke                 | 27.85                      | -                         |
| Petroleum Still Gas            | 17.51                      | -                         |
| Other: Waxes and Miscellaneous | 19.81                      | 1.00                      |
| Coal                           |                            |                           |
| Residential and Commercial     | 25.92                      | -                         |
| Metallurgical                  | 25.51                      | -                         |
| Industrial Other               | 25.58                      | -                         |
| Anthracite Coal                | 28.13                      | -                         |
| Bituminous Coal                | 25.37                      | -                         |
| Subbituminous Coal             | 26.24                      | -                         |
| Lignite                        | 26.62                      | -                         |
| Natural Gas                    |                            |                           |
| Natural Gas                    | 14.47                      | 0.33                      |

# Table E2. Energy Demands by Sector

| Fuel Type by Sector       | NEMS Variable Name | Emission Coefficient Name |
|---------------------------|--------------------|---------------------------|
| Desidential               |                    |                           |
|                           | ODEDE              | EDSBS                     |
|                           | QDSR5              | EDORO                     |
| Kerosene                  | QKSRS              | EKSRS                     |
| Liquefied Petroleum Gas   | QLGRS              | ELGRS                     |
| Natural Gas               | QNGRS              | ENGRS                     |
| Coal                      | QCLRS              | ECLRS                     |
| Commercial                |                    |                           |
| Motor Casoline            | OMGCN              | EMGCN                     |
| Liquofied Petroleum Cas   | OLCOM              | ELCOM                     |
| Distillate Fuel           | QLGCM<br>ODSCM     | ELGCM                     |
|                           | QDSCM              | EDSCM                     |
|                           |                    | ERSCIM                    |
|                           | QULUM              | ECLOM                     |
| Natural Gas               | QNGCM              | ENGCM                     |
|                           |                    |                           |
| Industrial                |                    |                           |
| Distillate Fuel           | QDSIN              | EDSIN                     |
| Kerosene                  | QKSIN              | EKSIN                     |
| Liquefied Petroleum Gas   | QLGIN              | ELGIN                     |
| Natural Gas               | QNGIN              | ENGIN                     |
| Lease and Plant Fuel      | QLPIN              | ELPIN                     |
| Steam Coal                | QCLIN              | ECLIN                     |
| Motor Gasoline            | QMGIN              | EMGIN                     |
| Petroleum Feedstock       | QPFIN              | EPFIN                     |
| Petroleum Coke            | QPCIN              | EPCIN                     |
| Still Gas                 | QSGIN              | ESGIN                     |
| Asphalt and Road Oil      | QASIN              | EASIN                     |
| Other Petroleum           | QOTIN              | FOTIN                     |
| Metallurgical Coal        | QMCIN              | EMCIN                     |
| Transportation            |                    |                           |
| Compressed Natural Gas    | QNGTR              | ENGTR                     |
| Pipeline Fuel Natural Gas | QGPTR              | EGPTR                     |
| Motor Gasoline            | QMGTR              | EMGTR                     |
| Jet Fuel                  | QJFTR              | EJFTR                     |
| Distillate                | QDSTR              | EDSTR                     |
| Liquid Petroleum Gas      | QIGTR              | FLGTR                     |
| Methanol                  | OMETR              | EMETR                     |
| Other Petroleum           | OOTIN              | FOTIN                     |
|                           |                    | Lonix                     |
| Electric Generators       |                    |                           |
| Distillate                |                    |                           |
|                           | QDSEL              | EDSEL                     |
|                           | QPCEL              | EPCEL                     |
| Natural Gas - Core        | QGFEL              | EGFEL                     |
| Natural Gas - Non-Core    | QGIEL              | EGIEL                     |
| Residual - High Sulfur    | QRHEL              | ERHEL                     |
| Residual - Low Sulfur     | QRLEL              | ERLEL                     |
|                           |                    |                           |

| Fuel Type by Sector          | NEMS Variable Name | Emission Coefficient Name |
|------------------------------|--------------------|---------------------------|
| Electric Generators (cont'd) |                    |                           |
| VLS Bit Coal                 | QBCELNR            | EBCELNR                   |
| LS Bit Coal                  | QBDELNR            | EBDELNR                   |
| MS Bit Coal                  | QBMELNR            | EBMELNR                   |
| HS Bit Coal                  | QBHELNR            | EBHELNR                   |
| VLS Sub Coal                 | QSCELNR            | ESCELNR                   |
| LS Sub Coal                  | QSDELNR            | ESDELNR                   |
| MS Sub Coal                  | QSMELNR            | ESMELNR                   |
| HS Sub Coal                  | QSHELNR            | ESHELNR                   |
| VLS Lig Coal                 | QLCELNR            | ELCELNR                   |
| LS Lig Coal                  | QLDELNR            | ELDELNR                   |
| MS Lig Coal                  | QLMELNR            | ELMENLR                   |
| HS Lig Coall                 | QLHELNR            | ELHELNR                   |

**Industrial:** The use of fossil fuels for non-fuel use of certain end-use products such as feedstocks for chemical production causes a significant amount of carbon to be sequestered in the product and not released to the atmosphere. Technically, the amount of carbon sequestered depends on product characteristics which are not explicitly defined in NEMS; following standard practice, an average sequestration fraction is used for each nonfuel use.<sup>9</sup> In the Industrial module, the two major feedstocks are Liquified Petroleum Gases (LPG) and natural gas. Consumption of these fuels is divided into feedstock and combustion categories. For the feedstock uses, an appropriate sequestration rate is applied to account for the average proportion of carbon sequestered among products in this category. "Other" petroleum products consist of lubricants and miscellaneous petroleum products.

**Transportation:** The total consumption of motor gasoline reported by the Transportation module includes both gasoline, gasoline-ethanol mixtures, and gasoline containing oxygenates with ethanol precursors. Since ethanol is considered a renewable fuel with zero net carbon emissions, the total consumption of motor gasoline was reduced by the amount of ethanol used in its production before multiplication by the emission coefficient. This modification represents less than one million metric tons of carbon. Furthermore, since "other" petroleum was considered primarily lubricants, the emission coefficient and sequestration rate for lubricants was used for all of "other" petroleum.

**Electricity Generation Market:** No major adjustments were needed. However, separate factors were used for each coal rank. This methodology attempted to more accurately reflect carbon emissions as the ratio of consumption of each coal rank changed over the forecast period.

<sup>&</sup>lt;sup>9</sup>Energy Information Administration, *Emissions of Greenhouse Gases in the United States; 1987-1992*, DOE/EIA-0573 (Washington, DC, 1994), pg 14.

Appendix F

Emission Policy Module Documentation

# **Appendix F. Emission Policy Module Documentation**

The Emissions Policy Module (EPM) addresses market-based approaches for controlling emissions output from the energy sector. The design of the EPM incorporates centralized modeling of marketbased emissions constraints. As a first step toward capturing the effects of market-based systems of emission control, the Emissions Policy Module (EPM) facilitates the analysis of policies to limit total carbon production. Specifically, five policy tools are modeled: carbon tax, ad valorem tax, auction of carbon production allowances, distribution of allowances for the various sectors and regions with a secondary auction market, and carbon allowances with the addition of allowing approaches that will offset carbon production.

# **Model Objectives**

The purpose of the EPM is to allow the analysis of market-based options for the control of carbon emissions from the energy sector. The penalty on carbon emissions is modeled as an adjustment on the end-use price of the fuel. Implementation of such a price adjustment to end-use fuels in the NEMS system is done as follows: The carbon penalty, which depends on the policy option chosen, is calculated once per iteration in the EPM. Two distinct variables are created for each of the fuel prices: one containing the original prices and one containing the adjusted prices. The adjusted prices are used by the demand models and the unadjusted prices are used by the supply and conversion models. After each model is executed, the fuel prices are adjusted and copied to the adjusted price arrays based on the carbon penalty. This ensures that the most recent price information is available. Five policy options may be modeled in the EPM:

# Carbon Tax

Carbon emission production depends on the interaction of fossil fuel utilization and demand, and is a function of the relationship of energy requirements to the level of economic activity, relative prices of various fossil fuels, the degree of substitutability among fossil fuels, and the energy required at the level of economic activity. Carbon reductions can be induced by encouraging fuel substitution to lower carbon-emitting fossil fuels or non-fossil fuels through adjustments to relative prices. Fuel price adjustments can be made through a tax on the carbon content of the fuel.

Implementation of the carbon tax takes place in the EPM. A modifier is applied to the price of each end-use fuel going to the sector modules to reflect a tax on the carbon produced by that sector using that particular fuel. The model is then executed until convergence occurs. The total national carbon output and fuel substitution policies may then be observed as a function of the tax, with the revenue generated being used as an input to the macroeconomic module.

# Ad Valorem Tax

An ad valorem tax on fuels was implemented for the EPM. The ad valorem tax is applied as a fixed percentage so its value will change as energy prices change. The calculation of the effect of the ad valorum tax on fuel price was obtain by multiplying the tax rate by the price of the end-use fuel going to the sector modules. The revenue created by this tax is used as an input to the macroeconomic module.

# Auctions

Using an auction strategy, the total carbon goal is set *a priori*. An auction is used to distribute allowances to emit carbon. The total number of allowances sold corresponds to the total carbon emission goal. Several iterations of the other NEMS modules must be done to find the auction clearing price of an allowance (equivalent to a tax on carbon emissions) that will correspond to the carbon goal. Revenue from the auction is reflected in the inputs to the macroeconomic module.

# Allowance System

It is assumed that the allowances will be fully transferable nationally but not banked between years. Given these restrictions, the allowance system was implemented as a zero-revenue auction. In other words, the system of marketable permits is modeled as an auction of allowances as in Section **Auctions**. However, each sector receives a fixed share of the resultant revenue from the auction such that the total auction proceeds are returned to the participants. The share of auction proceeds received is equivalent to an initial distribution of "free" allowances. If a source had allocated to it precisely the number of allowances it needed, the model should directly offset payments into the auction with the revenues received, reflecting no net cost to the source.

The initial price and distribution of allowances will be set exogenously. In an efficient, optimal allowance system the price of an allowance must reflect the marginal cost of emission, independent of the initial distribution of allowances. Thus the cost of any carbon emission by a particular sector in a region is reflected in the individual end-use fuel cost for that sector. For those suppliers in which the product prices are based on marginal cost (such as in the Petroleum Marketing Module), the revenue returned from the auction may be ignored; it does not affect the price of products. However, in the regulated suppliers (such as utilities) where the average cost is used to determine price, the revenue stream from the initial (no-cost) allowances must be accounted for.

The model is iterated and the total carbon production for a particular price level of allowances observed. Once the model has converged and the total carbon production determined, the price of an allowance is then adjusted and the model again run until convergence occurs. The price of an allowance will continue to be adjusted until the total carbon produced is within the cap.

# Offsets

There is a broad consensus among policy analysts that accompanying any major program for controlling carbon emissions, such as a carbon tax or allowance system, ærious consideration should be given to allowing sources to offset their emissions by obtaining quantifiable reductions in other emissions from sources that would be difficult to monitor. Part of a greenhouse gas emission reduction policy may be an offset policy which gives credit to reductions in emissions offsets from sources whose total emissions would be difficult to precisely quantify, such as the capture of coal bed methane, and activities such as reforestation which provide for the additional uptake of carbon by expanding terrestrial carbon sinks.

The EPM includes the option to represent the market for greenhouse gas offsets by using offset "supply curves" developed in models outside of NEMS. Supply curves for two sources of offsets, coal-bed methane capture and reforestation are included in the EPM. These curves indicate the number of offsets available at a given price. Conversion of offsets to allowances will be determined by an exogenously supplied parameter. Thus, offsets may be converted to allowances on a one-for-one basis or more than one offset may be needed to obtain a single allowance.

# **Input/Output Requirements**

The EPM requires input data from exogenous sources and other modules of NEMS. Exogenous data include the policy options to be implemented and emissions factors. If a carbon tax scenario is to be implemented, the tax rate must also be specified. Output from the EPM consists of adjustments of the end-use prices of fuels consumed by the demand and conversion modules. Revenue from the carbon penalty is provided to the Macroeconomic module.

The primary role of the EPM will be to model the effect of market-based policy options on the total carbon emission from each of the various sectors in each region. This is accomplished by applying an adjustment to the end-use price of fuels proportional to the carbon content of the fuel. Adjustment of feedstock prices is calculated separately from the calculation of the carbon penalty for the same fuel used in combustion, reflecting the higher level of carbon sequestration evident with the use of feedstocks. Three common blocks contain all of the end-use fuel prices: MPBLK, NGTDMOUT and COALOUT. These prices are adjusted and stored in the common blocks AMPBLK, ANGTDM, and ACOAL.

The total carbon emission from both combustion and non-combustion sources is calculated in the EPM from information in the common blocks QBLK and INDOUT. The common QBLK contains the quantities of end-use fuels consumed. A separate break-out of natural gas and liquid petroleum gas feedstocks is found in the common block INDOUT.

Several policy options result in revenue from the carbon penalty flowing to the government. This revenue is furnished to the MACRO module through the EMISSION common block.

# **Modifications to the Solution Algorithm**

After each module is executed, the Integrating Module adjusts the end-use prices generated by the supply and conversion modules by the penalty, and places the result in the adjusted price arrays AMPBLK, ACOAL, and ANGTDM. These arrays are used by the demand modules to calculate consumption. The include files AMPBLK and EPMMPBLK both contain a common block referring to the same memory locations though each variable has a slightly different name. The variables in AMPBLK differ from MPBLK so that both common blocks may be used in the subroutine Price\_Adjust. The variable names in EPMMPBLK are the same as in MPBLK. This allows the demand modules to refer to the adjusted prices rather than the unadjusted prices by only changing one statement in the code. Figure F1 shown below demonstrates the relationship between the include files AMPBLK, MPBLK, and EPMMPBLK.



#### Figure F1. Price Adjustment to Common Block With Representative Variables

# **Model Structure**

The EPM is executed once each iteration to determine total carbon emissions produced, the revenue created by any penalty for carbon emissions, and, depending upon the scenario, the level of offsets produced and a new carbon penalty that will bring the national emissions closer to the desired level. Algorithms for each of the options available are included below.

# **Policy Algorithms**

# Carbon Tax

The carbon tax is implemented in a straightforward manner. The level of the carbon tax is provided exogenously and the resulting total carbon production may be examined. Thus we have:

- Algorithm I. Determine the effect of the carbon tax.
  - a. Input the carbon tax in \$/metric ton carbon.
  - b. Determine the price increase of end-use fuels from the carbon tax. The revenue stream will be reported to the macroeconomic module. Algorithms to determine the price, the price adjustment and the revenue created by such a tax are described in the subroutine listing.
  - c. Run the other NEMS modules with price adjustments from (b).
  - d. Observe the total carbon output.

# Ad Valorem Tax

- Algorithm II. Determine the effect of an ad valorem tax.
  - a. Input the ad valorem tax rate.
  - b. Determine the revenue generated by implementing an ad valorem tax on end-use fuels going to the sector modules.
  - c. Run the other NEMS modules.
  - d. Determine the effect of the ad valorem tax on end-use fuel prices.

# Auction

In this case, the total carbon production is specified. A scalar search is required on the auction clearing price (equivalent to the carbon tax) to determine the price level that produces the required carbon emission level. This is shown as follows:

Algorithm III. Determine carbon price that will cap total carbon output.

- a. Choose an initial auction price.
- b. Execute Algorithm I.
- c. Determine a new auction price based on the scalar search algorithm described in the reg\_false subroutine. If the carbon output is within the tolerance, report the tax rate and carbon produced and quit.
- d. Repeat step b.

# **Carbon Allowances**

An initial set of free allowances is assumed to be distributed to each sector of each region. Additional allowances may be sold or purchased in a secondary market. It is important to note that the allocation of free allowances is the equivalent to a subsidy to a supplier or sector, independent of actual emissions produced. In order to accurately capture the opportunity cost of using an allowance as opposed to selling it, a rational player in the allowance market would equate the total cost of its emissions as the cost of purchasing allowances for all of its emissions, and treat the value of the initial allocation of allowances separately. This is the approach taken in the EPM. The cost of purchasing sufficient allowances for all of the carbon emitted is added to the net cost of end-use fuels; the value of the initial allocation of allowances is handled separately. The total number of allowances outstanding determines the carbon production. The objective here is to determine the market price of an allowance such that the total number of allowances is below some exogenously determined level.

The revenue from initial allocations (price of allowances times the number of allowances) is independent of the consumption of the corresponding sector, and may be considered a rebate to a particular sector. This cannot be reflected in price adjustments of fuels without distorting the breakeven point between capital expenditures and operating expenses. Ignoring such revenue may be economically sound for suppliers (such as refineries) which price their products using marginal costs, but is incorrect for regulated sectors which use average prices. Such revenue is calculated in the EPM, but the appropriate connections to the conversion market have not been implemented.

- Algorithm IV. Determine the auction price of an allowance that results from a particular cap on carbon outputs.
  - a. Determine an initial set of allowances by sector and region. Set a price for additional allowances.
  - b. Determine the end-use fuel price adjustments for each sector of each region. This algorithm is described in the price\_adjust subroutine.
  - c. Re-run the other NEMS modules with these new price adjustments.
  - d. Examine the total carbon level. If the carbon output is within the tolerance, report the allowance price and carbon produced and quit. Otherwise, use the scalar search algorithm to choose a new allowance price.
  - e. Return to step c.

# Offsets

The addition of offsets will be treated as increasing the supply of allowances. The revenue from generating offsets will be treated in the same manner as selling allowances. NEMS uses Algorithm III with the addition of one more step.

- Algorithm V. Determine the auction price of an allowance that results from a particular cap on carbon outputs, with the inclusion of offsets.
  - a. Determine an initial set of allowances by sector and region. Set a price for any additional allowances.
  - b. Determine the end-use fuel price adjustments, using the algorithm described in the price\_adjust subroutine, for each sector of each region.
  - c. Re-run the other NEMS modules with these new price adjustments.
  - d. For each sector of each region, determine the total offsets that will be created. Offset price/supply curves will be provided exogenously. From these curves, the total offsets created will be the total offsets available costing no more than the price of an allowance. The value of offsets will be treated in the same manner as that of the initial allocations.

- e. Examine the total carbon level. If the carbon output is within the tolerance, report the allowance price and carbon produced and quit. Otherwise, use the scalar search algorithm, described in the reg\_false subroutine, to choose a new allowance price.
- f. Return to step c.

# **Subroutine List**

#### SUBROUTINE: EPM

Description: This subroutine is the main controlling subroutine for the Emissions Policy Module. Initially, the subroutine reads flags to determine the scenario type: carbon tax, auction of permits, market for permits, and permit market with offsets. Based on these flags, the module calls the appropriate subroutines. If the tax is used, the emissions are summed and revenue accrued is calculated. If the auction is used, the auction revenue and total emissions are calculated. A new auction price for the permit is then calculated as part of an iterative process to match the auction price with its with the *a priori* emissions goal. If the market flag is set, the total emission is calculated and a new market clearing price for the permits is determined. If the offsets flag is set, the offsets subroutine is called to determine the offsets that would be created at the previous market clearing price, and these are added to the emissions goal.

ADVAL\_TAX, PRICE\_ADJUST

ACCNTREV, SUM\_EMISSIONS, INITREV, REG\_FALSE, OFFSETS,

Main

Called By:

Calls:

None.

Equations:

SUBROUTINE: SUM\_EMISSIONS

Description: This subroutines sums total carbon emissions. The end use of a fuel is multiplied by an emissions factor; the total is aggregated by census region and sector. The fuel quantities are found in the common blocks QBLK and EMMOUT.

Called By: EPM

Calls: None

Equations:

$$AMTPOL = \sum_{i} \sum_{j} \sum_{k} Em(ik) * Qf(ijk)$$

| AMTPOL  | = | Total carbon emissions from all fuel i from all regions j in year k, |
|---------|---|----------------------------------------------------------------------|
| Em(ik)  | = | Emissions from fuel i (MMT carbon /quad BTUs) in year k,             |
| Qf(ijk) | = | Total consumption of fuel i in region j and year k.                  |

| SUBROUTINE:  | ACCNTREV                                                                                                                                                                                                                       |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description: | This subroutine calculates the total revenue raised from each sector by the emissions penalty (tax or permit). Revenue is calculated by multiplying the quantity of end-use fuel by an emissions factor and the penalty level. |
| Called By:   | EPM                                                                                                                                                                                                                            |
| Calls:       | None                                                                                                                                                                                                                           |
| Equations:   |                                                                                                                                                                                                                                |

$$REV(l) = \sum_{i \in l} \sum_{j} \sum_{k} EMTAX(k)Em(ik)Qf(ijk)$$

| REV(l)   | = | Total revenue collected in sector l from all fuel i from all regions j and in year k, |
|----------|---|---------------------------------------------------------------------------------------|
| Em(ik)   | = | Emission factor for fuel i (MMT carbon /quad BTUs) in year k,                         |
| EMTAX(k) | = | Carbon tax (\$/ton carbon) in year k                                                  |
| Qf(ijk)  | = | Total consumption of fuel i in region j and year k                                    |

# SUBROUTINE:INITREVDescription:If an allowance system is being modeled, the market clearing price of<br/>allowances is determined through the iterative process using the NEMS<br/>model. However, it is likely that a certain number of allowances will be<br/>issued to the affected sources. This subroutine calculates the value of this<br/>initial allocation of allowances by multiplying the number of allowances by<br/>their market clearing price.Called By:EPMCalls:None.

Equations:

CallocInit = Sallocinit \* Palloc

| CallocInit | = | Total value of initial allowances (billion \$87), |
|------------|---|---------------------------------------------------|
| SallocInit | = | Allocation provided (tons carbon)                 |
| Palloc     | = | Price of an allowance (\$/ton carbon).            |

| SUBROUTINE:  | OFFSETS                                                                                                                                                                                                                                                                                        |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description: | Offsets may be used to credit reductions in greenhouse gas emissions against<br>total emissions. This subroutine uses linear interpolation to determine from<br>a set of price-offset curves the total offsets that would be presumed to be<br>offered at a particular price for an allowance. |
| Called By:   | EPM                                                                                                                                                                                                                                                                                            |
| Calls:       | None.                                                                                                                                                                                                                                                                                          |

Equations:

# $OFFST=OFFSET(I) + \frac{OFFSET(I+1) - OFFSET(I)}{PRICE(I+1) - PRICE(I)}$

| OFFST       | = | Total offsets (MMT Carbon),                   |
|-------------|---|-----------------------------------------------|
| PRICE(I)    | = | Price of offset less than allowance price,    |
| PRICE(I+1)  | = | Price of offset greater than allowance price, |
| OFFSET(I)   | = | Offset level corresponding to PRICE(I),       |
| OFFSET(I+1) | = | Offset level corresponding to PRICE(I+1).     |

| SUBROUTINE:                        | PRICE_ADJUST                                                                                                                                                                                                                         |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description:                       | If the EPM is turned on (RUNEPM=1), this subroutine modifies the adjusted price of the fuel by the emissions penalty. This is done by multiplying the penalty by a conversion factor and adding the result to the price of the fuel. |
| Called By:<br>Calls:<br>Equations: | EPM<br>None.                                                                                                                                                                                                                         |
| Lquauons.                          |                                                                                                                                                                                                                                      |

Eadj(ik) = Em(ik) \* EMTAX(k)

| Em(ik)   | = | Emission factor for fuel i (MMT carbon /quad BTUs) in year k, |
|----------|---|---------------------------------------------------------------|
| EMTAX(k) | = | Carbon tax (\$/ton carbon) in year k                          |
| Eadj(ik) | = | Price adjustment of fuel i (\$/MMBTUs) in year k.             |
|          |   |                                                               |

#### SUBROUTINE: REG\_FALSE

Description: This subroutine adjusts the carbon penalty such that the carbon emission goal is met. In particular, let f(x) be the carbon emissions that exceed the carbon goal for a carbon tax of x (f(x) can be negative). Initially, the subroutine must adjust the value of x to find two values of the carbon penalty  $x_i < a_i$ , such that  $f(x_i) < 0$  and  $f(a_i) > 0$ . Using this algorithm, we find u, a new value of x, from the equation listed below.

Called By: EPM

Calls: None.

Equations:

$$u = \frac{[a_{i}f(x_{i}) - x_{i}f(a_{i})]}{f(x_{i}) - f(a_{i})}$$

where

| a <sub>i</sub> | = | Value of carbon penalty such that $f(a_i) < 0$ , |
|----------------|---|--------------------------------------------------|
| u <sub>i</sub> | = | Value of carbon penalty such that $f(u_i) > 0$ , |
| u              | = | New value of carbon penalty.                     |

In the next iteration,  $x_i$  is replaced with u if f(u) < 0, or  $a_i$  is replaced with u if f(u) > 0. Using this procedure, the value of u is found such that f(u) = 0 to some tolerance.

| SUBROUTINE:  | ADVAL_TAX                                                                                                                                                                                                                                        |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description: | This subroutine calculates the increase on prices of end-use fuels created by the implementation of the ad valorum tax. The ad valorum tax is calculated by multiplying the price of end-use fuels by the ad valorum tax rate input by the user. |
| Called By:   | MAIN                                                                                                                                                                                                                                             |
| Calls:       | None.                                                                                                                                                                                                                                            |
| Equations:   |                                                                                                                                                                                                                                                  |

Padj(ijk) = Pbase(ijk) \* (Advaltax(k)+1)

| Padj(ijk)   | = | Perturbed price of fuel i in region j and year k (\$/MMBTUs), |
|-------------|---|---------------------------------------------------------------|
| Pbase(ijk)  | = | Base price of fuel i (\$/MMBTUs) in region j and year k.      |
| Advaltax(k) | = | Ad valorum tax in year k.                                     |

Description: This subroutine updates the adjusted price common blocks. The entire price common blocks MPBLK, COALOUT and NGDTMOUT are copied to the adjusted price common blocks AMPBLK, ACOAL and ANGTDM after each iteration in MAIN. Then the adjustments for specific variables calculated in subroutine PRICE\_ADJUST are added.

Called By: MAIN

Calls:

**Equations:** 

Padj(ijk) = Pbase(ijk) + Eadj(ik)

| Padj(ijk)  | = | Perturbed price of fuel i in region j and year k (\$/MMBTUs), |
|------------|---|---------------------------------------------------------------|
| Pbase(ijk) | = | Base price of fuel i (\$/MMBTUs) in region j and year k.      |
| Eadj(ik)   | = | Price adjustment of fuel i (\$/MMBTUs) in year k.             |
## SUBROUTINE: EPM\_READ

| Description: | This subroutine reads the initial carbon penalty, emissions factors, and offset curves for the EPM. |
|--------------|-----------------------------------------------------------------------------------------------------|
| Called By:   | EPM                                                                                                 |
| Calls:       | None.                                                                                               |
| Equations:   | None.                                                                                               |

# Variable List

### EPM Common Block

| Descriptio                                                                                                                                                                                                                                                                                                                             | Variable                                                           | Туре                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------|
| Coalbed<br>Recovery<br>Price                                                                                                                                                                                                                                                                                                           | PCB<br>PREF4<br>OFFSETCB<br>OFFSETREF<br>EM TAX<br>TOTAL EMISSIONS | REAL*4<br>REAL*4<br>REAL*4<br>REAL*4<br>REAL*4<br>REAL*4 |
| Reforesta<br>tion Offset<br>Price<br>Offset for<br>coalbed<br>Offset for<br>Reforesta<br>tion<br>Tax or<br>Permit<br>Price<br>National<br>Emissions<br>by Yr<br>Emissions<br>Goal by<br>Yr<br>Initial<br>permit<br>allocation<br>Number<br>of Coal<br>Regions<br>for each<br>Cen Div<br>Mapping<br>of coal<br>Regions<br>to Cen<br>Div | EMISSIONS_GOAL<br>INIT_ALLOC<br>NL_CDNUM<br>CL_CDMAP               | REAL*4<br>REAL*4<br>INT<br>INT                           |

Units

\$/MMT Carbon \$/MMT Carbon MMT Carbon b\$ MMT Carbon MMT Carbon MMT Carbon indices

(MAX\_INDEX) (MAX\_INDEX) (MAX\_INDEX) (MAX\_INDEX) (MNUMYR) (MNUMYR) (5,MNUMYR) (9) (9,4)

## Adjusted Price Common Block

| Description                    | Variable | Туре | Units      | Indices          |
|--------------------------------|----------|------|------------|------------------|
| Purch. Elec. Peak. Resid       | AEPRS    | REAL | 87\$/MMBTU | (MNUMCR.MNUMYR)  |
| Purch, Elec, Peak, Comm        | AEPCM    | REAL | 87\$/MMBTU | (MNUMCR.MNUMYR)  |
| Purch, Elec, Peak, Trans       | AEPTR    | REAL | 87\$/MMBTU | (MNUMCR.MNUMYR)  |
| Purch. Elec, Peak. Indust      | AEPIN    | REAL | 87\$/MMBTU | (MNUMCR, MNUMYR) |
| Purch, Elec, Peak, Refinery    | AEPAS    | REAL | 87\$/MMBTU | (MNUMCR.MNUMYR)  |
| Purch, Elec, Nonpeak, Resid    | AENRS    | REAL | 87\$/MMBTU | (MNUMCR.MNUMYR)  |
| Purch. Elec, Nonpeak. Comm     | AENCM    | REAL | 87\$/MMBTU | (MNUMCR, MNUMYR) |
| Purch. Elec, Nonpeak. Trans    | AENTR    | REAL | 87\$/MMBTU | (MNUMCR, MNUMYR) |
| Purch, Elec, Nonpeak, Indust   | AENIN    | REAL | 87\$/MMBTU | (MNUMCR.MNUMYR)  |
| Purch. Elec, Nonpeak. All Sect | AENAS    | REAL | 87\$/MMBTU | (MNUMCR, MNUMYR) |
| Purch. Elec. Resid             | AELRS    | REAL | 87\$/MMBTU | (MNUMCR, MNUMYR) |
| Purch. Elec. Comm              | AELCM    | REAL | 87\$/MMBTU | (MNUMCR, MNUMYR) |
| Purch. Elec. Trans             | AELTR    | REAL | 87\$/MMBTU | (MNUMCR, MNUMYR) |
| Purch. Elec. Indust            | AELIN    | REAL | 87\$/MMBTU | (MNUMCR, MNUMYR) |
| Purch. Elec. All Sectors       | AELAS    | REAL | 87\$/MMBTU | (MNUMCR, MNUMYR) |
| Natural Gas, Core. Resid       | AGFRS    | REAL | 87\$/MMBTU | (MNUMCR, MNUMYR) |
| Natural Gas, Core. Comm        | AGFCM    | REAL | 87\$/MMBTU | (MNUMCR, MNUMYR) |
| Natural Gas. Core. Trans       | AGFTR    | REAL | 87\$/MMBTU | (MNUMCR.MNUMYR)  |
| Natural Gas, Core. Indust      | AGFIN    | REAL | 87\$/MMBTU | (MNUMCR, MNUMYR) |
| Natural Gas, Core. Electr      | AGFEL    | REAL | 87\$/MMBTU | (MNUMCR, MNUMYR) |
| Natural Gas, Core. All Sect    | AGFAS    | REAL | 87\$/MMBTU | (MNUMCR, MNUMYR) |
| Natural Gas. Noncore. Resid    | AGIRS    | REAL | 87\$/MMBTU | (MNUMCR.MNUMYR)  |
| Natural Gas, Noncore. Comm     | AGICM    | REAL | 87\$/MMBTU | (MNUMCR, MNUMYR) |
| Natural Gas, Noncore. Trans    | AGITR    | REAL | 87\$/MMBTU | (MNUMCR, MNUMYR) |
| Natural Gas, Noncore. Indust   | AGIIN    | REAL | 87\$/MMBTU | (MNUMCR, MNUMYR) |
| Natural Gas, Noncore. Electr   | AGIEL    | REAL | 87\$/MMBTU | (MNUMCR, MNUMYR) |
| Natural Gas, Noncore. All Sect | AGIAS    | REAL | 87\$/MMBTU | (MNUMCR, MNUMYR) |
| Natural Gas. Residential       | ANGRS    | REAL | 87\$/MMBTU | (MNUMCR, MNUMYR) |
| Natural Gas. Commercial        | ANGCM    | REAL | 87\$/MMBTU | (MNUMCR, MNUMYR) |
| Natural Gas. Transportation    | ANGTR    | REAL | 87\$/MMBTU | (MNUMCR, MNUMYR) |
| Natural Gas. Industrial        | ANGIN    | REAL | 87\$/MMBTU | (MNUMCR, MNUMYR) |
| Natural Gas. Electricity       | ANGEL    | REAL | 87\$/MMBTU | (MNUMCR, MNUMYR) |
| Natural Gas. All Sectors       | ANGAS    | REAL | 87\$/MMBTU | (MNUMCR, MNUMYR) |
| Natural Gas. Pipeline          | AGPTR    | REAL | 87\$/MMBTU | (MNUMCR,MNUMYR)  |
| Lease and Plant Fuel           | ALPIN    | REAL | 87\$/MMBTU | (MNUMCR, MNUMYR) |
| Coal. Residential              | ACLRS    | REAL | 87\$/MMBTU | (MNUMCR,MNUMYR)  |
| Coal. Commercial               | ACLCM    | REAL | 87\$/MMBTU | (MNUMCR,MNUMYR)  |
| Coal. Industrial               | ACLIN    | REAL | 87\$/MMBTU | (MNUMCR, MNUMYR) |
| Coal. Electricity              | ACLEL    | REAL | 87\$/MMBTU | (MNUMCR,MNUMYR)  |
| Coal. Synthetics               | ACLSN    | REAL | 87\$/MMBTU | (MNUMCR,MNUMYR)  |
| Coal. All Sectors              | ACLAS    | REAL | 87\$/MMBTU | (MNUMCR, MNUMYR) |
| Metallurgical Coal. Industiral | AMCIN    | REAL | 87\$/MMBTU | (MNUMCR,MNUMYR)  |
| Motor Gasoline. Commercial     | AMGCM    | REAL | 87\$/MMBTU | (MNUMCR,MNUMYR)  |
| Motor Gasoline. Trans          | AMGTR    | REAL | 87\$/MMBTU | (MNUMCR,MNUMYR)  |
| Motor Gasoline. Industrial     | AMGIN    | REAL | 87\$/MMBTU | (MNUMCR,MNUMYR)  |
| Motor Gasoline. All Sectors    | AMGAS    | REAL | 87\$/MMBTU | (MNUMCR,MNUMYR)  |
| Jet Fuel. Trasnportation       | AJFTR    | REAL | 87\$/MMBTU | (MNUMCR,MNUMYR)  |
| Distillate.Residential         | ADSRS    | REAL | 87\$/MMBTU | (MNUMCR,MNUMYR)  |
| Distillate.Commercial          | ADSCM    | REAL | 87\$/MMBTU | (MNUMCR,MNUMYR)  |
| Distillate.Transportation      | ADSTR    | REAL | 87\$/MMBTU | (MNUMCR,MNUMYR)  |
| Distillate.Industrial          | ADSIN    | REAL | 87\$/MMBTU | (MNUMCR,MNUMYR)  |
| Distillate.Electric-Petro Coke | ADSEL    | REAL | 87\$/MMBTU | (MNUMCR,MNUMYR)  |
| Distillate.All Sectors         | ADSAS    | REAL | 87\$/MMBTU | (MNUMCR,MNUMYR)  |

#### Description

Kerosene. Residential Kerosene. Commercial Kerosene. Industrial Kerosene. All Sectors Liquid Petroleum Gases. Resid Liquid Petroleum Gases. Comm Liquid Petroleum Gases. Trans Liquid Petroleum Gases. Indust Liquid Petroleum Gases.All Sect Residual Fuel, Low Sulfum. Comm Residual Fuel,Low Sulfur.Trans Residual Fuel,Low Sulfur.Ind Residual Fuel,Low Sulfur.Ele Residual Fuel, Low Sul. All Sec Residual Fuel, High Sul. Trans Residual Fuel, High Sul. Electr Residual Fuel, High Sul. All Sec Residual Fuel. Commercial Residual Fuel. Transportation Residual Fuel. Industrial Residual Fuel. Electricity **Residual Fuel. All Sectors** Petrochemical Feedstocks. Ind Asphalt, Road Oil. Indust Other Petroleum. Trans Other PEtroleum. Indust Other Petroleum. Indust Total Petroleum. Resid Total Petroleum. Comm Total Petroleum. Trans Total Petroleum. Indust Total Petroleum. Refinery Total Petroleum. Electr Total Petroleum. All Sectors Methanol. Transportation Ethanol. Transportation Liquid Hydrogen. Transporation Uranium. Electricity

AKSRS AKSCM AKSIN AKSAS ALGRS ALGCM ALGTR ALGAS ARLCM ARLIN ARLIN ARLEL ARLAS

ARHTR

Variable

ARHEL ARHAS ARSCM ARSTR ARSIN ARSEL ARSAS APFIN AASIN AOTTR AOTIN AOTAS ATPRS ATPCM ATPTR ATPIN ATPRF

ATPEL Type ATPAS AMETR REAL AETTR REAL AHYTR REAL AUREL REAL REAL

REAL

REAL REAL REAL REAL REAL REAL REAL REAL REAL REAL REAL REAL REAL REAL REAL REAL

REAL

Energy Information Administration NEMS Integrating Model Documentation Report REAL REAL REAL REAL REAL REAL

| Units                    | Indices  | (MNUMCR,MNUMY       |
|--------------------------|----------|---------------------|
| 87\$/MMBTU               | (MNUMC   | K)<br>(MNUMCR,MNUMY |
|                          |          |                     |
|                          |          |                     |
| 87\$/MMBTU               |          | MNUMCR MNUMY        |
| 87\$/MMBTU               | YR)      | R)                  |
| 87\$/MMBTU               | (MNUMC   | (MNUMCR.MNUMY       |
| 87\$/MMBTU               | R,MNUM   | R)                  |
| 87\$/MMBTU               | YR)      | (MNUMCR, MNUMY      |
| 87\$/MMBTU               | (MNUMC   | R)                  |
| 87\$/MMBTU               | R,MNUM   | (MNUMCR,MNUMY       |
| 87\$/MMBTU               | YR)      | R)                  |
| 87\$/MMBTU               | (MNUMC   | (MNUMCR,MNUMY       |
| 87\$/MMBTU               | R,MNUM   | R)                  |
|                          | YR)      | (MNUMCR,MNUMY       |
|                          |          |                     |
| 87\$/MMBTU               |          |                     |
| 87\$/MMBTU               | (MNUMC   | (MNUMCR MNUMY       |
| 87\$/MMBTU               | R.MNUM   | R)                  |
| 87\$/MMBTU               | YR)      | (MNUMCR, MNUMY      |
| 87\$/MMBTU               | (MNUMC   | R)                  |
| 87\$/MMBTU               | R,MNUM   | (MNUMCR, MNUMY      |
| 87\$/MMBTU               | YR)      | R)                  |
| 87\$/MMBTU               | (MNUMC   | (MNUMCR,MNUMY       |
| 87\$/MMBTU               | R,MNUM   |                     |
|                          | YR)      |                     |
| 87\$/MMBTU<br>87\$/MMBTU |          |                     |
| 87\$/MMBTU               | YR)      | R)                  |
| 87\$/MMBTU               | (MNUMC   | (MNUMCR,MNUMY       |
| 87\$/MMBTU               | R,MNUM   | R)                  |
| 87\$/MMBTU               | YR)      |                     |
| 87\$/MMBTU               | (MNUMC   |                     |
| 87\$/MMBTU               | R,MNUM   |                     |
| 87\$/MMBTU               | YR)      |                     |
|                          |          |                     |
| 87\$/101101B10           |          |                     |
|                          | (MNUMC   |                     |
|                          | R.MNUM   |                     |
|                          | YR)      |                     |
|                          | (MNUMC   |                     |
|                          | R,MNUM   |                     |
|                          | YR)      |                     |
|                          | (MNUMC   |                     |
|                          | R,MNUM   |                     |
|                          | YR)      |                     |
|                          |          |                     |
|                          | YR)      |                     |
|                          | (MNUMC   |                     |
|                          | R,MNUM   |                     |
|                          | YR)      |                     |
|                          | (MNUMC   |                     |
|                          | R,MNUM   |                     |
|                          | YR)      |                     |
|                          |          |                     |
|                          | K,MNUM   |                     |
|                          | (MNUMC   |                     |
|                          | R.MNI IM |                     |
|                          | YR)      |                     |

## **Emissions Factors Common Block**

| Description                    | Variable | Туре | Units      | Indices  |
|--------------------------------|----------|------|------------|----------|
| Natural Gas, Core. Residential | EGFRS    | REAL | MMT C/QUAD | (MNUMYR) |
| Natural Gas, Core. Commercial  | EGFCM    | REAL | MMT C/QUAD | (MNUMYR) |
| Natural Gas, Core. Transport   | EGFTR    | REAL | MMT C/QUAD | (MNUMYR) |
| Natural Gas, Core. Industrial  | EGFIN    | REAL | MMT C/QUAD | (MNUMYR) |
| Natural Gas, Core. Electricity | EGFEL    | REAL | MMT C/QUAD | (MNUMYR) |
| Natural Gas, Noncore. Resid    | EGIRS    | REAL | MMT C/QUAD | (MNUMYR) |
| Natural Gas, Noncore. Comm     | EGICM    | REAL | MMT C/QUAD | (MNUMYR) |
| Natural Gas, Noncore. Transp   | EGITR    | REAL | MMT C/QUAD | (MNUMYR) |
| Natural Gas, Noncore. Indust   | EGIIN    | REAL | MMT C/QUAD | (MNUMYR) |
| Natural Gas, Noncore. Electr   | EGIEL    | REAL | MMT C/QUAD | (MNUMYR) |
| Natural Gas. Residential       | ENGRS    | REAL | MMT C/QUAD | (MNUMYR) |
| Natural Gas. Commercial        | ENGCM    | REAL | MMT C/QUAD | (MNUMYR) |
| Natural Gas. Transportation    | ENGTR    | REAL | MMT C/QUAD | (MNUMYR) |
| Natural Gas. Industrial        | ENGIN    | REAL | MMT C/QUAD | (MNUMYR) |
| Natural Gas. Electricity       | ENGEL    | REAL | MMT C/QUAD | (MNUMYR) |
| Natural Gas. Pipeline          | EGPTR    | REAL | MMT C/QUAD | (MNUMYR) |
| Lease and Plant Fuel           | ELPIN    | REAL | MMT C/QUAD | (MNUMYR) |
| Coal. Residential              | ECLRS    | REAL | MMT C/QUAD | (MNUMYR) |
| Coal. Commercial               | ECLCM    | REAL | MMT C/QUAD | (MNUMYR) |
| Coal. Industrial               | ECLIN    | REAL | MMT C/QUAD | (MNUMYR) |
| Coal. Electricity              | ECLEL    | REAL | MMT C/QUAD | (MNUMYR) |
| Metallurgical Coal. Industrial | EMCIN    | REAL | MMT C/QUAD | (MNUMYR) |
| Motor Gasoline. Commercial     | EMGCM    | REAL | MMT C/QUAD | (MNUMYR) |
| Motor Gasoline. Transportation | EMGTR    | REAL | MMT C/QUAD | (MNUMYR) |
| Motor Gasoline. Industrial     | EMGIN    | REAL | MMT C/QUAD | (MNUMYR) |
| Jet Fuel. Transportation       | EJFTR    | REAL | MMT C/QUAD | (MNUMYR) |
| Distillate. Residential        | EDSRS    | REAL | MMT C/QUAD | (MNUMYR) |
| Distillate. Commercial         | EDSCM    | REAL | MMT C/QUAD | (MNUMYR) |
| Distillate. Transportation     | EDSTR    | REAL | MMT C/QUAD | (MNUMYR) |
| Distillate. Industrial         | EDSIN    | REAL | MMT C/QUAD | (MNUMYR) |
| Distillate. Elect(+Petro Coke) | EDSEL    | REAL | MMT C/QUAD | (MNUMYR) |
| Kerosene. Residential          | EKSRS    | REAL | MMT C/QUAD | (MNUMYR) |
| Kerosene. Commercial           | EKSCM    | REAL | MMT C/QUAD | (MNUMYR) |
| Kerosene. Industrial           | EKSIN    | REAL | MMT C/QUAD | (MNUMYR) |
| Liquid Petroleum Gases. Resid  | ELGRS    | REAL | MMT C/QUAD | (MNUMYR) |
| Liquid Petroleum Gases. Comm   | ELGCM    | REAL | MMT C/QUAD | (MNUMYR) |
| Liquid Petroleum Gases. Trans  | ELGTR    | REAL | MMT C/QUAD | (MNUMYR) |
| Liquid Petroleum Gases. Indust | ELGIN    | REAL | MMT C/QUAD | (MNUMYR) |

#### Description

| Residual Fuel,Low<br>Sulfur.Comm<br>Residual Fuel,Low Sulfur.Tran<br>Residual Fuel,Low Sulfur.Ind<br>Residual Fuel,Low Sulfur.Ele<br>Residual Fuel,High Sul.Elect<br>Residual Fuel,High Sul.Elect<br>Residual Fuel. Commercial<br>Residual Fuel. Transportation<br>Residual Fuel. Industrial<br>Residual Fuel. Electricity<br>Methanol. Transporation<br>Ethanol. Transporation<br>Pet Feedstocks Industrial                                                                                                            |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Pet CodeIndustrialStill GasIndustrialOther PetIndustrialPet CokeElectricity                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| VLS Bit Coal Emissions By<br>NERC<br>LS Bit Coal Emissions By<br>NERC<br>MS Bit Coal Emissions By<br>NERC<br>HS Bit Coal Emissions By<br>NERC<br>VLS Sub Coal Emissions By<br>NERC<br>MS Sub Coal Emissions By<br>NERC<br>HS Sub Coal Emissions By<br>NERC<br>VLS Lig Coal Emissions By<br>NERC<br>LS Lig Coal Emissions By<br>NERC<br>MS Lig Coal Emissions By<br>NERC<br>MS Lig Coal Emissions By<br>NERC<br>HS Lig Coal Emissions By<br>NERC<br>HS Lig Coal Emissions By<br>NERC<br>HS Lig Coal Emissions By<br>NERC |  |
| E Util Firm NG Emissioins<br>E Util Inter NG Emissions<br>E Util Compet NG Emissions                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |

| Variable | EETTR   | ESDELN | ELHELNR |
|----------|---------|--------|---------|
|          | EPFIN   | R      |         |
| ERLCM    |         | ESMELN | EGFELGR |
| ERLTR    | EPCIN   | R      | EGIELGR |
| ERLIN    | ESGIN   | ESHELN | EGCELGR |
| ERLEL    | EOTIN   | R      |         |
| ERHTR    | EPCEL   | ELCELN |         |
| ERHEL    |         | R      |         |
| ERSCM    | EBCELNR | ELDELN |         |
| ERSTR    | EBDELNR | R      |         |
| ERSIN    | EBMELNR | ELMELN |         |
| ERSEL    | EBHELNR | R      |         |
| EMETR    | ESCELNR |        |         |
|          |         |        |         |

### Energy Information Administration NEMS Integrating Model Documentation Report

| REAL<br>REAL | Units      | Indices             | (MNUMYR)<br>(MNUMYR) |
|--------------|------------|---------------------|----------------------|
|              | MMT C/QUAD | (MNUMY              |                      |
| REAL         | MMT C/QUAD | R)                  |                      |
| REAL         | MMT C/QUAD | (MNUMY              |                      |
| REAL         | MMT C/QUAD | R)                  |                      |
| REAL         | MMT C/QUAD | (MNUMY              |                      |
|              | MMT C/QUAD | R)                  |                      |
| REAL         | MMT C/QUAD | (MNUMY              |                      |
| REAL         | MMT C/QUAD | R)                  |                      |
| REAL         | MMT C/QUAD | (MNUMY              |                      |
| REAL         | MMT C/QUAD | R)                  |                      |
| REAL         | MMT C/QUAD | (MNUMY              |                      |
| REAL         | MMT C/QUAD | R)                  |                      |
| REAL         | MMT C/QUAD | (MNUMY              |                      |
| REAL         |            | R)                  |                      |
| REAL         | MMT C/QUAD | (MNUMY              |                      |
| REAL         | MMT C/QUAD | R)                  |                      |
| REAL         | MMT C/QUAD | (MNUMY              |                      |
| REAL         | MMT C/QUAD | R)                  |                      |
|              |            | (MNUMY              |                      |
| REAL*4       | MMT C/QUAD | R)                  |                      |
| REAL*4       | MMT C/QUAD | (MNUMY              |                      |
| REAL*4       | MMT C/QUAD | R)                  |                      |
|              | MMT C/QUAD | (MNUMY              |                      |
|              | MMT C/QUAD | R)                  |                      |
|              | MMT C/QUAD | (MNUMY              |                      |
|              | MMT C/QUAD | R)                  |                      |
|              | MMT C/QUAD |                     |                      |
|              | MMT C/QUAD | (MNUMY              |                      |
|              | MMT C/QUAD | R)                  |                      |
|              | MMT C/QUAD |                     |                      |
|              | MMT C/QUAD | R)                  |                      |
|              |            |                     |                      |
|              |            | R)                  |                      |
|              |            |                     |                      |
|              | MMT C/QUAD | R)                  |                      |
|              |            | (MNUMY              |                      |
|              |            | R)                  |                      |
|              |            | (MNUMY              |                      |
|              |            | R)                  |                      |
|              |            | (MNUMY              |                      |
|              |            | R)                  |                      |
|              |            | (MNUMY              |                      |
|              |            | R)                  |                      |
|              |            | (MNUMY              |                      |
|              |            | R)                  |                      |
|              |            | (MNUMY              |                      |
|              |            | R)                  |                      |
|              |            | (MNUMY              |                      |
|              |            | R)                  |                      |
|              |            | (MNUMY              |                      |
|              |            | R)                  |                      |
|              |            | (MNUMY              |                      |
|              |            |                     |                      |
|              |            |                     |                      |
|              |            | rt)<br>(Minii Imav  |                      |
|              |            | (IVII VOIVI I<br>R) |                      |
|              |            | (MNUMY              |                      |
|              |            | R)                  |                      |
|              |            | /                   |                      |
|              |            | (MNUMY              |                      |
|              |            | R)                  |                      |

## **Quantity Common Block**

| Description                    | Variable | Туре | Units | Indices                               |
|--------------------------------|----------|------|-------|---------------------------------------|
| Purch Elec. Peak.Residential   | QEPRS    | REAL | TBTU  | (MNUMCR.MNUMYR)                       |
| Purch Elec, Peak, Comm         | QEPCM    | REAL | TBTU  | (MNUMCR.MNUMYR)                       |
| Purch Elec, Peak, Trans        | QEPTR    | REAL | TBTU  | (MNUMCR.MNUMYR)                       |
| Purch Elec, Peak, Industrial   | QEPIN    | REAL | TBTU  | (MNUMCR.MNUMYR)                       |
| Purch Elec, Peak, Refinery     | QEPRF    | REAL | TBTU  | (MNUMCR.MNUMYR)                       |
| Purch Elec, Peak, All Sectors  | QEPAS    | REAL | TBTU  | (MNUMCR.MNUMYR)                       |
| Purch Elec, Nonpeak, Resid     | QENRS    | REAL | TBTU  | (MNUMCR.MNUMYR)                       |
| Purch Elec, Nonpeak, Comm      | QENCM    | REAL | TBTU  | (MNUMCR.MNUMYR)                       |
| Purch Elec, Nonpeak, Trans     | QENTR    | REAL | TBTU  | (MNUMCR.MNUMYR)                       |
| Purch Elec, Nonpeak, Ind       | QENIN    | REAL | TBTU  | (MNUMCR.MNUMYR)                       |
| Purch Elec, Nonpeak, Refinery  | QENRF    | REAL | TBTU  | (MNUMCR.MNUMYR)                       |
| Purch Elec, Nonpeak, All Sect  | QENAS    | REAL | TBTU  | (MNUMCR.MNUMYR)                       |
| Purch Elec. Residential        | QELRS    | REAL | TBTU  | (MNUMCR.MNUMYR)                       |
| Purch Elec, Commercial         | QELCM    | REAL | TBTU  | (MNUMCR.MNUMYR)                       |
| Purch Elec. Transportation     | QELTR    | REAL | TBTU  | (MNUMCR.MNUMYR)                       |
| Purch Elec. Industrial         | QELIN    | REAL | TBTU  | (MNUMCR.MNUMYR)                       |
| Purch Elec. Refinerv           | QELRF    | REAL | TBTU  | (MNUMCR.MNUMYR)                       |
| Purch Elec. All Sectors        | QELAS    | REAL | TBTU  | (MNUMCR MNUMYR)                       |
| Natural Gas Core, Residential  | QGERS    | REAL | TBTU  | (MNUMCR MNUMYR)                       |
| Natural Gas Core, Commercial   | QGECM    | REAL | TBTU  | (MNUMCR MNUMYR)                       |
| Natural Gas Core, Trans        | QGETR    | REAL | TBTU  | (MNUMCR MNUMYR)                       |
| Natural Gas Core Industrial    | OGEIN    | REAL | TBTU  | (MNUMCR MNUMYR)                       |
| Natural Gas Core, Refinery     | OGERE    | REAL | TBTU  | (MNUMCR MNUMYR)                       |
| Natural Gas Core, Electr       | OGEEL    | REAL | TBTU  | (MNUMCR MNUMYR)                       |
| Natural Gas Core, All Sect     | QGEAS    | REAL | TBTU  | (MNUMCR, MNUMYR)                      |
| Natural Gas Noncore, Resid     | QGIRS    | REAL | TBTU  | (MNUMCR, MNUMYR)                      |
| Natural Gas Noncore, Comm      | QGICM    | REAL | TBTU  | (MNUMCR MNUMYR)                       |
| Natural Gas Noncore, Trans     | QGITR    | REAL | TBTU  | (MNUMCR MNUMYR)                       |
| Natural Gas Noncore, Indust    | QGIIN    | REAL | TBTU  | (MNUMCR MNUMYR)                       |
| Natural Gas Noncore, Refinery  | QGIRF    | REAL | TBTU  | (MNUMCR MNUMYR)                       |
| Natural Gas Noncore Electr     | QGIEL    | REAL | TBTU  | (MNUMCR MNUMYR)                       |
| Natural Gas Noncore, All Sect  | QGIAS    | REAL | TBTU  | (MNUMCR MNUMYR)                       |
| Natural Gas Residential        | ONGRS    | REAL | TBTU  | (MNUMCR MNUMYR)                       |
| Natural Gas Commercial         | QNGCM    | REAL | TBTU  | (MNUMCR MNUMYR)                       |
| Natural Gas Transportation     | ONGTR    | RFAI | TBTU  | (MNUMCR MNUMYR)                       |
| Natural Gas Industrial         | QNGIN    | REAL | TBTU  | (MNUMCR MNUMYR)                       |
| Natural Gas Refinery           | ONGRE    | REAL | TBTU  | (MNUMCR MNUMYR)                       |
| Natural Gas Electricity        | QNGEL    | REAL | TBTU  | (MNUMCR.MNUMYR)                       |
| Natural Gas All Sectors        | QNGAS    | REAL | TBTU  | (MNUMCR.MNUMYR)                       |
| Natural Gas Pipeline           | QGPTR    | RFAI | TBTU  | (MNUMCR MNUMYR)                       |
| Lease and Plant Fuel           | QLPIN    | REAL | TBTU  | (MNUMCR MNUMYR)                       |
| Coal Residential               | QCLRS    | REAL | TBTU  | (MNUMCR MNUMYR)                       |
| Coal. Commercial               | QCLCM    | REAL | TBTU  | (MNUMCR.MNUMYR)                       |
| Coal Industrial                | QCLIN    | REAL | TBTU  | (MNUMCR.MNUMYR)                       |
| Coal. Refinery                 | QCLRF    | REAL | TBTU  | (MNUMCR MNUMYR)                       |
| Coal. Electricity              | QCLEI    | REAL | TBTU  | (MNUMCR MNUMYR)                       |
| Coal. Synthetics               | QCLSN    | REAL | TBTU  | (MNUMCR MNUMYR)                       |
| Coal. All Sectors              | QCLAS    | RFAI | TBTU  | (MNUMCR MNUMYR)                       |
| Metallurgical Coal Industrial  | OMCIN    | REAL | TBTU  | (MNUMCR MNUMYR)                       |
| Motor Gasoline, Commercial     | QMGCM    | RFAI | твти  | (MNUMCR MNUMYR)                       |
| Motor Gasoline. Transportation | QMGTR    | RFAI | твти  | (MNUMCR MNUMYR)                       |
| Motor Gasoline. Industrial     | QMGIN    | REAL | TBTU  | (MNUMCR.MNUMYR)                       |
| Motor Gasoline. All Sectors    | QMGAS    | REAL | TBTU  | (MNUMCR.MNUMYR)                       |
|                                |          |      | -     | · · · · · · · · · · · · · · · · · · · |

| Description                       | Variable | Туре | Units | Indices          |
|-----------------------------------|----------|------|-------|------------------|
| let Evel Treven entetien          |          | DEAL | TOTU  |                  |
| Jet Fuel Transportation           | QJFTR    | REAL |       |                  |
| Distillate Residential            | QDSRS    | REAL |       |                  |
| Distillate Commercial             | QDSCM    | REAL | IBIU  |                  |
| Distillate Transportation         | QDSTR    | REAL | IBIU  | (MNUMCR,MNUMYR)  |
| Distillate Industrial             | QDSIN    | REAL | IBIU  | (MNUMCR,MNUMYR)  |
| Distillate Refinery               | QDSRF    | REAL | IBIU  |                  |
| Distillate Electr(+petro coke)    | QDSEL    | REAL | IBIU  | (MNUMCR,MNUMYR)  |
| Distillate All Sectors            | QDSAS    | REAL | IBIU  | (MNUMCR,MNUMYR)  |
| Kerosene. Residential             | QKSRS    | REAL | TBTU  | (MNUMCR,MNUMYR)  |
| Kerosene. Commercial              | QKSCM    | REAL | TBTU  | (MNUMCR,MNUMYR)  |
| Kerosene. Industrial              | QKSIN    | REAL | IBIU  | (MNUMCR,MNUMYR)  |
| Kerosene. All Sectors             | QKSAS    | REAL | TBTU  | (MNUMCR,MNUMYR)  |
| Liquid Petroleum Gases Resid      | QLGRS    | REAL | TBTU  | (MNUMCR,MNUMYR)  |
| Liquid Petroleum Gases Comm       | QLGCM    | REAL | TBTU  | (MNUMCR,MNUMYR)  |
| Liquid Petroleum Gases Trans      | QLGTR    | REAL | TBTU  | (MNUMCR,MNUMYR)  |
| Liquid Petroleum Gases Ind        | QLGIN    | REAL | TBTU  | (MNUMCR,MNUMYR)  |
| Liquid Petroleum Gases Refine     | QLGRF    | REAL | TBTU  | (MNUMCR,MNUMYR)  |
| Liquid Petroleum Gases All Sec    | QLGAS    | REAL | TBTU  | (MNUMCR,MNUMYR)  |
| Residual Fuel Low Sulfur Comm     | QRLCM    | REAL | TBTU  | (MNUMCR,MNUMYR)  |
| Residual Fuel Low Sulfur Trans    | QRLTR    | REAL | TBTU  | (MNUMCR,MNUMYR)  |
| Residual Fuel Low Sulfur Ind      | QRLIN    | REAL | TBTU  | (MNUMCR, MNUMYR) |
| Residual Fuel Low Sulfur Refine   | QRLRF    | REAL | TBTU  | (MNUMCR,MNUMYR)  |
| Residual Fuel Low Sulfur Electr   | QRLEL    | REAL | TBTU  | (MNUMCR,MNUMYR)  |
| Resid Fuel Low Sulfur All Sec     | QRLAS    | REAL | TBTU  | (MNUMCR, MNUMYR) |
| Resid Fuel High Sulfur Trans      | QRHTR    | REAL | TBTU  | (MNUMCR, MNUMYR) |
| Resid Fuel High Sulfur Electr     | QRHEL    | REAL | TBTU  | (MNUMCR,MNUMYR)  |
| Resid Fuel High Sulfur All Sec    | QRHAS    | REAL | TBTU  | (MNUMCR,MNUMYR)  |
| Residual Fuel. Commercial         | QRSCM    | REAL | TBTU  | (MNUMCR,MNUMYR)  |
| Residual Fuel. Transportation     | QRSTR    | REAL | TBTU  | (MNUMCR, MNUMYR) |
| Residual Fuel. Industrial         | QRSIN    | REAL | TBTU  | (MNUMCR, MNUMYR) |
| Residual Fuel. Refinery           | QRSRF    | REAL | TBTU  | (MNUMCR,MNUMYR)  |
| Residual Fuel. Electricity        | QRSEL    | REAL | TBTU  | (MNUMCR, MNUMYR) |
| Residual Fuel. All Sectors        | QRSAS    | REAL | TBTU  | (MNUMCR, MNUMYR) |
| Petrochemical Feedstocks. Ind     | QPFIN    | REAL | TBTU  | (MNUMCR,MNUMYR)  |
| Still Gas. Industrial             | QSGIN    | REAL | TBTU  | (MNUMCR, MNUMYR) |
| Still Gas. Refinery               | QSGRF    | REAL | TBTU  | (MNUMCR,MNUMYR)  |
| Petroleum Coke. Industrial        | QPCIN    | REAL | TBTU  | (MNUMCR,MNUMYR)  |
| Petroleum Coke. Refinery          | QPCRF    | REAL | TBTU  | (MNUMCR, MNUMYR) |
| Petroleum Coke. Electricity       | QPCEL    | REAL | TBTU  | (MNUMCR, MNUMYR) |
| Petroleum Coke. All Sectors       | QPCAS    | REAL | TBTU  | (MNUMCR, MNUMYR) |
| Asphalt and Road Oil Ind          | QASIN    | REAL | TBTU  | (MNUMCR, MNUMYR) |
| Other Petr Trans-lubes, aviat gas | QOTTR    | REAL | TBTU  | (MNUMCR, MNUMYR) |
| Other Petroleum. Industrial       | QOTIN    | REAL | TBTU  | (MNUMCR, MNUMYR) |
| Other Petroleum. Refinery         | QOTRF    | REAL | TBTU  | (MNUMCR, MNUMYR) |
| Other Petroleum. All Sectors      | QOTAS    | REAL | TBTU  | (MNUMCR, MNUMYR) |
| Total Petroleum. Residential      | QTPRS    | REAL | TBTU  | (MNUMCR, MNUMYR) |
| Total Petroleum. Commercial       | QTPCM    | REAL | TBTU  | (MNUMCR, MNUMYR) |
| Total Petroleum. Trans            | QTPTR    | REAL | TBTU  | (MNUMCR, MNUMYR) |
| Total Petroleum. Industrial       | QTPIN    | REAL | TBTU  | (MNUMCR, MNUMYR) |
| Total Petroleum. Refinery         | QTPRF    | REAL | TBTU  | (MNUMCR, MNUMYR) |
| Total Petroleum. Electricity      | QTPEL    | REAL | TBTU  | (MNUMCR, MNUMYR) |
| Total Petroleum. All Sectors      | QTPAS    | REAL | TBTU  | (MNUMCR,MNUMYR)  |

#### Description

Methanol. Transporation Ethanol. Transporation Liquid Hydrogen. Trans Uranium. Electricity Hydropower. Industrial Hydropower. Electricity Hydropower. All Sectors Geothermal. Industrial Geothermal. Electricity Geothermal. All Sectors Biomass. Residential Biomass. Commercial Biomass. Industrial Biomass. Refinery Biomass. Electricity Biomass. Synthetics Biomass. All Sectors Municipal Solid Waste Ind Municipal Solid Waste Electr Municipal Solid Waste All Sec Solar Thermal. Residential Solar Thermal. Commercial Solar Thermal. Industrial Solar Thermal. Electricity Solar Thermal. All Sectors Photovoltaic. Residential Photovoltaic. Commercial Photovoltaic. Industrial Photovoltaic. Electricity Photovoltaic. All Sectors Wind. Industrial Wind. Electricity Wind. All Sectors Total Renewables. Residential Total Renewables. Commercial Total Renewables. Trans Total Renewables. Industrial Total Renewables. Electricity Total Renewables. Synthetics Total Renewables. All Sectors Net Electricity Imports Electr Net Coal Coke Imports Ind Total Energy Consump. Resid Total Energy Consump. Comm Total Energy Consump. Trans Total Energy Consump. Ind Total Energy Consump. Refine Total Energy Consump. Electr Total Energy Consump. Synthet Total Energy Consump. All Sec Breakout of natural gas feedstock

Breakout of LPG feedstock

QSTIN

QSTEL

QSTAS

QPVRS

QPVCM

QPVIN

Variable

QMETR QETTR QHYTR QUREL QHOIN QHOEL QHOAS QGEIN QGEEL QGEAS QBMRS QBMAS QBMCM QMSIN QBMIN QMSEL QBMRF QMSAS QBMEL QSTRS QBMSN QSTCM

Energy Information Administration NEMS Integrating Model Documentation Report

| QPVEL<br>QPVAS<br>QWIIN<br>QWIEL<br>QWIAS<br>QTRRS<br>QTRCM<br>QTRTR<br>QTRIN<br>QTREL<br>QTRSN<br>QTRAS<br>QEIEL<br>QCIIN<br>QTDO |
|------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                    |
|                                                                                                                                    |
| OTRSN                                                                                                                              |
| QTRAS                                                                                                                              |
| QEIEL                                                                                                                              |
| QCIIN                                                                                                                              |
| QTSRS                                                                                                                              |
| QTSCM                                                                                                                              |
| QTSTR                                                                                                                              |
| QTSIN                                                                                                                              |
| QTSRF                                                                                                                              |
| QTSEL                                                                                                                              |
| QISSN                                                                                                                              |
| QISAS                                                                                                                              |
|                                                                                                                                    |

INQNGPF INQLGPF

| Туре | Units | Indices        | (MNUMCR, MNUMYR)                      |
|------|-------|----------------|---------------------------------------|
|      |       |                | (MNUMCR,MNUMYR)                       |
| REAL | IBIU  |                | (MNUMCR,MNUMYR)                       |
| REAL | IBIU  | R)             | (MNUMCR,MNUMYR)                       |
| REAL | IBIU  | (MNUMCR,MNUMY  | (MNUMCR,MNUMYR)                       |
| REAL | TBTU  | R)             | (MNUMCR,MNUMYR)                       |
| REAL | TBTU  | (MNUMCR,MNUMY  | (MNUMCR,MNUMYR)                       |
| REAL | TBTU  | R)             | (MNUMCR,MNUMYR)                       |
| REAL | TBTU  | (MNUMCR,MNUMY  | (MNUMCR,MNUMYR)                       |
| REAL | TBTU  | R)             | (MNUMCR,MNUMYR)                       |
| REAL | TBTU  | (MNUMCR,MNUMY  | (MNUMCR, MNUMYR)                      |
| REAL | TBTU  | R)             | (MNUMCR, MNUMYR)                      |
| REAL | TBTU  | (MNUMCR,MNUMY  | (MNUMCR, MNUMYR)                      |
| REAL | TBTU  | R)             | (MNUMCR, MNUMYR)                      |
| REAL | TBTU  | (MNUMCR,MNUMY  | (MNUMCR, MNUMYR)                      |
| REAL | TBTU  | R)             | (MNUMCR, MNUMYR)                      |
| REAL | TBTU  | (MNUMCR, MNUMY | (MNUMCR, MNUMYR)                      |
| REAL | TBTU  | R)             | (MNUMCR, MNUMYR)                      |
| REAL | TBTU  | (MNUMCR, MNUMY | (MNUMCR, MNUMYR)                      |
| REAL | TBTU  | R)             | · · · · · · · · · · · · · · · · · · · |
| REAL | TBTU  | (MNUMCR.MNUMY  | (MNUMCR.MNUMYR)                       |
| REAL | TBTU  | R)             | (MNUMCR.MNUMYR)                       |
| REAL | TBTU  | (MNUMCR.MNUMY  | (                                     |
| REAL | TBTU  | R)             |                                       |
| REAL | TBTU  | (MNUMCR MNUMY  |                                       |
| REAL | TRTU  | R)             |                                       |
| REAL | TRTU  | (MNUMCR MNUMY  |                                       |
| REAL | TRTU  | R)             |                                       |
| REAL | TRTU  |                |                                       |
| REAL | TBTU  | P)             |                                       |
|      | TBTU  |                |                                       |
|      |       |                |                                       |
|      |       |                |                                       |
|      |       |                |                                       |
|      |       |                |                                       |
|      |       |                |                                       |
|      |       |                |                                       |
| REAL |       |                |                                       |
| REAL |       |                |                                       |
| REAL | IBIU  | R)             |                                       |
| REAL | IBIU  |                |                                       |
| REAL | IBIU  | R)             |                                       |
| REAL | IBIU  |                |                                       |
| REAL | IBIU  | R)             |                                       |
| REAL | TBTU  | (MNUMCR,MNUMY  |                                       |
| REAL | TBTU  | R)             |                                       |
| REAL | TBTU  | (MNUMCR,MNUMY  |                                       |
| REAL | TBTU  | R)             |                                       |
|      |       | (MNUMCR,MNUMY  |                                       |
| REAL | TBTU  | R)             |                                       |
| REAL | TBUT  | (MNUMCR,MNUMY  |                                       |
|      |       | R)             |                                       |
|      |       | (MNUMCR,MNUMY  |                                       |
|      |       | R)             |                                       |
|      |       | (MNUMCR,MNUMY  |                                       |
|      |       | R)             |                                       |
|      |       | (MNUMCR,MNUMY  |                                       |
|      |       | R)             |                                       |
|      |       | (MNUMCR,MNUMY  |                                       |

R)