Use of sentinel animals for West Nile virus surveillance

Nicholas Komar, Sc.D. CDC-Arbovirus Diseases Branch Fort Collins, CO

WNV Surveillance Modalities

- Mosquitoes
- Dead birds (especially crows)
- Live wild bird sentinels
- Live captive sentinels (e.g. chickens)
- Veterinary surveillance
- Human surveillance

WNV Surveillance Totals, 2000-2001 Reported to CDC thru 3/07/02

	2000	2001
Dead birds	4305	7241
Mosquito pools	515	905
Horses	63	720
Other mammals	6	0
Humans	21	66
Sentinel chickens	13	218
Wild birds	9	3

Why do we need <u>sentinel</u> surveillance data?

- Early detection
- Quantification of transmission
 - Risk assessment
- Prediction of disease (early warning)
- Theory discussed in:
 - Komar N, 2001, Annals N.Y. Acad. Sci. 951:58-73 (available online)

Earliest detection per county (n=359), 2001

Dead birds 295 (82.29

Horse cases

Mosquito pools

Sentinel chickens

Human cases

Other

295 (82.2%) 39 (10.8%) **16 (4.5%) 6** (**1.7%**) 2(0.6%)3 (0.8%)

Avian mortality surveillance

- What is the purpose of this type of surveillance?
 - Early detection of virus activity
 - Flag regions where quantitative surveillance should be conducted (e.g. mosquito infection rates, avian seroconversion rates)
 - Indicator of ongoing transmission
 - Possibly useful in predicting human cases
 - See Eidson et al 2001 Emerg. Inf. Dis. 7(4):662-664

Avian mortality surveillance

• What species to target?

- Over 100 species have been affected since 1999
- 71% of positive carcasses were crows (2001)
 - Only 27% were crows in Florida
 - No positive crows in 22 of 63 Florida counties with positive birds
- Mortality rate in crows is >90%
- Ecology of WNV transmission may differ in new regions

Experimental WNV Mortality -1

<u>Species</u>	n	mortality rate	controls	
American Crow	13	92	0	
Blue Jay	6	83	0	
American Magpie	5	100	1	
House Finch	2	100	1	
Common Grackle	10	40	2	
Fish Crow	11	64	5	
House Sparrow	12	25	5	
Ring-billed Gull	2	50	1	

Experimental WNV Mortality -2

<u>Species</u>	n	mortality rate	controls	
European Starling	6	0	2	
Rock Dove	6	0	6	
Chicken	18	0	24	
Ring-necked Pheasant	3	0	0	
Canada Goose	3	0	0	
American Robin	3	0	3	
Red-winged Blackbird	3	0	0	
Mallard	2	0	1	
American Coot	1	0	0	
Northern Flicker	1	0	0	
Mourning Dove	3	0	3	
Killdeer	2	0	0	
Budgerigar	3	0	3	
Monk Parakeet	3	0	3	
Japanese Quail	3	0	3	
Northern Bobwhite Source: Unpublished data	3	0	3	

Avian mortality surveillance

- How many to test?
 - Depends on transmission rates
 - Local decision
 - New regions should test as many as possible until local transmission dynamics are understood (more data is better than less data)
 - Determine lab capacity for testing
 - Meet capacity early in season
 - Triage specimens if necessary

Avian mortality surveillance

- Logistics
 - Who collects reports, and how?
 - Who picks up carcasses, where are they submitted?
 - Carcasses should be kept cold, ideally frozen
 - Triage of carcasses
 - Importance of species identification
 - Fresher the better (24 hr rule)
 - Pathologist's examination not required

Which organs to test?

• Refs:

- Steele K., 2000, Vet. Path. 37: 208-224.
- Panella N., 2001, Emerg. Inf. Dis. 7(4): 754-5.
- Kramer L. & Bernard K., 2001, Ann. N. Y. Acad. Sci. 951:84-93.
- 20 crow carcasses collected in New Jersey, 1999
- 6 organs tested by Vero Plaque Assay and TaqMan RT-PCR: 10 WNV-positive carcasses

Test	Brain	Heart	Kidney	Spleen	Lung	Liver
Virus Isolation	80%	70%	70%	60%	50%	40%
RNA detection	100%	70%	70%	60%	70%	70%

Source: Panella N., 2001, Emerg. Inf. Dis. 7(4): 754-5.

Streamlined testing

- Corvids shed large quantities of virus
- Comparison of brain vs swabs in corvid carcasses:

Species (n)	Brain	Oral	Cloacal
American Crow (12)	7.1 ¹	6.6	6.9
Fish Crow (4)	5.8	6.1	6.6
Blue Jay (2)	6.3	5.7	6.7

1. Mean PFU equivalents by TaqMan RT-PCR

Captive Sentinels

- What is the purpose of this type of surveillance?
 - Indicator of ongoing transmission
 - Useful in detecting increased transmission (risk)
 - Transmission monitoring, rather than early detection
 - Most useful in known transmission foci
 - Multiple years of data required to determine decision-making thresholds

Limitations to Sentinel Flocks

Kelerence. Komar N. Ann. NYAS 951:58-73; 2001

Captive Sentinels: Interpretation of Test Results

- How many seroconversions needed to indicate increased level of risk?
 - Local decision; years of data needed
- Natural lag between transmission and positive test result
- Possible cross-reaction in screening tests
- Requires confirmatory testing

How is transmission measured?

- Seroconversion rates are skewed when infected birds are not replaced, because denominator of susceptible birds changes.
- Best measure of transmission uses "Hostexposure-days" as denominator (needed for accurate quantification of transmission).

What is the best captive sentinel species?

- Chickens have been used extensively in SLE/WN monitoring programs in Florida in 2001, with >200 seroconversions detected
- Other bird species?
- Domestic mammals?
 - Horses?
 - Dogs?

Candidate sentinel birds that are incompetent for WNV:

Chicken Ring-necked Pheasant Bobwhite Japanese Quail Rock Dove (Pigeon)

Comparison of surveillance methods in NYC, 2001

Collaboration among:

- CDC
- NYCDOH
- NYSDOH
- Green Street Scientific LLC
- NIH and HSPH
- Study conducted at 9 sites with history of WNV transmission in 1999-2000

Comparison of surveillance methods in NYC, 2001

- Sentinel chickens and pigeons were useful for monitoring transmission in enzootic study sites
- Mosquitoes provided the best early detection
- Avian mortality surveillance was slow in detecting WNV: effect of enzootic transmission?

Summary

- Avian mortality surveillance for early detection, especially in new regions
 - Useful for tracking geographic spread
 - Watch out for results of swab field tests
- Captive sentinels useful for monitoring WNV activity in transmission foci
- Free-ranging sentinel surveillance impractical (although wildlife serosurveys are important!!)

