Aseptic Meningitis Epidemic in an Area of Intense West Nile Virus Epizootic Activity Baltimore, Summer 2001

K. Julian, J. Mullins, A. Olin, H. Peters, S. Oberste, J. Lovchik, A. Bergmann, R. Brechner, R. Myers, A. Marfin, and G. Campbell

PRELIMINARY

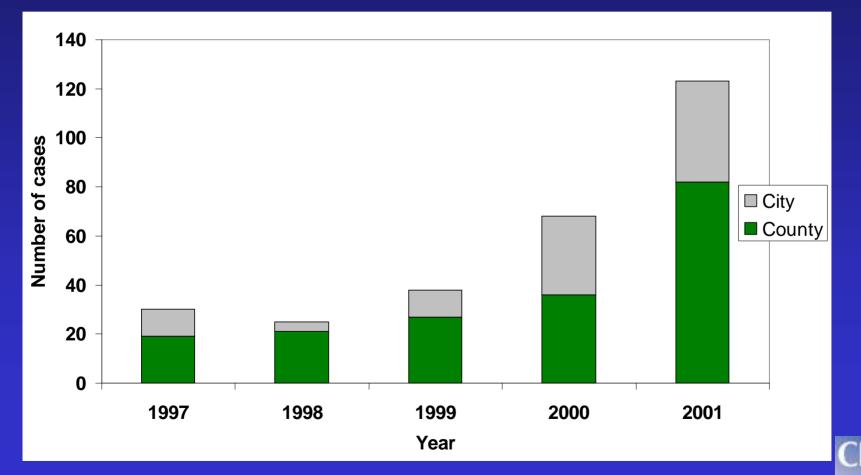
Background: Aseptic meningitis syndrome

- Acute onset fever, headache, neck pain/stiffness, vomiting, meningeal signs
- No confusion/stupor
- CSF:
 - $-\uparrow WBC$
 - $-\uparrow$ protein
 - normal glucose
- Negative bacterial culture of CSF

Background: Aseptic meningitis in U.S.

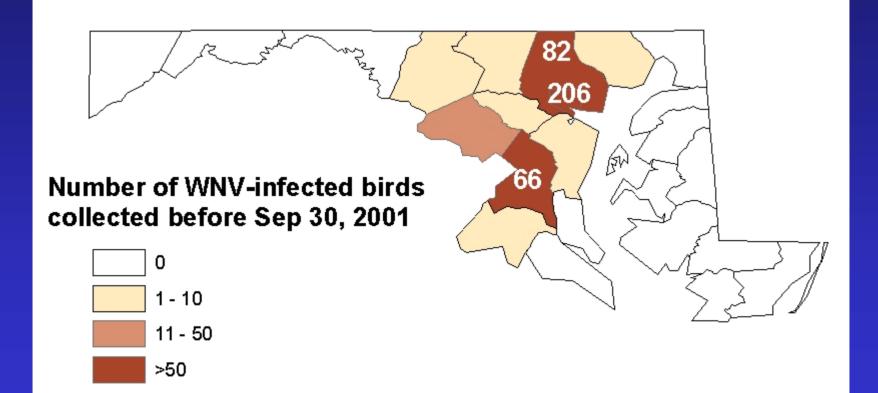
• Viruses

- Enteroviruses
- Arboviruses (SLE, LAC, WNV)
- Herpesviruses (HSV 2, HSV 1, EBV, HHV 6, VZV)
- HIV
- Lymphocytic choriomeningitis? Mumps?
- Numerous other causes
 - e.g., Lyme disease, leptospirosis, 2º syphilis, partiallytreated bacterial meningitis, parameningeal disease, TB, cryptococcus, autoimmune disease, medications



Background: WNV meningitis in U.S.

- Relative contribution of WNV to all aseptic meningitis?
- U.S. 1999-2000:
 21 persons hospitalized with WNV meningitis
 52 persons hospitalized with WNV encephalitis
- Selection bias in U.S. surveillance: WNV testing prioritized for encephalitis > meningitis



Background: Aseptic meningitis cases reported from Baltimore, Jun 1-Sep 30

Data source: Maryland Dept of Health & Mental Hygiene (DHMH)

Background: WNV avian epizootic Maryland, 2001

Data source: ArboNET—WNV surveillance system

Objectives

- 1. Describe apparent aseptic meningitis epidemic
- 2. Estimate relative contribution of WNV and enteroviruses
- 3. Assess WNV surveillance among patients reported with aseptic meningitis

Methods: Case ascertainment

- 6 Baltimore hospitals
- Cases identified by
 - reports to DHMH
 - lab results with ↑WBC in CSF
 - discharge diagnoses codes
- Medical chart review

Methods: Case definition

- Baltimore City or County resident
- Onset Jun 1-Sep 30, 2001
- >5 WBC in CSF
- Negative bacterial cultures of CSF
- No evidence of fungal or parasitic CNS disease, cerebral hemorrhage, carcinomatous meningitis, cerebral vasculitis, or encephalitis

Methods:

Specimen collection and interviews

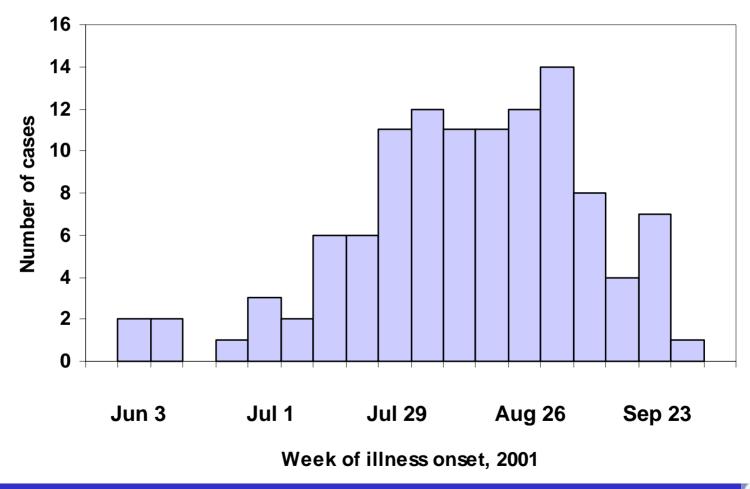
- Acute-phase
 - CSF
 - Serum
 - Rectal or nasopharyngeal swabs
- Convalescent-phase (age >12 years, unknown etiology)
 - Serum
 - Standardized interview: symptoms, duration

Methods: DHMH and CDC testing

• CSF

- WNV IgM ELISA
- Enteroviral culture, typing by PCR
- Serum (acute- & convalescent-phase)

 WNV IgM ELISA
 IFA for SLE, CE, EEE, WEE
- Nasopharyngeal and rectal swabs
 Enteroviral culture, typing by PCR



Results: 113 aseptic meningitis cases

Age	18 years (1 wk – 74 y)
Gender	56% male
Residence	Widely distributed
Severity Hospitalization	2 (0 – 11) days
Fatalities	None known

Results: Week of illness onset

CDC

Results: Clinical characteristics (n = 33)

- Symptoms recalled
 - 100% headache
 - 85% fever
 - 85% eye pain or sensitivity to light

Symptoms duration
18 (5 – 47) days

Work/School Missed 9 (0 - 30) days

Results: CSF characteristics

	n	median	range	
Protein	111	53 mg/dL	10 - 215 mg/dL	Elevated in 52%
Glucose	110	-	-	Normal in 99%
WBC	113	135 per mL	7 - 1083 per mL	Mononuclear predominance in 59%

Results: Diagnoses

• 44 enteroviral meningitis

	<u># cases</u>
Echo 13	14
Echo 18	10
Coxsackievirus B2	5
Echo 6	1
Echo 30	1
Enterovirus 70/71	1
Not typed	12

- 2 HSV meningitis
- 1 Lyme meningitis
- 66 undetermined etiology

Results: Enterovirus meningitis, by age

Age group (in years)	N cases	<pre># tested for enterovirus</pre>	% test-positive enterovirus
<1	12	10	80%
1-10	24	16	94%
11-20	29	23	52%
21-30	11	4	75%
31-40	26	13	38%
41-50	5	3	33%
>50	6	2	0%

Results: 66 cases undetermined etiology

Characteristics

- Age: median 26 years (2 wk 67 y)
- 5 HIV+
- 4 prior history of meningitis

Documented negative tests for these 66 cases:

- 45 patients with ≥1 WNV IgM test (including 23 convalescents)
- 27 with \geq 1 enterovirus test
- 17 with \geq 1 *B. burgdorferi* Ab test
- 11 with ≥1 HSV test

Pre-investigation surveillance testing

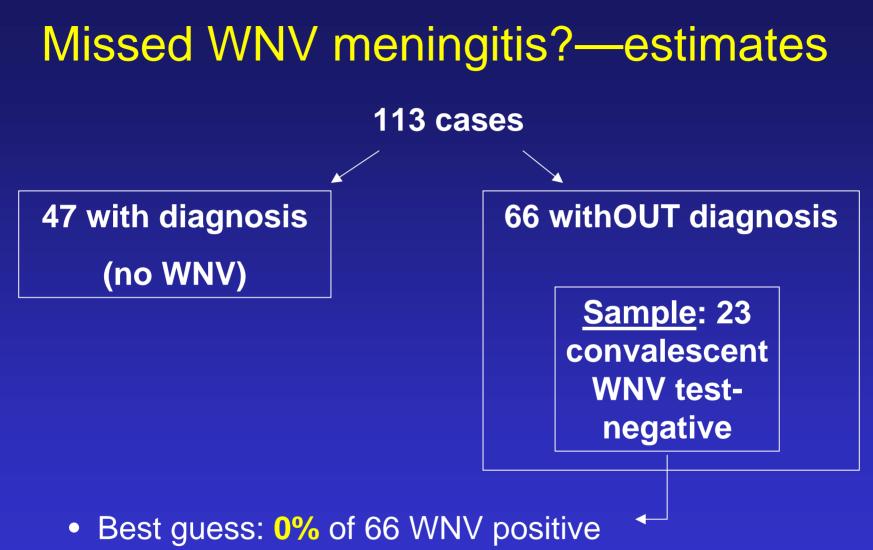
- Reported cases—etiology reported in ~5%
- WNV testing 1st priority at state
 - Patients >17 years-old hospitalized with meningitis
 - 37% cases \geq 1 WNV IgM test
 - IgM tests of acute CSF
 - Convalescent serum requested, but rarely received collection not feasible
- Enterovirus/other common agents testing not routinely incorporated

Results: Investigation testing yield

# case-patients with	Ν	N # positive (%)	
\geq 1 WNV IgM ELISA	69	0	(0%)
\geq 1 Enterovirus culture or PCR	71	44	(39%** - 62%)

** Lowest possible % if N were 113

Limitations


- Limited population
 - Subset of Baltimore hospitals
 - Subset of patients within these hospitals
- Specimens not available for all patients
- Testing not comprehensive

Was WNV meningitis missed?

- Not all patients tested
- False negatives possible:
 - Tested too early?
 - 79% patients presented by day 3
 - WNV IgM takes time to develop
 - Tested too late?
 - Convalescents collected on days 12-111
 - WNV IgM eventually declines

Upper limit of 95% confidence interval: 10%

Conclusions: Aseptic meningitis Baltimore, summer 2001

- Despite WNV avian epizootic, no apparent WNV meningitis epidemic
- Enteroviruses predominant identified cause of aseptic meningitis in children and adults
- Echovirus 13 most common

Conclusions: WNV surveillance among aseptic meningitis cases

- WNV testing often done before more common agents
- As first-line test in non-epidemic years, WNV IgM serology low yield

Testing common and/or treatable causes of aseptic meningitis

- Rapid (PCR) tests for enterovirus available
 - Provide specific diagnosis for most patients
 - Reduce logistically difficult WNV IgM testing
 - Reduce unnecessary anti-bacterial agent use
- Treatment (Pleconaril) for enteroviral disease may become available
- Treatable : Lyme disease, herpes simplex, varicellazoster, HHV-6, cytomegalovirus(?)

Considerations for (WNV) meningitis surveillance: Tiered testing

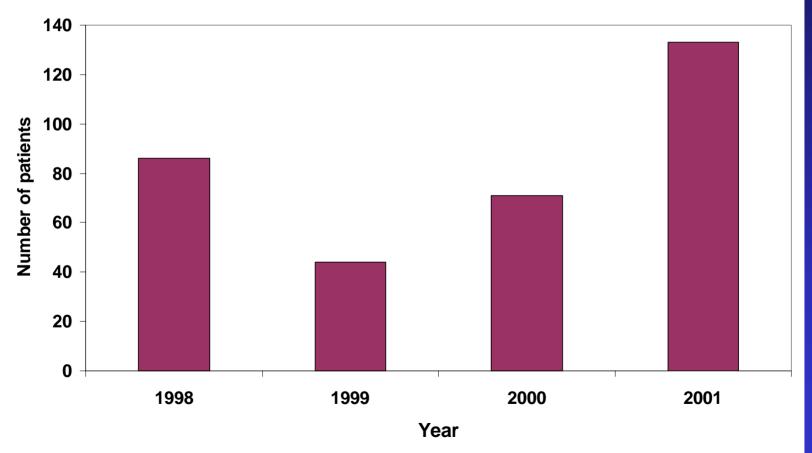
- First: Rapidly exclude common and/or treatable agents
 ENTEROVIRUSES
 - Herpesviruses
 - If immunocompromised patient, may expand panel

Considerations for (WNV) meningitis surveillance: Tiered Testing

- First: Rapidly exclude common and/or treatable agents
 ENTEROVIRUSES
 - Herpesviruses
 - If immunocompromised patient, may expand panel
- Second: Consider WNV IgM testing
 - WNV ELISA IgM screen of acute CSF & serum
 - If early (<8 days),
 - WNV ELISA IgM of >day 7 serum

Acknowledgements

Infection control practitioners: Kathy Arias, Ruth Bertuzzi, Colleen Clay, Jeanne Brown, Diane Lagasse, Polly Ristiano, Donna Feldman, Phyllis Tyler, Joanne Venturelli, Matt Wallace and laboratory, medical records & emergency dept staff at the investigation hospitals


Maryland DHMH epidemiology & laboratories

Baltimore City and County Health Dept

REVB-CDC epidemiology & laboratories

Aseptic meningitis cases identified at 6 Baltimore hospitals by ICD-9 codes admissions Jun 1-Sep 30

