

Theoretical and practical aspects of flaviviral antigenic structure in diagnostic assays-Lessons from the past and promise for the future

SAFER•HEALTHIER•PEOPLE[™]

Diagnostic Assays for ArbovirusesSerum, CSFMosquito pools, TissuesSerological
Assays for
AntibodiesVirus Detection
Assays

IgM ELISA IgG ELISA PRNT CF HI IFA Dipsticks Virus isolation (cell culture, mice) IFA TaqMan RT-PCR Ag-capture ELISA RT-PCR / sequencing Dipsticks NASBA

Diagnostic Assays for Arboviruses

Serum, CSF Serological Assays for Antibodies

> **IgM ELISA IgG ELISA PRNT** CF HI IFA Dipsticks

Mosquito pools, Tissues

Virus Detection Assays

Virus isolation (cell culture, mice) IFA TaqMan RT-PCR Ag-capture ELISA RT-PCR / sequencing Dipsticks NASBA

Approaches to Enhanced Testing

Increase specificity
Increase sensitivity
Reduce sample size
Increase speed of testing
Multiplexing

Species in the Genus Flavivirus (family *Flaviviridae*)

<u>Tick-borne viruses</u>

Mammalian tick-borne virus group (TBE, POW) Seabird tick-borne virus group

Mosquito-borne viruses

Aroa virus group Dengue virus group Japanese encephalitis virus group Kokobera virus group Ntaya virus group Spondweni virus group Yellow fever virus group

Viruses with no known arthropod vector

Entebbe bat virus group Modoc virus group Rio Bravo virus group

Tentative Species in Genus

Tanama bat virus Cell fusing agent

Members of the Japanese encephalitis virus serocomplex

Cacipacore virus Koutango virus Japanese encephalitis virus Murray Valley encephalitis virus Alfuy virus St. Louis encephalitis virus Usutu virus West Nile encephalitis virus Kunjin virus Yaounde virus

Types of Antibody Reactivities (e.g., WNV)

High

Specificity

- Subtype reacts with some but not all WNVs
- Type reacts with all WNVs
- Subcomplex reacts with 2 or more members of the JEV complex
- <u>Complex</u> reacts with all members of the JEV complex
- Subgroup reacts with 2 or more complexes
- **Group** reacts with all flaviviruses

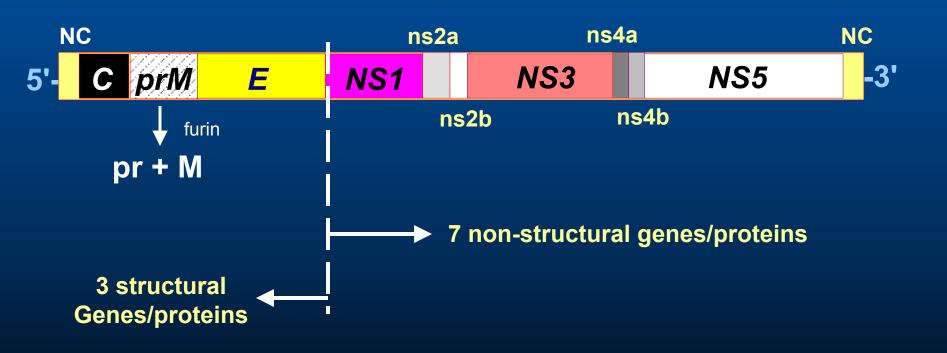
ELISA Cross-reactivities of IgM

Serum	SLE	JE	WN	DEN2	YF	POW
1	4.96	7.75	16.74	2.45	1.82	1.56
2	4.8	13.77	16.68	4.13	2.14	1.75
3	5.45	9.67	16.08	4.09	1.61	1.44
4	4.76	10.07	17.19	3.32	1.62	1.3
Positive Control	6.5	8.2	6.34	7.45	3.96	4.5

* 1:400 screening dilution of WNV patient serum

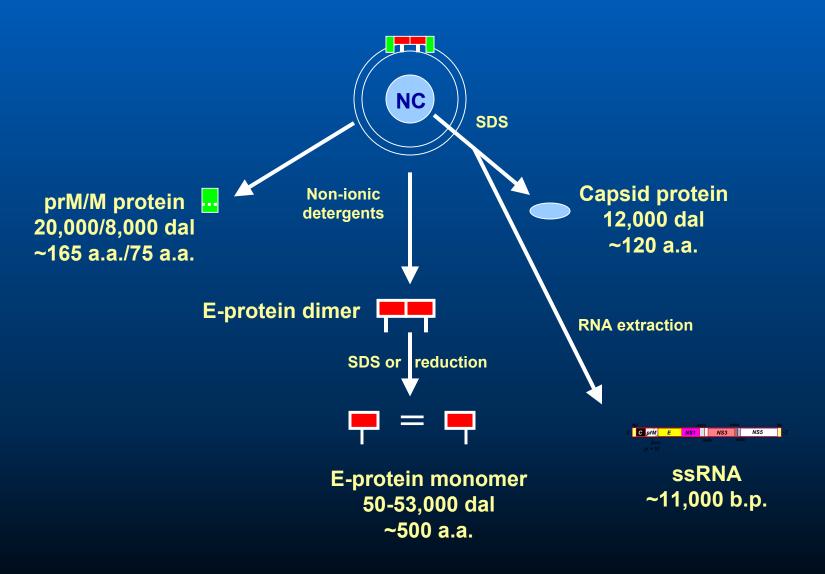
Complete Serological Analysis

		ELISA		PRNT			
Patient	Davs P.I.	IgM (WN)	IgG (SLE)	WN	SLE	DEN2	JE
CSF	8	26.91	1.78	nd	nd	nd	nd
S 1	9	9.1	4.16	160	20	<10	10
S2	34	6.7	4.62	1280	20	<10	20
Positive Control	n.a.	9	6.5	>5120	2560	2560	320

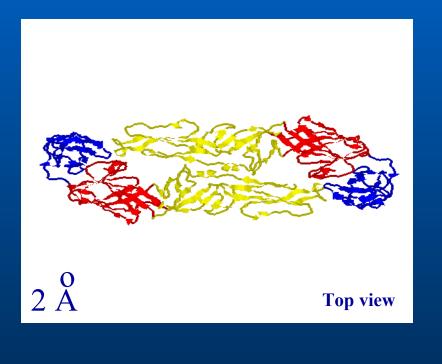

What is the Best Way to Reduce Virus Cross-reactivity?

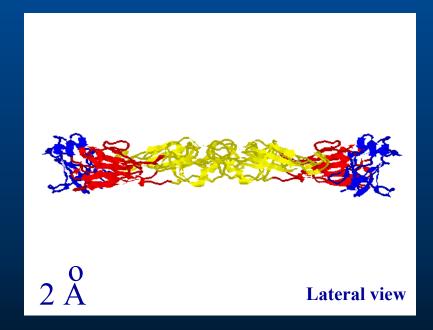
Make antigens more specific

Make antigens less cross-reactive



Flavivirus Genome




Virion Components

Homodimer of the Flavivirus E-protein

General Antigenic Properties of Flaviviral Proteins - 1

<u>E-glycoprotein</u>

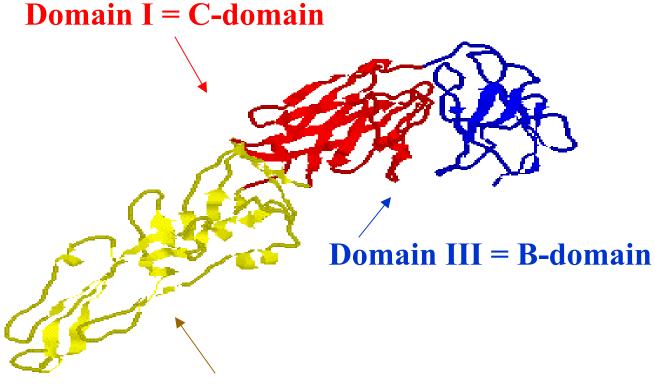
- Most important flaviviral antigen
- Very immunogenic
- Most serological assays detect reactivity with this protein
- ► <u>Capsid</u>
 - Elicits primarily group-reactive antibody

M-protein

- ✓ Very small (75 a.a.)
- Embedded in the virion envelope membrane and not highly immunogenic

General Antigenic Properties of Flaviviral Proteins - 2

▶ <u>NS1</u>


- ✓ Cell surface protein
- Secreted from cells and can be detected in serum samples during some flaviviral infections (*e.g.*, dengue)
- ✓ Very immunogenic
- Can be used to differentiate infection from vaccination
- ✓ Has some intrinsic viral specificity

▶ <u>NS3 and NS5</u>

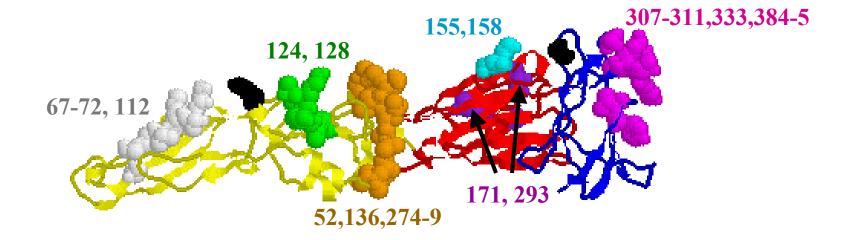
- Intracellular proteins, antigenic but not very immunogenic
- ✓ NS5 antibody is somewhat virus-specific
- ✓ NS3 antibody is cross-reactive

Domains of the E-protein Monomer

Domain II = A-domain

Serologic Cross-reactivities vs.Virus Neutralization Activity of Dengue E-protein Epitopes

Domain	Epitope	Specificity	PRNT
	A1	Group	+
	A2	Subcomplex	+
	A3	Туре	_
	A4	Туре	+
	A5	Subgroup	+
III	B1	Туре	+
	B2	Туре	+
	B3	Subcomplex	_
	B4	Subcomplex	_
I	C1	Subcomplex	-
	C2	Туре	_
	C3	Туре	_
	C4	Туре	_



Specificity and Abundance of Neutralizing Epitopes

Virus	Selecting Mab specificity	References
DEN	6 - Type 2 - Subcomplex	Lin 1994, Beasley 2001, Lok 2001
JE	5 – Type 1 - Subgroup	Hasegawa 1992, Cecelia 1991, Morita 2001
LI	3 - Subtype	Jiang 1993, Gao 1994
MVE	5 - Type	McMinn 1995
TBE	5 – Subtype 1 - Complex	Mandl 1989
YF	7 - Type	Lobigs 1987, Ryman 1997
Totals	<u>31 – Subtype or Type</u> 4 – Others	

Location of Neutralization Domains on the Flavivirus E-protein

Pitfalls of Modifying/Expressing the flavivirus E-protein

- Proper expression (conformation) of the E-protein requires coexpression of the prM protein when derived from acidic environments and requires glycosylation
- Domain I and Domain II epitopes are highly conformational; difficult to express on peptides or other small fragments
- Domain III has an essential S-S-bond for epitope expression
- Regions of sequence homology and uniqueness are interspersed throughout the protein.

Increase specificity?
Increase sensitivity?
Reduce sample size?
Increase speed of testing?
Multiplex?

SAFER • HEALTHIER • PEOPLE[™]