Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Site Tools

  • AAAS
  • Subscribe
  • Feedback

Site Search

Search Advanced

Account Information

UNIVERSITY OF NORTH TEXAS   Alerts | Access Rights | My Account | Sign In


Science 21 April 2006:
Vol. 312. no. 5772, pp. 394 - 397
DOI: 10.1126/science.1122818

Perspective

Host Species Barriers to Influenza Virus Infections

Thijs Kuiken,1* Edward C. Holmes,2 John McCauley,3 Guus F. Rimmelzwaan,1 Catherine S. Williams,2 Bryan T. Grenfell2,4

Most emerging infectious diseases in humans originate from animal reservoirs; to contain and eradicate these diseases we need to understand how and why some pathogens become capable of crossing host species barriers. Influenza virus illustrates the interaction of factors that limit the transmission and subsequent establishment of an infection in a novel host species. Influenza species barriers can be categorized into virus-host interactions occurring within individuals and host-host interactions, either within or between species, that affect transmission between individuals. Viral evolution can help surmount species barriers, principally by affecting virus-host interactions; however, evolving the capability for sustained transmission in a new host species represents a major adaptive challenge because the number of mutations required is often large.

1 Department of Virology, Erasmus Medical Center, 3015 GE Rotterdam, Netherlands.
2 Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
3 Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire RG20 7NN, UK.
4 Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA.

* To whom correspondence should be addressed. E-mail: t.kuiken{at}erasmusmc.nl

Read the Full Text



THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
The RNA Virus Database.
R. Belshaw, T. de Oliveira, S. Markowitz, and A. Rambaut (2009)
Nucleic Acids Res. 37, D431-D435
   Abstract »    Full Text »    PDF »
Homologous Recombination as an Evolutionary Force in the Avian Influenza A Virus.
C.-Q. He, Z.-X. Xie, G.-Z. Han, J.-B. Dong, D. Wang, J.-B. Liu, L.-Y. Ma, X.-F. Tang, X.-P. Liu, Y.-S. Pang, et al. (2009)
Mol. Biol. Evol. 26, 177-187
   Abstract »    Full Text »    PDF »
The origin and phylogeography of dog rabies virus.
H. Bourhy, J.-M. Reynes, E. J. Dunham, L. Dacheux, F. Larrous, V. T. Q. Huong, G. Xu, J. Yan, M. E. G. Miranda, and E. C. Holmes (2008)
J. Gen. Virol. 89, 2673-2681
   Abstract »    Full Text »    PDF »
A consensus-hemagglutinin-based DNA vaccine that protects mice against divergent H5N1 influenza viruses.
M.-W. Chen, T.-J. R. Cheng, Y. Huang, J.-T. Jan, S.-H. Ma, A. L. Yu, C.-H. Wong, and D. D. Ho (2008)
PNAS 105, 13538-13543
   Abstract »    Full Text »    PDF »
Cross-Species Virus Transmission and the Emergence of New Epidemic Diseases.
C. R. Parrish, E. C. Holmes, D. M. Morens, E.-C. Park, D. S. Burke, C. H. Calisher, C. A. Laughlin, L. J. Saif, and P. Daszak (2008)
Microbiol. Mol. Biol. Rev. 72, 457-470
   Abstract »    Full Text »    PDF »
Phylogenetic analysis reveals the emergence, evolution and dispersal of carnivore parvoviruses.
K. Hoelzer, L. A. Shackelton, C. R. Parrish, and E. C. Holmes (2008)
J. Gen. Virol. 89, 2280-2289
   Abstract »    Full Text »    PDF »
Cross-Recognition of Avian H5N1 Influenza Virus by Human Cytotoxic T-Lymphocyte Populations Directed to Human Influenza A Virus.
J. H. C. M. Kreijtz, G. de Mutsert, C. A. van Baalen, R. A. M. Fouchier, A. D. M. E. Osterhaus, and G. F. Rimmelzwaan (2008)
J. Virol. 82, 5161-5166
   Abstract »    Full Text »    PDF »
From the Cover: Quantitative biochemical rationale for differences in transmissibility of 1918 pandemic influenza A viruses.
A. Srinivasan, K. Viswanathan, R. Raman, A. Chandrasekaran, S. Raguram, T. M. Tumpey, V. Sasisekharan, and R. Sasisekharan (2008)
PNAS 105, 2800-2805
   Abstract »    Full Text »    PDF »
Interferon-Induced Expression of MxA in the Respiratory Tract of Rhesus Macaques Is Suppressed by Influenza Virus Replication.
T. D. Carroll, S. R. Matzinger, M. Genesca, L. Fritts, R. Colon, M. B. McChesney, and C. J. Miller (2008)
J. Immunol. 180, 2385-2395
   Abstract »    Full Text »    PDF »
Prevalence and diversity of avian influenza viruses in environmental reservoirs.
A. S. Lang, A. Kelly, and J. A. Runstadler (2008)
J. Gen. Virol. 89, 509-519
   Abstract »    Full Text »    PDF »
BioHealthBase: informatics support in the elucidation of influenza virus host pathogen interactions and virulence.
B. Squires, C. Macken, A. Garcia-Sastre, S. Godbole, J. Noronha, V. Hunt, R. Chang, C. N. Larsen, E. Klem, K. Biersack, et al. (2008)
Nucleic Acids Res. 36, D497-D503
   Abstract »    Full Text »    PDF »
The quail and chicken intestine have sialyl-galactose sugar chains responsible for the binding of influenza A viruses to human type receptors.
C.-T. Guo, N. Takahashi, H. Yagi, K. Kato, T. Takahashi, S.-Q. Yi, Y. Chen, T. Ito, K. Otsuki, H. Kida, et al. (2007)
Glycobiology 17, 713-724
   Abstract »    Full Text »    PDF »
Avian Influenza Virus (H5N1): a Threat to Human Health.
J. S. M. Peiris, M. D. de Jong, and Y. Guan (2007)
Clin. Microbiol. Rev. 20, 243-267
   Abstract »    Full Text »    PDF »
NS1 Proteins of Avian Influenza A Viruses Can Act as Antagonists of the Human Alpha/Beta Interferon Response.
A. Hayman, S. Comely, A. Lackenby, L. C. S. Hartgroves, S. Goodbourn, J. W. McCauley, and W. S. Barclay (2007)
J. Virol. 81, 2318-2327
   Abstract »    Full Text »    PDF »
Predictability and preparedness in influenza control..
D. J. Smith (2006)
Science 312, 392-394
   Abstract »    Full Text »    PDF »



To Advertise     Find Products


Science. ISSN 0036-8075 (print), 1095-9203 (online)