ENVIRONMENTAL MONITORING REPORT FOR THE NEVADA TEST SITE AND OTHER TEST AREAS USED FOR UNDERGROUND NUCLEAR DETONATIONS January-December 1972

by the

blisned may

F

National Envir<u>on</u>

U.S. ENVI

n STA;

L Research Center

LION AGENCY

OTECT

dul

NERC-LV-539-23

JUHD

ris work perform I. S. This work performed under a Memorandum of Understanding No. AT (26-1)-539 for the U. S. ATOMIC ENERGY COMMISSION

ENVIRONMENTAL MONITORING REPORT FOR THE NEVADA TEST SITE AND OTHER TEST AREAS USED FOR UNDERGROUND NUCLEAR DETONATIONS January-December 1972

by the

National Environmental Research Center U.S. ENVIRONMENTAL PROTECTION AGENCY Las Vegas, Nevada

Published May 1973

This work performed under a Memorandum of Understanding No. AT(26-1)-539 for the U. S. ATOMIC ENERGY COMMISSION

PREFACE

The Atomic Energy Commission (AEC) has used the Nevada Test Site (NTS) since January 1951 as an area for conducting nuclear detonations, nuclear rocket/ engine development, nuclear medicine studies, and miscellaneous nuclear and non-nuclear experiments. Except during the testing moratorium from October 30, 1958, to September 1, 1961, atmospheric nuclear tests were conducted periodically from 1951 through July 17, 1962. Since July 17, 1962, in accordance with the limited test ban treaty, all nuclear detonations have been conducted underground with the expectation of containment except for five nuclear earthcratering experiments conducted under the Plowshare program.

Under the U. S. Public Health Service (PHS) from 1959 through 1972, and since 1972, under the U. S. Environmental Protection Agency (EPA), facilities have been maintained in Las Vegas, Nevada, for the purpose of providing an Off-Site Radiological Surveillance Program for the AEC. Prior to that time, surveillance was performed by the Los Alamos Scientific Laboratory and by U. S. Army personnel. Although off-site surveillance has been provided by the Las Vegas facility for nuclear experiments at places other than the NTS, the primary effort has been centered around the NTS.

The objective of the Program from the beginning has been to measure levels and trends of radioactivity in the off-site environment surrounding testing areas to assure that the testing is in compliance with existing radiation protection standards. To assess off-site radiation levels, routine sampling networks for milk, water, and air are maintained along with a dosimetry network and special samplings of food crops and soil, etc.

In general, analytical results showing radioactivity levels above naturally occurring levels have been published in reports covering a test series or test project. Beginning in CY 1959 for reactor tests and in CY 1962 for weapons tests, surveillance data for each individual test which released radioactivity off-site were reported separately. Commencing in January 1964 and continuing through December 1970, these individual reports for nuclear

i

tests were summarized and reported every six months with the analytical results for all routine or special milk samples.

In CY 1971, the AEC implemented a requirement (AEC Manual, Chapter 0513) for a more comprehensive radiological monitoring report from each of the several contractors or agencies involved in major nuclear activities. The compilation of these various reports since that time and their entry into the general literature serve the purpose of providing a single source of information concerning on-going environmental impact data from AEC sponsored activities. To provide more rapid dissemination of data, the monthly reports of analytical results of all air data collected since July 1971 and all milk and water samples collected since January 1972 are submitted to the appropriate state health departments involved and published in <u>Radiation</u> Data and Reports.

Since 1962, aircraft have also been used during nuclear tests to provide rapid monitoring and sampling for releases of radioactivity. Early aircraft monitoring data were used to position mobile radiation monitors, and the results of cloud sampling were used to quantitate the inventories of the radionuclides released. Beginning with CY 1971, all monitoring and sampling results of aircraft were reported in an effluent monitoring data report in accordance with AEC Manual, Chapter 0513.⁽¹⁾

TABLE OF CONTENTS

	Page
PREFACE	i
LIST OF TABLES	iv
LIST OF FIGURES	V
INTRODUCTION	1
Nevada Test Site	1
Site Location	2
Ecology and Climate	2
Geology and Hydrology	3
Nevada Test Site Environs	5
Population Distribution	6
Other Test Sites	8
SUMMARY	9
MONITORING DATA COLLECTION, ANALYSIS, AND EVALUATION	11
Nevada Test Site	11
Air Surveillance Network	13
Noble Gas and Tritium Sampling Network	15
Dosimetry Network	17
Milk Surveillance Network	19
Water Surveillance Network	22
Plutonium in Soil	24
Other Test Sites	26
Natural Gas Burner Sampling, Gasbuggy Site	26
Long-Term Hydrologic Monitoring Program	26
REFERENCES	30

Table

Pε	ig	6

1.	Nuclear Furnace-1 Test Series	12
2.	Underground Testing Conducted Off-Site	32
3.	1972 Summary of Analytical Procedures	34
4.	1972 Summary of Analytical Results for the Air Surveillance Network	36
5.	1972 Summary of Analytical Results for the Noble Gas and Tritium Sampling Network	71
6.	1972 Summary of Background Radiation Doses for the Dosimetry Network	75
7.	Anomalous TLD Readings in 1972	79
8.	1972 Summary of Analytical Results for the Milk Surveillance Network	80
9.	1972 Summary of Analytical Results for the Water Surveillance Network	-86
10.	1972 Summary of Analytical Results for the Off-NTS Long-Term	117

LIST OF FIGURES

Figure		Page		
1.	Nevada Test Site Location	126		
2.	Nevada Test Site Road and Facility Map			
3.	Ground Water Flow Systems - NTS			
4.	Population Distribution by Azimuth/Distance			
5.	General Land Use, Nevada Test Site Vicinity			
6.	Air Surveillance Network			
7.	Radioactivity Trends in Air and Milk Samples Collected Near Martin Ranch, Nevada During 1972	132		
8.	Dosimetry Network	133		
9.	Milk Surveillance Network	134		
10.	Water Surveillance Network	135		
11.	Water Surveillance Network, Las Vegas Valley	136		
12.	Long-Term Hydrologic Monitoring Locations, Rulison, Colorado, Project Rulison	137		
13.	Long-Term Hydrologic Monitoring Locations, Tatum Dome, Mississippi, Project Gnome/Miracle Play	138		
14.	Long-Term Hydrologic Monitoring Locations, Tatum Dome, Mississippi, Project Gnome/Miracle Play	139		
15.	Long-Term Hydrologic Monitoring Locations, Central Nevada Test Area, Faultless Event	140		
16.	Long-Term Hydrologic Monitoring Locations, Fallon, Nevada, Project Shoal	141		
17.	Long-Term Hydrologic Monitoring Locations, Rio Arriba County, New Mexico, Project Gasbuggy	142		
18.	Long-Term Hydrologic Monitoring Locations, Carlsbad, New Mexico Project Gnome/Coach	143		

INTRODUCTION

Under a Memorandum of Understanding No. AT (26-1)-539 with the U. S. Atomic Energy Commission (AEC), the U. S. Environmental Protection Agency (EPA), National Environmental Research Center-Las Vegas (NERC-LV), continued a program of routine and special radiological surveillance of various media in the environment surrounding the Nevada Test Site (NTS) and other sites designated by the AEC during 1972. This report, prepared in accordance with the AEC Manual, Chapter 0513, contains summaries of NERC-LV sampling methodologies, analytical procedures, and the results of all environmental samples collected in support of AEC nuclear testing activities. Where applicable, sampling results are also compared to appropriate guides for external and internal exposures to ionizing radiation. In addition, a brief summary of pertinent ecological and demographical features of the NTS and the NTS environs is presented for background information.

Nevada Test Site

The major programs conducted at the NTS are nuclear weapons development, proof-testing and weapons safety, testing for peaceful uses of nuclear explosives (Project Plowshare), nuclear rocket development (Project Rover), basic high-energy nuclear physics research, and seismic studies (Vela-Uniform).

At the Nuclear Rocket Development Station (NRDS), located in the southwest corner at the NTS, a program of testing reactors of various designs and purposes has been conducted over the past 13 years. The major programs were oriented toward design feasibility and subsequent development of a nuclear rocket engine. The last tests of these engines were conducted in 1969. No reactors were tested in 1970 and 1971. During 1972, a small reactor called the Nuclear Furnace-1 was tested seven times during May, June, and July.

In addition, underground nuclear testing was conducted at the NTS during 1972. No radioactivity was detected at ground level beyond the boundaries of the NTS following any of these nuclear events or the Nuclear Furnace-1 test series.

Site Location

The Nevada Test Site (Figures 1 and 2) is located in Nye County, Nevada, with its southeast corner about 65 miles northwest of Nevada's largest city, Las Vegas. The NTS has an area of about 1,350 square miles and varies from 25-35 miles in width (east-west) and from 40-55 miles in length (north-south). This area consists of large basins or flats about 3,000-4,000 feet above Mean Sea Level (MSL) surrounded by mountain ranges 6,000-7,000 feet MSL.

The NTS is almost surrounded by an exclusion area collectively named the Nellis Air Force Range. The Range, particularly to the north and east, provides a buffer zone between the test areas and public lands. This buffer zone varies from 15 to 65 miles between the test area and land that is open to the public. Depending upon wind speed and direction, this provides a delay of 1/2 hour to more than six hours before any release of airborne radioactivity crossing the NTS boundary passes over public lands.

Ecology and Climate

The ecology of the site varies considerably. The southern portion is true desert of the Mojave type. The remainder of the NTS is mixed grasslands with Pinon-Juniper at the higher levels. This type of ecosystem is broadly referred to as Basin-Range Desert. The dry lakes found in the lower portion of the basins are highly mineralized silts which do not support any vegetation. The area supports a number of small mammals and reptiles with deer occasionally seen on the plateaus.*

The climate of the NTS is also variable, primarily due to altitude and the rugged terrain. Generally the climate is referred to as Continental

For an excellent bibliography of appropriate references, see Schultz, Vincent, "References on Nevada Test Site Ecological Research," Great Basin Naturalist, 26[3-4]: December 31, 1966.

Arid. Average annual precipitation ranges from about four inches at the 3,000 foot altitude to around 10 inches on the plateaus. During the winter months, the plateaus may be snow-covered for periods of several days or weeks, while snow is uncommon on the flats. Temperatures vary with elevation, slope, and local air currents. The average daily high (low) temperatures at low altitude is around 50° (25°) F in January and 95° (55°) F in July, with extremes of 110° and -15°. Corresponding temperatures on the plateaus are 35° (25°) F in January and 80° (65°) F in July with extremes of 100° and -20°. Temperatures as low as +30° and higher than 115° have been observed at the NTS.

The prevailing wind direction, as measured on a 100-foot tower at the Yucca observation station, is predominately northerly except for the months of May through August when winds from the south-southwest predominate. Because of the prevalent mountain-valley winds in the basins, south to southwest winds predominate during daylight hours during most months. During the winter months southerly winds have only a slight edge over northerly winds for a few hours during the warmest part of the day. These wind patterns may be quite different at other locations on the NTS because of local terrain effects and differences in eleva-tion. (2)

Geology and Hydrology

Geological and hydrological studies of the NTS have been in progress by the U. S. Geological Survey and various other institutions since 1956, when underground nuclear explosions were first contemplated. Because of this continuing effort, including subsurface studies of numerous boreholes, the surface and underground geological and hydrological characteristics for much of the NTS are known in considerable detail. This is particularly true for those areas in which underground experiments are conducted. A comprehensive summary of the geology and hydrology of the NTS was published in 1968 as Memoir 110 by the Geological Society of America, entitled, "Nevada Test Site."

The lithological features of the NTS may be simply described as being of three major rock units--(1) basement rock of Paleozoic age overlain by (2) volcanic tuffs of Tertiary age, which in the valleys are overlain by (3) alluvium as much as 3,000 feet thick. Underground nuclear tests, except for a very few special-purpose tests, are conducted in either volcanic tuff or alluvium. The basement rocks of Paleozoic age, many thousands of feet thick, are comprised largely of carbonate rocks in the lower and upper zones and clastic rocks in the middle zone. The Tertiary volcanic strata consist dominantly of ashflow tuffs of rhyolitic composition. The aggregate thickness of volcanic rocks is many thousands of feet, but at most places the volcanic section is less than the total aggregate thickness, because of erosion or nondeposition. The volcanic materials were erupted from large volcanic centers known as calderas. The Timber Mountain caldera, at the west-central part of the NTS, and the Silent Canyon caldera, buried beneath Pahute Mesa, are two of the better studied volcanic centers on the NTS. Alluvium covers all of the intermountain valleys and completely obscures the underlying volcanic and Paleozoic strata. It is composed of gravels and other detritus eroded from the adjacent hills and mesas.

Paleozoic rocks are displaced by several large faults of pre-Tertiary age. Tertiary and Recent basin and range faults cut all of the Tertiary and older rocks. Recent alluvium postdates most of the basin and range faults. Much of the geographical makeup of the entire area is due to faulting and subsequent upthrusting.

There are two hydrologic systems on the NTS (Figure 3). Groundwater in the Pahute Mesa system travels at a rate of from 7 to 250 feet per year to the south and southwest toward the Amargosa Desert. Groundwater in the Ash Meadows system moves beneath the NTS from north to south at a rate of from 7.3 to 730 feet/year. Carbon-14 analyses of water from formations underlying the NTS indicate that the lower velocity is nearer the true value. At Mercury Valley, in the extreme southern part of the

NTS, the groundwater flow direction shifts to the southwest toward the Ash Meadows discharge area in the southeastern Amargosa Valley. Best estimates indicate that it would take over 400 years for water from underground testing areas to reach the nearest discharge area.

Depths to water on the NTS vary from a few hundred feet beneath the valleys in the southeastern part of the site to more than 2,000 feet beneath the highlands to the north. ⁽³⁾ Although much of the valley fill is saturated, downward movement of water is extremely slow. The primary acquifer in these formations is the Paleozoic carbonates.

Nevada Test Site Environs

It is difficult to generalize on the ecology, land use and climate of the NTS environs with the exception of the very close-in areas. As an example, within a 200-mile radius west of the NTS, elevations range from below sea level in Death Valley, to 14,495 feet above MSL in the Sierra Nevada Range. Additionally, parts of two valleys of major agricultural importance (the Owens and San Joaquin) are included. The areas south of the NTS are more uniform since the Mojave Desert ecosystem comprises most of this portion of Nevada, California, and Arizona. The areas east of the NTS are primarily Basin Range Desert with some of the older river valleys, such as the Virgin River Valley, supporting small scale, but intensive farming and production of a surprising variety of crops. Grazing is also common in this area, particularly to the northeast. The area north of the NTS is also Basin Range Desert where the major agricultural-related activity is grazing of both cattle and sheep. Only areas of minor agricultural importance, primarily alfalfa hay, are found in this portion of the state within a distance of 200 miles.

The only major body of water close to the NTS is Lake Mead, a man-made lake supplied by water from the Colorado River. Lake Mead is the source of water for almost all domestic, recreational, and industrial purposes in the Las Vegas Valley. Smaller reservoirs and lakes are located in the area; however, they are of limited use, primarily for irrigation and for stock water. In California the Owens River and Haiwee Reservoir feed into the Los Angeles

Aqueduct and are the major sources of domestic water for the Los Angeles area.

Except for the higher elevations, the summers are hot with relatively mild winters. In the close-in areas, precipitation rarely exceeds 10 inches even at higher elevations and the relative humidity is low. Prevailing winds are from the south-southwest in the summer months, while north-northeast winds are often found during the winter months. Because of the terrain and elevation, any generalization of temperature and wind direction must be qualified in terms of specific locality.

Dairy farming is not extensive in the 200-mile radius area under discussion. There are, however, several Grade A dairies located in the Moapa River Valley in Nevada and in the areas around St. George and Cedar City, Utah. Two small dairies are located in the Alamo, Nevada area. Other dairies exist in the Owens Valley in California. It is also fairly common for remote ranches to keep one or two family milk cows. Within 100 miles of the site there are about 3,000 dairy cows. The majority of these cows are located at dairy farms southeast of the NTS, one in the Moapa Valley, several in the Virgin Valley, and one near Las Vegas.

Population Distribution

One of the prime considerations in choosing the present location of the Nevada Test Site (formerly the Nevada Proving Grounds) was its isolation from large population centers while having at least one city close enough to provide adequate services. The NTS is ideally located in this respect. With the exception of Las Vegas and vicinity, there are no major population centers within 200 miles of the site. There are only about 500,000 people living in this total area, about one-half of whom live in the Las Vegas greater metropolitan area. If the City of Las Vegas is not considered in determining population density, there are about two people per square-mile within the 200-mile radius of the NTS Control Point. For comparison, the United States (50 states) has a population density of 57.5 per square mile and the overall Nevada average is 4.4 per square mile.

The off-site areas nearest the NTS (about 50 miles) are predominately rural. Several small communities are located in the area, the largest being in the Pahrump Valley. This rural community with an estimated population of 1,100 is located about 45 miles south of the NTS. The Amargosa Farm area has a population of about 200 and is located about 30 miles southwest of the center of the NTS. The Spring Meadows Farm area is a relatively new development consisting of approximately 10,000 acres with a population of somewhat more than 100. This area is about 35 miles south-southwest of the NTS. The largest town in the near offsite area is Beatty with a population of more than 500 and is located about 40 miles to the west.

In the adjacent states, the Mojave Desert of California, which includes Death Valley National Monument, lies along the southwestern border of Nevada. The population in the Monument boundaries varies considerably from season to season with fewer than 200 permanent residents and tourists in the area during any given period in the summer months. However, during the winter, as many as 7,000 tourists and campers can be in the area, particularly during the major holiday periods. The largest town in this general area is Barstow, located 165 miles south-southwest of the NTS with a population of over 12,000. The Owens Valley, where numerous small towns are located, lies 25 to 35 miles west of Death Valley. The largest town in Owens Valley is Bishop, located 140 miles westnorthwest of the NTS, with a population of about 3,000.

The extreme southwestern region of Utah is somewhat more developed than the adjacent part of Nevada. The largest town, Cedar City, with a population of approximately 9,000 is located 175 miles east-northeast of the NTS. The next largest community is St. George, located 135 miles east of the NTS with a population of somewhat more than 7,000.

The extreme northwestern region of Arizona is mostly undeveloped range land with the exception of that portion in the Lake Mead Recreation Area.

Several small retirement communities are found along the Colorado River, primarily at Lake Mojave and Lake Havasu. The largest town in the area is Kingman, located 175 miles southeast of the NTS, with a population of about 6,000.

Figure 4 shows a generalized schematic of human population and milk cow distribution by 30° sectors from the NTS out to a distance of about 200 miles. $^{(4)}$ Figure 5 shows the locations and general land use of areas mentioned above.

Other Test Sites

Underground nuclear detonations have been conducted for various special purposes at sites other than the NTS. The NERC-LV has sampled various media, mostly water, at each of these locations during 1972.

Two of the sites are designated as supplemental test areas by the AEC. These are the Central Nevada Test Area located in the Hot Creek Valley about 60 miles east of Tonopah, Nevada, and Amchitka Island, Alaska, located 1,340 miles west-southwest of Anchorage, Alaska.

The other underground nuclear events were conducted in Colorado, Nevada, New Mexico, and Mississippi. Table 1 shows the name, date, location, yield, depth, and purpose of all underground tests conducted off the NTS.

SUMMARY

During 1972, the monitoring of gamma radiation levels and concentrations of radioactivity in the environs of the NTS was continued through the use of off-site networks of radiation dosimeters and gamma-rate recorders, air samplers, and selected locations at which monthly samples of water and milk were collected for radiological analyses. For each of the underground nuclear detonations and the seven experimental tests of the Nuclear Furnace-1, mobile radiation monitors equipped with radiation monitoring equipment and supplies were on standby in off-site locations to respond to any inadvertent release of radioactivity which might result in a radiological hazard to off-site populations and property.

The only radioactivity produced by nuclear tests at NTS and detected off-site was ¹³³Xe, which was observed in samples collected at stations of the Noble Gas and Tritium Sampling Network at Beatty, Diablo, and Hiko, Nevada. The levels of ¹³³Xe, which were attributed to gaseous seepage from underground tests, occurred only in a few samples. These levels, averaged over the total period sampled during the year, were less than 0.04% of the Concentration Guide of the AEC Manual, Chapter 0524, for a population sample. All other increases in radioactivity concentrations observed in media collected around the NTS were attributed to seasonal variations in old atmospheric fallout and fallout from nuclear detonations by the People's Republic of China on January 7, 1972, and March 18, 1972. Radioactive noble gases were released during the Nuclear Furnace-1 test series and detected by aircraft sampling; however, no radioactivity was detected on the ground beyond the combined areas of the Nellis Air Force Range and the NTS. Based upon the aircraft results, an estimate of the potential radiation exposure to off-site populations was determined to be less than 1% of the Radiation Protection Standards of the AEC Manual, Chapter 0524.

The results of soil samples collected around the NTS and analyzed for plutonium content showed that 239 Pu is present outside the boundaries of the NTS at levels greater than that which would be expected from world-wide fallout($_{z1}$ nCi/m²). Further soil sampling, analyses, and evaluations will be conducted in 1973 to

complete a map showing the variation in deposition levels on and around the NTS and to improve the precision of sampling techniques.

During the year, a Long-Term Hydrologic Monitoring Program was begun for off-NTS sites used previously for underground nuclear tests. These sites are located near Fallon, Nevada (Project Shoal), Central Nevada Test Area (Faultless Test), Grand Junction, Colorado (Project Rulison), Farmington, New Mexico (Project Gasbuggy), Carlsbad, New Mexico (Project Gnome), Hattiesburg, Mississippi (Projects Dribble/Miracle Play). This program was initiated to annually check radioactivity concentrations in wells, springs, and surface waters which are down-gradient from ground waters at the project sites. All radioactivity concentrations in the samples collected during the year were at natural background levels with the exception of samples collected at USGS Wells Nos. 4 and 8 at the Project Gnome site and the HT-2M Well at the Project Dribble/Miracle Play site. The USGS wells at the Gnome site were used in a U.S. Geological Survey radioactive tracer study in 1963, at which time ¹³⁷Cs, ¹³¹I, ⁹⁰Sr, and ³H were injected into Well No. 8 and water was pumped out of Well No. 4. As a result, high levels of ³H and ⁹⁰Sr were observed in samples collected from both wells while ¹³⁷Cs was detected only in the sample from Well No. 8. The highest concentration of radioactivity was for ⁹⁰Sr, which was 4.3 times its Concentration Guide of 3 x $10^{-1} \mu \text{Ci/ml}$ for exposure to individuals. The HT-2M Well at the Dribble site was drilled about 200 feet from another well in which 338,000 gallons of radioactive waste was injected during CY 1965. During this report period, high levels of ³H was detected in the well, the highest being 6.7 x 10^{-5} µCi/ml, which is 2.2% of the Concentration Guide for ${}^{3}H$. The radioactivity concentrations of all other samples collected from wells near the contaminated wells were below the Concentration Guides and representative of normal background levels. All of the contaminated wells are fenced, locked, and posted to ensure that the wells are not used by unauthorized persons.

The potential radiation dose equivalents received by off-site populations near the NTS and other locations referred to above were all estimated to be less than 1% of the Radiation Protection Standards of the AEC Manual, Chapter 0524. These estimates were based upon actual measurements of gamma radiation levels at off-site populated locations and measurements of radioactivity concentrations in the pathways of exposure as close to off-site residents as possible, i.e., air, milk and water.

MONITORING DATA COLLECTION, ANALYSIS, AND EVALUATION

The major portion of the off-site radiological safety program for the NTS consists of continuously-operated dosimetry and air sampling networks and scheduled collections of milk and water samples at locations surrounding the NTS. Before each nuclear test, mobile monitors were positioned in the off-site areas most likely to be affected by a possible release of radioactive material. These monitors, equipped with radiation survey instruments, gamma-rate recorders, thermoluminescent dosimeters, portable air samplers, and supplies for collecting environmental samples, were prepared to conduct a monitoring program directed from the NTS Control Point by twoway radio communications. In addition, for each event at the NTS, a U.S. Air Force aircraft with two NERC-LV monitors or two Reynolds Electric Company monitors equipped with portable radiation survey instruments was airborne over surface ground zero to detect and track any radioactive effluent. Two NERC-LV cloud sampling and tracking aircraft were also available to obtain in-cloud samples, assess total cloud volume, and provide long-range tracking in the event of a release of airborne radioactivity.

To assess the plutonium content of soil in areas surrounding the NTS, a special soil study was continued. In addition, a Long-Term Hydrologic Monitoring Program for the NTS and off-NTS underground test areas (except Amchitka, Alaska where the U. S. Geological Survey is performing this function) was begun to monitor radioactivity concentrations in wells, springs, and surface waters which are down gradient of underground water near areas where underground detonations have been performed. The first annual sampling for the Long-Term Hydrologic Monitoring Program for off-NTS project areas was completed during the year; however, routine sampling at the NTS did not commence until January 1973. Integrated monthly samples of the water of combustion of natural gas were also collected by a burner/condenser system on a trunk line carrying gas from producing wells adjacent to the Project Gasbuggy Site near Farmington, New Mexico, to determine if ³H might possibly be entering the producing wells.

Nevada Test Site

No radioactivity was detected beyond the boundaries of the Nevada Test Site

following the tests conducted during CY 1972.

At the Nuclear Rocket Development Station (NRDS), located in the southwest corner of the NTS, an experimental reactor, Nuclear Furnace-1, was operated seven times during May, June, and July 1972. Table 1 lists the date/times and integrated power in Mw sec.⁽⁵⁾ Although radioactivity was detected by aerial monitoring and sampling aircraft, no effluent was detected off-site by ground monitoring systems. Since the monitoring and sampling by aircraft were performed over the NTS and Nellis Air Force Range, the effluent monitoring data were reported separately to the AEC in accordance with the AEC Manual, Chapter 0513.

Date	Time (PDT)	Thermal Peak Power (Mw)	Integrated Power at Peak Power <u>Mw</u> *sec
5/24/72	1738-1902	0.001	Negligible
5/25/72	1048-1433	0.05	Negligible
6/1/72	1433-1445	32	7.86×10^3
6/28/72	1123-1157	44	6.79×10^4
7/12/72	1215-1221	46	7.24×10^3
7/21/72	1232-1323	44	1.18 x 10 ⁵
7/27/72	1136-1330	44	1.36×10^5
	5/24/72 5/25/72 6/1/72 6/28/72 7/12/72 7/21/72	Date(PDT)5/24/721738-19025/25/721048-14336/1/721433-14456/28/721123-11577/12/721215-12217/21/721232-1323	TimePeak PowerDate(PDT)(Mw)5/24/721738-19020.0015/25/721048-14330.056/1/721433-1445326/28/721123-1157447/12/721215-1221467/21/721232-132344

Table 1 Nuclear Furnace-1 Test Series

The radionuclides detected by aircraft sampling in the Nuclear Furnace-1 effluent were noble gases and daughter products of noble gases; no particulates originating in the reactor or radioiodines were detected by aircraft sampling. An estimate of the potential external gamma radiation exposure at the off-site boundary of the combined areas of the Nevada Test Site and the Nellis Air Force Range was, for the test series, less than 1% of the Radiation Protection Standards of the AEC Manual, Chapter 0524. This estimate was based upon what one might receive at the site boundary if one were within the effluent from each test and at the elevation of the maximum radioactivity concentrations, which actually ranged between 2500 feet and 9000 feet above any off-site population.

A description of NTS sampling networks, and the results from these networks, follows.

Air Surveillance

The Air Surveillance Network, operated by the NERC-LV, consisted of 104 active and 18 standby sampling stations located in 21 western states (Figure 6). Samples of airborne particulates were collected continuously at each active station on 4-inch-diameter glass-fiber filters at a flow rate of about 350 m³ of air per day. Normally samples were collected over a 24-hour period; however, at several stations operated by state health department and other government agency personnel. they were not always collected on weekends and holidays, which resulted in 48- or 72-hour samples. Activated charcoal cartridges directly behind the glass-fiber filters were used regularly for the collection of gaseous radionuclides at 22 stations near the Charcoal cartridges could have been added to all other stations NTS. by telephone request. The stations were operated by state health department personnel and by private individuals through contract agreements. All air samples were mailed to the NERC-LV unless special retrieval was arranged at selected locations in case of a known release of radioactivity from the NTS.

The glass-fiber filters were counted five minutes for gross beta radioactivity as soon as they were received and again at 5 and 12 days after collection. Samples were counted on gas flow proportional counters calibrated over a range of beta energies from 0.1 to 1.8 MeV. A conservative efficiency value of 45% (corresponding to an average maximum beta energy of 0.5 MeV) was used for data conversion. The 5and 12-day counts were used to extrapolate gross beta concentrations to mid-collection time for reporting. Extrapolation was accomplished by computer programs and was routinely based on a T^{1.2} decay. For known releases of particulate radioactivity, which for 1972 occurred only from nuclear tests by the People's Republic of China, the decay rate was determined experimentally and used in the extrapolations.

Those filters with total gross beta radioactivity of 500 cpm or greater were gamma scanned on a 4- by 4-inch sodium iodide (Tlactivated) crystal connected to a 400-channel gamma spectrometer. Individual radionuclides were quantitated from spectrometer data by use of a computer matrix technique. If fresh fission products related to a NTS event had been detected, radiochemical analyses, such as strontium and plutonium, would have been made on selected filters. All charcoal cartridges were counted 10 minutes with a gamma spectrometer. Data from those cartridges having a net gross gamma count rate greater than 300 cpm were analyzed by computer matrix technique to quantitate individual radionuclides. Additional analytical information can be found in Table 3.

Table 4 presents the maximum, minimum detected and average concentrations of gross beta radioactivity and individual radionuclides identified by gamma spectroscopy for each location within the network during 1972. The annual gross beta average was determined for each station by summing the station's monthly averages and dividing by twelve, assuming all monthly averages less than the minimum detectable concentration to be equivalent to the minimum detectable concentration. Each annual average for a radionuclide detected at a given station was derived by dividing the sum of its time-integrated concentrations $(pCi-day/m^3)$ by 366 days. This was done assuming that these radionuclides were not present on those filters which did not exceed the screening level of 500 cpm, or 1.4 pCi/m³ for a 45% counting efficiency and normal sample volume of 350 m³. This is consistent with the AEC Manual, Chapter 0524, which allows one to consider radionuclides to be absent in a mixture ". . . if (a) the ratio of the concentration of that radionuclide in the mixture. . . to the concentration guide for that radionuclide. . . does not exceed 1/10, and (b) the sum of such ratios for all the radionuclides considered as not present in the mixture does not exceed 1/4. . . . "(6)

As shown by Table 4, the fission products ⁹⁵Zr, ¹⁰³Ru, ¹³¹I, ¹³²Te, ¹⁴⁰Ba, ¹⁴¹Ce, ²³⁷U, and ²³⁹Np were detected in varying combinations

at all-but four sampling locations. None of these radionuclides were associated with nuclear tests at the NTS, since their occurrence throughout the network followed the seasonal trend expected for worldwide fallout and corresponded with the nuclear detonations by the People's Republic of China on January 7, 1972, and March 18, 1972. An example of the variation of gross beta concentrations during the year is shown in Figure 7.

Noble Gas and Tritium Sampling Network

During the months of March and April 1972, a routine air sampling network for monitoring levels of radiokrypton, radioxenon, and ³H in the form of HT, HTO, and CH_3 T was established for the NTS. Due to infrequent releases of radioactive gas during drill-back into the shot zone and occasional gaseous seepage from underground shot locations, the AEC Nevada Operations Office requested the NERC-LV to design, field and operate this Network at four on-NTS and six off-site locations. The locations of the off-site sampling stations are Las Vegas, Beatty, Tonopah, Diablo, and Hiko, Nevada, and Death Valley Junction, California. The off-site stations may be located by referring to Figure 6.

The equipment used in this Network is designed in two separate systems: one is a compressed air sampler, and the other is a molecular sieve sampler. The compressed air equipment continuously samples air which is then compressed and stored over seven-day periods in two pressure tanks, which together hold approximately two cubic meters of air at atmospheric pressure. The bottles are replaced weekly and returned to NERC-LV where the samples are analyzed for radionuclides of Kr and Xe and for CH_3T by gas chromatography and liquid scintillation techniques summarized in Table 3 and described by Stevenson and Johns.⁽⁷⁾

The molecular sieve type equipment samples air through a filter to remove particulate matter and then through a 600-gram column of 13X molecular sieve to remove atmospheric water. Tritium-free hydrogen

carrier is added to the air stream by electrolysis of antique water. The air is then passed through another molecular sieve column to remove any water from the electrolysis cell. The dry air with added hydrogen is then passed through a palladium catalyst supported on 13X molecular sieve. The hydrogen is converted to water, which is immediately adsorbed on the molecular sieve. The volume of air passed through the sampler is measured by a dry gas meter. Approximately five cubic meters of air are passed through each sampler over a seven-day sampling period. After each sampler is returned to the laboratory, the first molecular sieve column and the catalytic column are degassed; the water is distilled and analyzed for tritium by liquid scintillation techniques.

Table 5 summarizes the results of this Network by listing the maximum, minimum, and average concentrations for 85 Kr, total Xe or 133 Xe, CH₃T, ³H, HTO, and HT. The annual average concentrations for each station were calculated over the time period sampled assuming that all values less than the Minimum Detectable Activity (MDA) were equal to the MDA. In the table, all concentrations of 85 Kr, Xe or 133 Xe, CH₃T, HTO and HT are expressed in the same unit, μ Ci per ml of air; the concentrations of ³H (representing ³H in water vapor) are reported in the unit μ Ci per ml of atmospheric moisture.

As shown by Table 5, the maximum and average ⁸⁵Kr levels at all stations were essentially the same, indicating no contribution from NTS operations. The concentrations of ³H, HTO and HT were generally the same at all locations through the year except for the on-site stations at BJY and Area 12, where concentrations of ³H, HTO and HT reached a maximum of 1.3 x $10^{-4}\mu$ Ci/ml, 9.1 x $10^{-10}\mu$ Ci/ml, and 2.3 x $10^{-11}\mu$ Ci/ml, respectively. All average concentrations for the year were less than 0.01% of the Concentration Guides for ³H in air, which is 6.7 x 10^{-8} μ Ci/ml for exposure to an off-site population sample and 5.0 x 10^{-6} for exposure to a radiation worker. No tritium in the form of CH₃T was detected above its MDA of 5 x $10^{-12}\mu$ Ci/ml at any of the stations.

The concentrations of Xe were below the MDA of $2 \times 10^{-12} \mu \text{Ci/ml}$ at all stations throughout the year except for Beatty, Diablo, and Hiko, Nevada, and the on-site locations Desert Rock, BJY, and Area 12. At these stations ¹³³Xe was detected on a few occasions with concentrations as high as 5.7 $\times 10^{-10} \mu \text{Ci/ml}$ at Hiko. The average concentration at all locations was below 0.04% of the Concentration Guide for this nuclide, which is $1 \times 10^{-7} \mu \text{Ci/ml}$ for an off-site population sample and $1 \times 10^{-5} \mu \text{Ci/ml}$ for on-site radiation workers.

Dosimetry Network

The Dosimetry Network during 1972 consisted of 88 locations surrounding the NTS which were monitored continuously with thermoluminescent dosimeters (TLD's). The locations, shown in Figure 8, are all within a 300-mile radius of the center of the NTS and include both inhabited and uninhabited locations. Each Dosimetry Network station was equipped with three EG&G Model TL-12 dosimeters, which were exchanged monthly. Within the general area covered by the dosimetry stations about 60 off-site residents routinely wore one TLD each. These dosimeters were exchanged at the same time as the station dosimeters.

The TL-12 dosimeter has an internal or self-background exposure rate equivalent to 0.7 mR/day, which limits its minimum detection to about 5 mR for a 30-day measurement period. All TLD readings were corrected to 137 Cs gamma-roentgen-equivalent values according to individual TLD calibration factors. For purposes of this report, these units of exposure were considered to be equivalent to whole-body gamma doses in rems.

After appropriate corrections were made for the background exposure accumulated during shipment between the laboratory and the monitoring locations, the three TLD readings were averaged. The average exposure value for each month and station was statistically compared to values from the past twelve months to determine whether the new value was within the range of environmental background, or significantly

greater than background. Those which were greater led to calculations of net exposures, whereas those, which were not, were pooled with the background data bank, and the oldest value in the data bank was deleted. Values which were statistically lower than the background range were also deleted and considered invalid measurements. Each of the 60 personnel dosimeter readouts was compared to the background value of the nearest station.

No doses related to nuclear testing were detected by the dosimetry network during 1972. Table 6 lists the maximum, minimum, and average dose equivalent rate (mrem/d) measured at each station in the network during 1972. The maximum and minimum dose rates were selected from dose rates determined from monthly exposures (mrem) divided by the number of days in the exposure period, which was about 30 days depending on minor variations in schedules. The annual average dose rate for each station was calculated by adding the monthly dose equivalent values (mrem) and dividing the sum by the number of days in the period listed in Table 6 for each station. The annual adjusted background dose was derived from the product of the annual average dose rate and 366 days. As shown by this table, the average station background doses ranged from 84 to 200 mrem with a network average of 144 mrem/a. Among the approximately 60 off-site residents who wore dosimeters continuously, no personnel doses greater than background were detected as a result of nuclear testing at NTS.

Several TLD's showed unexplained high readings during 1972. These values, listed in Table 7, are considered to be anomalous readings, not true gamma exposures. Surveys of the locations and interviews with the individuals involved identified no sources of radiation which would produce the exposures. Also, in the case of the stations where three TLD's were issued each month, only one or two dosimeters read high. It is believed that the anomalies were due to phenomena associated with the TLD's rather than some external radiation source.

A network of 32 stationary Eberline RM-11 gamma rate recorders placed at selected air sampling locations was used to document gamma exposure rates at fixed locations (Figure 6). These recorders used a GM tube detector with a 0.01 to 100 mR/h range and were calibrated to $\pm 20\%$ with a ¹³⁷Cs source. The gamma exposure rates were recorded on 30-hour strip charts, which were exchanged and mailed to the NERC-LV each day. No gamma exposure rates attributable to NTS operations were detected by the network of gamma rate recorders.

Starting in July 1972, the RM-11 gamma rate recorders were gradually replaced by a NERC-LV designed recorder designated as the LSI. This recorder uses a 1- by 12-inch constant-current ionization chamber detector filled with methane. The recorder operates on either 110V a.c. or on a self-contained battery pack. This radiation monitor records gamma radiation levels from .004 mR/h to 40 mR/h with a logarithmic response and an accuracy of better than $\pm 10\%$. The recorder chart runs at a speed of three inches per hour so that one chart will last for 10 days, although the charts are mailed to NERC-LV weekly. A fresh battery pack will operate the monitor for about two weeks at radiation levels below 1 mR/h and about five days at radiation levels above 1 mR/h. The length of unattended operations from a.c. line power is limited only by the need to change paper in the recorder. During this report period, no increase in exposure rates attributable to NTS operations was detected by the network of gamma rate recorders.

Milk Surveillance Network

Milk is only one of the sources of dietary intake of environmental radioactivity; however, it is a very convenient indicator of the general population's intake of biologically significant radionuclide contaminants. For this reason it is monitored on a routine basis. Few of the fission product radionuclides become incorporated into the milk of the cow due to its selective metabolism. However, those that are incorporated are very important from a radiological health standpoint, and since they are preferentially transferred to the cow's

milk, it is a very sensitive measure of their concentrations in the environmenta. The five most common fission product radionuclides which can occur in milk are ⁸⁹Sr and ⁹⁰Sr, ¹³¹I, ¹³⁷Cs, and ¹⁴⁰Ba. A sixth radionuclide, ⁴⁰K, also occurs in milk at a reasonably constant concentration of about 1.2 x $10^{-6} \mu$ Ci/ml. Since this is a naturally occurring radionuclide, it was not included in the analytical results summarized in this section.

The milk surveillance networks operated by the NERC-LV were the routine Milk Surveillance Network (MSN) and the Standby Milk Surveillance Network (SMSN). The MSN during 1972 (Figure 9) consisted of 35 different locations at which NERC-LV personnel collected one-gallon milk samples from family cows, commercial pasteurized milk producers, Grade A raw milk intended for pasteurization, and Grade A raw milk for local consumption. In the event of a release of activity from the NTS, intensive sampling would have been conducted in the affected area within 300 miles of the NTS to assess radionuclide concentrations in milk, radiation doses that could result from the ingestion of the milk, and the need for protective action. Milk supplies and producers beyond 300 miles are sampled with the SMSN.

During 1972, 321 milk samples were collected from the MSN. Of the 35 locations, five were alternates where milk was sometimes obtained in the event the primary sampling point did not have milk available. Although the routine locations were scheduled for monthly collection, milk could not usually be obtained at all locations in any one month. Cows not lactating, no one home, or no milk on the day the route monitors arrived at the ranch, were some of the reasons why some of the samples were not collected each month. During the year, milk sampling points also changed as cows were sold, or were otherwise unavailable for regular milkings.

The SMSN consisted of about 185 Grade A milk processing plants in all states west of the Mississippi River which could be requested by

telephone to collect raw milk samples representing milk sheds supplying milk to the plants. Since there were no releases of radioactivity from the NTS or other test locations, this network was not activated except to request an occasional sample to check the network readiness and reliability. No analytical results are reported here for the SMSN, since only one sample was received from each of several selected locations and were not associated with any particular nuclear activity or installation.

All milk samples were analyzed for gamma emitters, ⁸⁹ Sr and ⁹⁰ Sr. Samples collected at six locations from the MSN were routinely analyzed for ³H. Table 3 lists the general analytical procedures and detection limits for these analyses as described by Johns ⁽⁸⁾ and Lem and Snelling. ⁽⁹⁾ For gamma spectroscopy analyses, the milk was placed in 3.5-liter Marinelli beakers which position the samples around the crystal detector for high counting efficiency. All routine milk samples were counted for 40 minutes. A computer was used to calculate the activity concentration of each of the detected nuclides at the time of count and extrapolate the results to time of milking.

The analytical results of milk samples collected from the MSN during 1972 are summarized in Table 8. The maximum, minimum, and average concentrations of the ¹³⁷Cs, ⁸⁹Sr, ^{9°}Sr, and ³H in samples collected during the year are shown for each sampling location at which these analyses were scheduled. In the computation of the average concentrations, sample concentrations of less than the minimum detectable concentration were assumed to be equal to the minimum detectable concentration. If any of the values used in computing the averages were "less than" values, the average was expressed as a "less than" value. During the year, there were a few samples which did not have enough volume to provide the usual minimum sensitivity for gamma spectrum analysis for ¹³⁷Cs (1.0 x 10⁻⁹µCi/ml). In these cases, the minimum sensitivity was 1.0 x 10⁻⁷µCi/ml.

No radionuclides from NTS operations were detected in any of the milk samples. The levels of 137 Cs, 89 Sr, and 90 Sr varied during the year in accordance with what is normally observed due to variations in world-wide fallout. An example of the trends in concentrations during the year is shown for the Martin Ranch in Figure 7. The variations in concentrations agree reasonably well with the variation in gross beta concentrations in air at the three nearest air sampling locations, Austin, Round Mountain, and Eureka, Nevada.

Water Surveillance Network

The Water Surveillance Network (WSN) operated in off-site areas around the NTS during 1972 consisted of 91 locations (Figures 10 and 11) where NERC-LV personnel collected one-gallon water samples. The samples were collected from community water supplies, wells, open and closed springs, streams, lakes, and ponds. If a release of radioactivity from NTS had occurred, special sampling within the affected area would have been conducted to determine radionuclide concentrations and the possible need to take protective action.

During 1972, 1022 water samples were collected from these 91 locations. All samples were scheduled to be collected monthly, except those from Walker Lake and Pruess Reservoir. These two locations were sampled quarterly. In some cases operational priorities, frozen sources, etc., prevented the sampling of each location every month.

All water samples from the WSN were analyzed by gamma spectroscopy and counted for gross alpha and gross beta radioactivity. Network samples from approximately 25 locations west, south, and southeast of NTS were also routinely analyzed for ³H. For the purpose of identifying the source of the gross radioactivity in all network samples and comparing sample concentrations with the Concentration Guides of the AEC Manual, Chapter 0524, selected samples were given special analyses at least once during the year. For surface water samples, the special analyses included ⁸⁹⁻⁹⁰Sr, ²³⁸⁻²³⁹Pu, U, and ²²⁶Ra. For drinking water

samples, the analyses included $^{89-9\circ}$ Sr, U, and 226 Ra. Table 3 lists the general analytical procedures as described by Johns⁽⁸⁾, Lem and Snelling⁽⁹⁾, and Talvitie^(10,11) and the detection limits.

The analytical results of all water samples collected from the WSN during 1972 are summarized in Table 9, which lists the maximum, minimum, and average concentrations of radioactivity detected in the samples. No gamma-emitting fission products were detected in any of the samples by gamma spectroscopy analysis. No significant trends were observed in the gross alpha, gross beta, or ³H results, although surface waters generally contained higher concentrations than ground waters. The higher concentrations were attributed to world-wide fallout and naturally occurring radionuclides.

The average concentrations for the gross alpha, gross beta, and ${}^{3}\text{H}$ radioactivity compared to the following Concentration Guides specified in AEC Manual, Chapter 0524 for exposure of individuals:

<u>Type of Radioactivity</u>	<u>Concentration Guide µCi/ml</u>
Gross alpha	3 x 10 ⁻⁸
Gross beta	3 x 10 ⁻⁸
зн	3 x 10 ⁻³

Those locations which had an annual average concentration greater than these Guides are Hiko, Schofield Dairy (gross beta $C_{avg} = 3.2 \text{ x}$ $10^{-8} \mu \text{Ci/ml}$), Comins Lake (gross beta $C_{avg} = 3.6 \text{ x}$ $10^{-8} \mu \text{Ci/ml}$), Walker Lake (gross beta $C_{avg} = <1.9 \text{ x}$ $10^{-7} \mu \text{Ci/ml}$), and Fallini's Pond (gross beta $C_{avg} = 6.9 \text{ x}$ $10^{-8} \mu \text{Ci/ml}$). Of these sources only the Schofield Dairy water is consumed by humans. As shown in Table 9, samples from the locations that were selected for special analyses contained naturally occurring uranium isotopes and daughters including ²²⁶ Ra. This would account for the high gross beta activities. In addition to the special analysis given the sample from Walker Lake, the sample was also given a longer gamma count in an effort to determine the source

of the relatively high gross beta activity, since the concentrations of uranium and daughter products could not account for all of the gross beta radioactivity. Potassium-40, with a concentration of 1.2 x $10^{-7} \mu$ Ci/ml, was found to be the isotope responsible for the elevated beta activity. Including the naturally occurring radionuclides listed above which did not result from NTS operations, the radioactivity concentrations in water were less than the values listed in the AEC Manual, Chapter 0524.

Plutonium in Soil

This program began in September 1970 as an integral portion of the work coordinated by the Nevada Applied Ecology Group (NAEG). The NAEG was formed by the AEC to coordinate environmental evaluations corresponding to specified areas of AEC operations. The NAEG's objective in the study is to determine the inventory, distribution, and movement in the ecosystem of on-site and off-site plutonium which was produced by NTS operations.

As part of this study, the NERC-LV was involved in investigating off-NTS air and soil for plutonium content. Air sample analyses have been limited to filters collected at selected Air Surveillance Network Stations (ASN) over a period from 1965 to 1972. Two phases of research have been conducted. Filters from eight air sampling stations distributed over the western United States were chosen for analyses to determine ambient levels of world-wide fallout. Filters were selected for five sampling days near the middle of each month and a plutonium assessment made on a composite of filters. The second phase was to analyze filters collected near the NTS. Stations were selected which were located upwind and downwind of known on-site plutonium deposition areas. Filters were chosen for days when high winds and dry soil conditions existed in the general area of the NTS. Results will be reported on completion of the analyses of these filters.

Initial soil sampling began in September 1970. The selected sampling method was first field tested and refined to suit operational and analytical requirements. This method is defined as the trench method.

A trench was dug and a sample was removed from one side of the trench, over a given surface area, and at various sampling depths. By this method a preliminary soil profile sampling survey was performed to determine the vertical distribution of plutonium and to define an optimum sampling depth. Since this preliminary survey showed that 90% of the plutonium concentrations were found in the top 3 cm of soil in 90% of the samples collected, a 5 cm depth was chosen with a sampling area of 10- by 10-cm. Ten 10- by 10-cm cores were composited to form a total sampling area of 1000 cm² for each sample location. All sampling sites were chosen from undisturbed desert "pavement" areas at the intersections of a 5- by 5-mile grid, as much as possible.

Each sample was returned to the NERC-LV in a polyethylene bag and air dried. The total weight was measured and the sample screened with a U. S. Standard screen of 10-mesh. The portion passing through the 10-mesh screen was divided with a Jones sample splitter. Successive splits were made to achieve a sample of about 50 g for Pu analysis. The remainder of the fraction passing 10-mesh was redivided to yield a sample size of about 600 g, which was gamma counted. The 50 g sample for Pu analysis was oven dried and pulverized to less than 200 mesh. A one gram aliquot was then collected from this sample for complete dissolution in hydrofluoric acid; the Pu being separated from the solution by ion exchange techniques and electrodeposited on a stainless steel planchet for alpha spectrometric analysis.

The results of soil samples collected around the NTS and analyzed for plutonium content showed that 239 Pu is present outside the boundaries of the NTS at levels greater than that which would be expected from world-wide fallout (\approx l nCi/m²). Since all analytical results are preliminary, none are reported at this time. Further sampling, sample analyses, and evaluations will be conducted in 1973 to complete a map of off-site plutonium deposition levels and to improve the precision of the data.

Other Test Sites

Two programs were operative in 1972 to provide additional data on long-term surveillance at all continental test sites, past and present. The two programs now in effect are (1) sampling for 3 H in natural gas from wells adjacent to the Gasbuggy Test Well near Farmington, New Mexico, and (2) scheduled water sampling of wells and other water sources in the vicinity of all continental sites. A description of the two programs are included in this section.

Natural Gas Burner Sampling, Gasbuggy Site

During 1972, integrated monthly samples of the water condensate from the combustion of natural gas were collected from a truck line servicing 28 natural gas wells adjacent to the Gasbuggy Test Well near Farmington, New Mexico. This study, which became routine by November 1971 following the development of a gas burner system, was initiated to determine if natural gas from the nuclear-stimulated Gasbuggy Test Well would introduce radioactive contaminants into the surrounding producing wells. Tritium was chosen as a suitable indicator of radioactive contamination.

With the use of the gas burner system described by Connolly, $^{(14)}$ an air/ gas mixture flows through a combustion chamber where it is continuously burned. The resultant water vapor is condensed out of the exhaust gases and collected. Each month the condensate is sent to the NERC-LV for liquid scintillation counting for ³H.

All concentrations of ${}^{3}\text{H}$ in the twelve monthly condensate samples collected in CY 1972 were below the minimum detectable activity of about 220 pCi/l of condensate water.

Long-Term Hydrologic Monitoring Program

In addition to the continuous program of underground nuclear testing at the NTS, several special purpose underground tests have been conducted in various parts of the continental United States and Alaska (Table 1).

Following each of these events, all surface material contaminated with radioactivity was removed or otherwise disposed of in accordance with appropriate decontamination procedures. Other than an improbable seepage of minor amounts of gaseous radionuclides into the atmosphere, the only other method for radioactivity to enter the biosphere beyond the immediate vicinity of the detonation area would be by transport in ground waters from the cavity and/or rubble chimney created by the detonation.

In previous years, hydrologic monitoring and investigation programs were conducted for the AEC by the U. S. Geological Survey (USGS) and Teledyne Isotopes (formerly Isotopes, Inc.). As a continuation of this effort, the AEC requested the NERC-LV to establish a Long-Term Hydrologic Monitoring Program in the vicinity of all active and inactive test areas. The purpose of this program, as outlined by the Nevada Operations Office, AEC, is to obtain and record appropriate data from reliable sources adequate to:

- 1) Assure the public safety;
- If the need should arise, to inform the public, the news media, and the scientific community;
- Document compliance with existing Federal, state, and local anti-contamination requirements.

To implement this long-term program, NERC-LV began sampling water from wells, springs, and surface waters which are down-gradient of the movement of ground water at the sites of Project Shoal, Project Dribble, Project Gnome, Project Gasbuggy, Project Rulison, and the Faultless Event of the Central Nevada Test Area (CNTA). The sampling frequency for each site was established as once a year in the early spring plus once during any period of flaring of natural gas at those sites where flaring is undertaken. No flaring operations were conducted at any of the sites during this report period.

Samples of underground water sources were collected from well heads or

spring discharge points where possible. If pumps were not available, an electrical-mechanical water sampler capable of collecting a 3-liter sample at depths up to 6000 feet was used. Samples for ³H analysis from each location were collected in two 16-ounce glass bottles each fitted with a poly-seal screw cap. The bottles were filled with unfiltered water, capped and then sealed with black plastic tape. Samples for radiochemical analysis from each location were collected in one gallon plastic cubitainers. The cubitainers were filled with filtered water (water passing a 0.45 μ m filter) and the contents adjusted to pH 1 using concentrated nitric acid.

Most samples were analyzed for 3 H, gross alpha, and gross beta by radiochemistry techniques and for gamma-emitters by gamma spectroscopy; however, there were some wells and surface supplies for which only 3 H analysis was performed. Selected samples were also analyzed for ${}^{89-90}$ Sr and 226 Ra. A complete summary of analytical procedures and detection limits is shown in Table 3.

The analytical results of all water samples collected during 1972 are summarized in Table 10. For each concentration, the percent of the appropriate Concentration Guide as specified in the AEC Manual, Chapter 0524, was calculated and listed. As shown by the table, concentrations of radioactivity above the Concentration Guides were found in samples collected at the sites of Project Dribble and Gnome. Well HT-2M, which is located on the Project Dribble site, is approximately 200 feet from Well HT-2 in to which approximately 338,000 gallons of radioactive liquid waste were injected during 1965. As a consequence of this, high levels of ³H were observed at most depths sampled in HT-2M. The maximum concentration observed was 6.7 x 10^{-5} uCi/ml in a sample collected from 2350 feet below the surface on October 14, 1972. This concentration was 2.2% of the Concentration Guide for ${}^{3}H$ as specified in the AEC Manual, Chapter 0524, for exposure to an individual. Although these contaminated wells are on private land, the wells are fenced, posted, and locked to prevent their use by unauthorized personnel.

USGS Wells Nos. 4 and 8 located on the Project Gnome site were used in a USGS radioactive tracer study during the first quarter of 1963. Cesium-137, 131 I, 90 Sr, and 3 H were injected into Well No. 8, and water was pumped from nearby Well No. 4. As a result of this study, high levels of 3 H and 90 Sr were observed in samples collected from both wells in 1972, while 137 Cs was observed only in the sample from Well No. 8. As indicated by Table 10, the highest concentration was for 90 Sr, which was 4.3 times its Concentration Guide. The concentrations of radioactivity in all the other wells sampled near the two contaminated wells were below the Concentration Guides and representative of normal background levels. These two contaminated wells, which are on federal land, are also fenced, locked, and posted to assure that they are not used by unauthorized personnel.

Gross beta levels above 30 pCi/l were also observed in samples collected from Flowing Well No. 2 (3.8 x $10^{-8}\mu$ Ci/ml) near the Project Shoal site, and Lake La Jara (3.6 x $10^{-8}\mu$ Ci/ml) and El Paso National Gas Well 10-36 (4.7 x $10^{-8}\mu$ Ci/ml), both of which are near the Project Gasbuggy site. None of these sources of water are used for domestic purposes. Further analysis will be performed on these samples to identify the radionuclides contributing to the gross radioactivity.

REFERENCES

1. "Effluent and Environmental Monitoring and Reporting," U. S. Atomic Energy Commission Manual, Chapter 0513. U. S. Atomic Energy Commission, Washington, D.C.

2. Quiring, Ralph E., "Climatological Data, Nevada Test Site, Nuclear Rocket Development Station (NRDS)," ERLTM-ARL-7. ESSA Research Laboratories. August 1968.

3. "Environmental Statement, Underground Nuclear Testing Program, Nevada Test Site," WASH-1562 Draft Copy, U. S. Atomic Energy Commission. October 1972.

4. "Selected Census Information Around the Nevada Test Site," WERLV-639-8. Western Environmental Research Laboratory, U. S. Environmental Protection Agency, Las Vegas, Nevada, 1972.

5. "Interim Report of Off-Site Surveillance for the Nuclear Furnace-1 Test Series, May, June, and July 1972," National Environmental Research Center, Las Vegas, Nevada. November 1972.

6. "Standards for Radiation Protection," U. S. Atomic Energy Commission Manual, Chapter 0524. U. S. Atomic Energy Commission, Washington, D.C.

7. Stevenson, D.L. and Johns, F. B. Proceedings of "International Symposium on Rapid Methods for Measurement of Radioactivity in the Environment," July 5-9, 1971, Neuherberg, Federal Republic of Germany. International Atomic Energy Agency, STI/PUB/289, Vienna, 1971.

8. Johns, F. B. "Southwestern Radiological Health Laboratory Handbook of Radiochemical Analytical Methods," SWRHL-11. Southwestern Radiological Health Laboratory, U. S. Department of Health, Education and Welfare. Las Vegas, Nevada. March 1970.

9. Lem, P. N. and Snelling, R. N. "Southwestern Radiological Health Laboratory Data Analysis and Procedures Manual," SWRHL-21. Southwestern Radiological Health Laboratory, Environmental Protection Agency, Las Vegas, Nevada. March 1971.

10. Talvitie, N. A. "Electrodeposition of Actinides for Alpha Spectrometric Determination," Analytical Chemistry, February 1972, Vol. 44, p. 280.

11. Talvitie, N. A. "Radiochemical Determination of Plutonium of Environmental and Biological Samples by Ion Exchange," <u>Analytical Chemistry</u>, November 1971, Vol. 43, p. 1827.

12. "Surface Approximation and Contour Mapping Documentation," Application Consultants, Inc., 3431 W. Holcombe Blvd., Houston, Texas 77025.

13. Hardy, et al., "Plutonium Fallout in Utah," <u>Fallout Program Quarterly</u> <u>Review HASL-257, Health and Safety Laboratory, U. S. Atomic Energy Commission,</u> Washington, D.C., July 1, 1972, p. 95.

14. Connolly, John L. "The NERC-LV Burner--A Monitor for Radioactivity in Natural Gas," NERC-LV-539-7. U. S. Environmental Protection Agency, National Environmental Research Center, Las Vegas, Nevada. February 1973. Table 2 Underground Testing Conducted Off the Nevada Test Site

Name of Test, Operation			ĥ	Depth	d e
or Project	Date	Location	Yield	(ft)	Purpose of the Event d,e
Project Gnome/ Coach	12/10/61	30 mi SE of Carlsbad, NM	3.1kt ^f	1184	Isotope recovery, neu- tron experiments, heat recovery studies, future design studies.
Project Shoal ^b	10/26/63	28 mi SE of Fallon, NV	12kt	1200	Nuclear test detection experiment.
Project Dribble ^b (Salmon Event)	10/22/64	21 mi SW of Hatties- burg, MI	5.3kt	2700	Nuclear test detection experiment.
Operation Long- shot	10/29/65	Amchitka Island, AK	~80kt	2350	Nuclear test detection experiment.
Project Dribble ^b (Sterling Event)	12/3/66	21 mi SW of Hatties- burg, MI	380t	2700	Nuclear test detection experiment.
Project Gasbuggy ^a	12/10/67	55 mi E of Farmington, NM	29kt	4240	Natural gas stimulation experiment.
Test Faultless ^C	1/19/68	Central Nevada Test Area 60 mi E of Tonopah NV	200kt- , 1Mt	3000	Physical effects study for higher yield det- onations. (Calibration test)
Project Miracle Play (Diode Tube)	b ^{2/2/69}	21 mi SW of Hatties- burg, MI	Non-nu- clear ex- plosion	-	Detonated in Salmon/ Sterling cavity. Seismic studies.
Project Rul ison^a	9/10/69	12 mi SW of Rifle, CO	40kt	8425	Stimulation of natural gas production.
Operation Milrow ^C	10/2/69	Amchitka Island, AK	~1Mt	4000	Physical effects study for higher yield det- ontation. (Calibration test)
Project Miracle Play (Humid Water)	4/19/70	21 mi SW of Hatties- burg, MI	Non-nu- clear ex- plosion	2700	Detonated in Salmon/ Sterling cavity. Seismic studies.

Table 2 Underground Testing Conducted Off the Nevada Test Site

Name of Test, Operation			L	Depth	
or Project	Date	Location	Yielda	(ft)	Purpose of the Event ^{d,e}
Operation Canni- kin	11/6/71	Amchitka Island, AK	<5Mt	6000	Test of Spartan Missle warhead for the Safe- guard System

^a = Plowshare events

^b = Vela Uniform events

^c = Weapons tests

^d = Information from "Revised Nuclear Test Statistics," distributed on January 15, 1973, by Henry G. Vermillon, Director, Office of Information Services, U. S. Atomic Energy Commission, Las Vegas, Nevada.

e = News Release AL-62-50, AEC Albuquerque Operations Office, Albuquerque, New Mexico. December 1, 1961.

f = "The Effects of Nuclear Weapons" Rev.Ed. 1964.

Table 3 Summary of Analytical Procedures

Type of Analysis	Analytical Equipment	Counting Period (Min)	Analytical Procedures	Sample Size (Liter)	Detection Limit
Gamma Spectroscopy	Gamma spectro- meter with 4- inch-thick by 4-inch diameter NaI (T1-acti- vated) crystal with input to 200 channels (0-2 MeV) of 400-channel, pulse-height analyzer.	40-100 for milk and water sam- ples; 10 for air filters.	Radionuclide concentra- tions quan- titated from gamma spec- trometer data by com- puter using the matrix technique.	samples; 350m ³ of air for	For milk and water, generally 10×10^{-9} µCi/ml for most common fallout ra- •dionuclides in a simple spectrum. For air filters, 0.1×10^{-12} µCi/ml.
89 _{Sr-} 90 _{Sr}	Low-background- thin-window, gas-flow pro- portional counter with a 2.25" diameter window (80 µg/cm).	50	Chemical separation by ion exchange. Separated sam- ple counted successively; activity cal- culated by simultaneous equations.	1.0	⁸⁹ Sr ~ 5x10 ⁻⁹ µCi/ml ^a ⁹⁰ Sr ~ 2x10 ⁻⁹ µCi/ml ^a
3 _H	Automatic liquid scintillation counter with output printer.	100	Sample pre- pared by distillation.	0.005	≃ 220x10 ⁻⁹ µCi/ml ^a
238 239 _{Pu} , 234,235,238 _U	Alpha spectro- meter with 45 45 mm ² , 300 μ m depletion depth silicon surface barrier detector operated in vacuum chambers	rs	Sample is digested with acid, separate by ion exchang electroplated stainless stee planchet and o ed by alpha sp trometer.	ge, on 21 count-	$2^{38}Pu = 0.04 \times 10^{-9}$ $\mu Ci/mla$ $2^{39}Pu, 2^{34}U, 2^{35}U,$ $2^{38}U = 0.02 \times 10^{-9}$ $\mu Ci/mla$

Type of Analysis	(Analytical Equipment	Counting Period (Min)	Analytical Procedures	Sample Size (Liter)	Detection Limit
Gross alpha Gross beta in liquid samples	Low-level end window, gas flow proportional counter with a 2 1/4" diameter window. (80 µg/cm ²)	50	Sample eva- porated; residue count- ed.	0.2	$\alpha \simeq 2 \times 10^{-9} \mu \text{Ci/ml}^{a}$ $\beta \simeq 2 \times 10^{-9} \mu \text{Ci/ml}^{a}$
Gross beta on air fil- ters	Low-level end window, gas flow proportional counter with a 5" diameter windo (100 mg/cm ²)	5	Filters counted upon receipt and at 5 and 12 days after collection; last two counts used to extra- polate con- centration to mid-col- lection time assuming T ⁻¹ . ² decay or us- ing experi- mentally de- rived decay.	4" diameter glass fiber filter; sample collected from ≈350m ³ .	0.06 x 10 ⁻¹² µCi/ml ^b
⁸⁵ Kr Xe CH ₃ T	Automatic liquid scintil- lation counter with output printer.	50	Physical separation by gas chroma- tography; dis- solved in toluene "cock- tail" for coun ing.	-	$85 \text{Kr} = 2 \times 10^{-12} \\ \mu \text{Ci/ml}^{a}$ $\text{Xe} = 2 \times 10^{-12} \\ \mu \text{Ci/ml}^{a}$ $\text{CH}_{3}\text{T} = 5 \times 10^{-12} \\ \mu \text{Ci/ml}^{a}$

Table 3 Summary of Analytical Procedures (Continued)

^aThe detection limit for a given sample is defined as that radioactivity which equals the 2-sigma counting error.

^b Detection limit is defined as that concentration which produces a $\pm 25\%$ counting deviation at the 95\% confidence level.

-

				Radioactivity Concentration 10 ¹² uCi/ml or pCi/m ³		
Sampling Location	No. Days Sampled ^a	Type of Radioactivity	C _{max}	C _{min}	Cavg	
Kingman, AZ	364.4	gross β	34	<0.1	0.47	
	8.0	⁹⁵ Zr	1.1	0.1	0.014	
	5.0	¹⁰³ Ru	0.1	0.1	0.001	
	3.0	131 _I	0.4	0.2	0.002	
	0.0	^{1 32} Te	ND	ND	ND	
	5.0	14 °Ba	0,4	0.1	0.004	
	6.0	¹⁴¹ Ce	0.5	0.1	0.004	
	6.0	²³⁹ Np	30	1.2	0.014	
Phoenix, AZ	361.3	gross β	19	<0.1	0.48	
	8.0	⁹⁵ Zr	1.0	0.2	0.011	
,	3.0	103 _{Ru}	0.2	0.1	0.001	
	2.0	131 [°] I	0.5	0.3	0.002	
	1.0	¹³² Te	0.6	0.6	0.002	
	3.0	¹⁴ °Ba	0.5	0.1	0.002	
	4.0	¹⁴¹ Ce	0.2	0.1	0.002	
•	6.0	²³⁹ Np	18	2.1	0.116	
Seligman, AZ	360.0	gross β	83	<0.1	0.65	
	3.0	⁹⁵ Zr	1.3	0.2	0.007	
	1.0	1°3Ru	0.8	0.8	0.002	
	1.0	¹³¹ I	1.3	1.3	0.004	
	1.0	¹³² Te	1.0	1.0	0.003	
	3.0	^{14 o} Ba	1.1	0.2	0.004	
	1.0	¹⁴¹ Ce	0.3	0.3	0.001	
	5.0	²³⁹ Np	81	0.8	0.262	

Sampling	No. Days	Radioactivity Conc Type of 10 ¹² uCi/ml or p			
Location	Sampled [*]	Radioactivity	C _{max}	C _{min}	Cavg
Vinslow, AZ	364.7	gross β	32	<0.1	0.54
· · · · ·	4.0	95 _{Zr}	0.8	0.2	0.005
	4.0	1°3 _{Ru}	0.3	0.1	0.002
	2.0	¹³¹ I	0.6	0.2	0.002
	0.0	^{1 32} Te	ND	ND	ND
	2.0	14 °Ba	0.6	0.2	0.002
	1.0	¹⁴¹ Ce	0.3	0.3	0.001
	6.0	²³⁹ Np	30	0.9	0.135
ittle Rock, AR	277.9	gross β	1.8	<0.1	0.17
	1.0	⁹⁵ Zr	0.7	0.7	0.002
	0.0	¹⁰³ Ru	ND	ND	ND
	0.0	¹³¹ I	ND	ND	ND
	0.0	¹³² Te	ND	ND	ND
	0.0	^{14 °} Ba	ND	ND	ND .
	1.0	¹⁴¹ Ce	0.4	0.4	0.001
	0.0	²³⁹ Np	ND	ND	ND
aker, CA	363.0	gross B	10	<0.1	0.29
	3.1	⁹⁵ Zr	0.2	0.2	0.002
	1.0	1°3Ru	0.1	0.1	<0.001
	0.0	¹³¹ I	ND	ND	ND
	0.0	¹³² Te	ND	ND	ND
	1.0	14 ° Ba	0.1	0.1	<0.001
	0.0	¹⁴¹ Ce	ND	ND	ND
	2.0	²³⁹ Np	9.6	7.0	0.046

			Radioactivity Concentra 10 ¹² uCi/ml or pCi/m ³		
Sampling Location	No. Days Sampled ^a	Type of Radioactivity	C _{max}	C _{min}	Cavg
Barstow, CA	360.3	gross β	7.8	<0.1	0.34
	7.1	⁹⁵ Zr	1.7	0.2	0.014
	0.0	1°3Ru	ND	ND	ND
	0.0	¹³¹ I	ND	ND	ND
	0.0	^{1 32} Te	ND	ND	ND
	2.0	^{14 °} Ba	0.2	0.2	0.001
	3.0	¹⁴¹ Ce	0.6	0.2	0.003
	5.0	239 Np	7.2	0.8	0.037
Bishop, CA	362.4	gross β	43	[.] <0.1	0.52
	2.0	⁹⁵ Zr	2.1	0.2	0.006
	1.0	¹⁰³ Ru	0.1	0.1	<0.001
	0.0	^{1 31} I	ND	ND	ND
	0.0	¹³² Te	ND	ND	ND
	0.0	^{14 °} Ba	ND	ND	ND
	1.0	¹⁴¹ Ce	0.5	0.5	0.001
	2.0	an _{s sa} nd	19	4.8	0.065
Death Valley	355.9	gross β	22 [.]	<0.1	0.43
Junction, CA	6.8	95Zr	1.0	0.2	0.008
•	2.1	¹⁰³ Ru	0.2	0.1	0.001
	0.0	131 _I	ND	ND	ND
	0.0	¹³² Te	ND	ND	ND
	3.1	^{14 o} Ba	0.2	0.2	0.002
	2.8	¹⁴¹ Ce	0.3	0.2	0.002
	5.9	s 39 Nb	9.9	1.7	0.083

Sampling	No Dava Tupo of					Radioactivity Concentration 10 ¹² uCi/ml or pCi/m ³		
Location		Radioactivity	C _{max}	C _{min}	Cavg			
Furnace Creek, CA	357.5	gross β	110	<0.1	0.64			
	4.0	⁹⁵ Zr	1.5	0.1	0.008			
	3.0	¹⁰³ Ru	0.4	0.1	0.002			
	2.0	131 _I	0.8	0.2	0.003			
	0.0	¹³² Te	ND	ND	ND			
	3.0	^{14 °} Ba	0.6	0.1	0.002			
	2.0	¹⁴¹ Ce	0.3	0.3	0.002			
	4.0	239 Np	87	2.1	0.275			
Indio, CA	361.1	gross β	110	<0.1	0.69			
	3.0	⁹⁵ Zr	2.4	0.3	0.011			
	1.0	lo3 _{Ru}	0.4	0.4	0.001			
	2.0	131 [′] I	1.0	0.2	0,003			
	1.0	¹³² Te	0.4	0.4	0.001			
	4.0	^{14 °} Ba	1.0	0.2	0.005			
	1.0	141 Ce	0.4	0.4	0.001			
	5.0	239 Np	120	1.8	0.392			
Lone Pine, CA	357.2	gross β	45	<0.1	0.54			
	4.0	⁹⁵ Zr	0.8	0.5	0.008			
	2.9	1°3Ru	0.3	0.1	0.001			
	2.9	131 _I	0.5	0.1	0.002			
	1.0	¹³² Te	0,6	0.6	0.002			
	1.0	14 ° Ba	0.6	0.6	0.002			
	0.0	141 Ce	ND	ND .	ND			
	7.9	ssa Nb	39	1.5	0.145			

÷.

Sampling	No. Days Type of		Radioactivity Concentrat 10 ¹² uCi/ml or pCi/m ³		
Location	Sampled [®]	Radioactivity	C _{max}	C _{min}	C _{avg}
Needles, CA	337.7	gross β	9.1	<0.1	0.42
	11.5	⁹⁵ Zr	0.9	0.2	0.016
	9.9	¹⁰³ Ru	0.1	0.08	0.003
	1.8	¹³¹ I	0.2	0.2	0.001
	0.0	^{1 32} Te	ND	ND	ND ·
	1.8	^{14 °} Ba	0.2	0.2	0.001
	9.7	¹⁴¹ Ce	0.3	0.1	0.004
· · · · · ·	4.5	239 Np	8.5	1.0	0.056
•					
Ridgecrest, CA	352.4	gross β	8.3	<0.1	0.31
•	0.9	⁹⁵ Zr	1.5	1.5	0.004
	0.0	¹⁰³ Ru	ND	ND	ND
	0.0	¹³¹ I	ND	ND	ND
•	0.0	^{1 32} Te	ND	ND	ND
	0.0	14 ° Ba	ND	ND	ND
	0.0	-141Ce	ND	ND	ND
	3.1	²³⁹ Np	6.5	2.6	0.37
Shoshone, CA	354.7	gross β	32	<0.1	0.41
•	3.0	⁹⁵ Zr	0.6	0.1	0.003
	1.0	¹⁰³ Ru	0.2	0.2	0.001
•	1.0	¹³¹ I	0.2	0.2	0.001
	1.0	¹³² Te	0.3	0.3	0.001
	1.0	^{14 o} Ba	0.2	0.2	0.001
•	0.0	¹⁴¹ Ce	ND	ND	ND
	2.0	³³⁹ Np	9.4	4.6	0.038

	No. Days Type of			Radioactivity Concentration 10 ¹² uCi/ml or pCi/m ³			
Sampling Location	No. Days Sampled [®]	Radioactivity	C _{max}	C _{min}	Cavg		
Denver, CO	365.0	gross β	42	<0.1	0.48		
	4.0	⁹⁵ Zr	1.6	0.6	0.009		
	1.0	103 _{Ru}	0.1	0.1	<0.001		
	0.0	¹³¹ I	ND	ND	ND		
	0.0	^{1 32} Te	ND	ND	ND		
	5.0	^{14 °} Ba	0.3	0.2	0.003		
	4.0	141Ce	0.7	0.2	0.004		
	5.0	230 ND	6.2	3.9	0.064		
Durango, CO	328.1	gross β	35	<0.1	0.52		
	5.0	⁹⁵ Zr	2.0	0.1	0.009		
	1.0	103 _{Ru}	0.1	0.1	<0.001		
	1.0	^{1 31} I	0.2	0.2	0.001		
•	0.0	132 _{Te}	ND	ND	ND		
	2.0	^{14 °} Ba	0.2	0.2	0.001		
	1.0	¹⁴¹ Ce	0.2	0.2	0.001		
•	4.0	239Np	16	2.5	0.068		
Boise, ID	364.7	gross β	17	<0.1	0.33		
	2.0	95 _{Zr}	0.3	0.2	0.001		
•	2.9	1°3Ru	0.3	0.1	0.001		
	0.0	¹³¹ I	ND	ND	ND		
	0.0	132 _{Te}	ND	ND	ND		
	1.0	14 ° Ba	0.4	0.4	0.001		
	0.0	141Ce	ND	ND	ND		
• •	2.0	239 NP	12	6.6	0.050		

.

0	No. Do	muna of	Radioactivity Concentratio 10 ¹² uCi/ml or pCi/m ³			
Sampling Location	No. Days Sampled ^ª	Type of Radioactivity	C _{max}	C _{min}	Cavg	
Idaho Falls, ID	353.1	gross β	10	<0.1	0.26	
	6.3	⁹⁵ Zr	1.1	0.1	0.011	
•	0.0	1°3Ru	ND	ND	ND	
	0.0	^{1 31} I	ND	ND	ND	
	0.0	^{1 32} Te	ND	ND	ND	
	0.0	¹⁴ °Ba	ND	ND	ND	
	5.3	¹⁴¹ Ce	0.2	0.1	0.002	
	1.0	²³⁹ Np	9.1	9.1	0.025	
Preston, ID	363.8	gross β	90	<0.1	0.54	
	1.0	⁹⁵ Zr	1.9	1.9	0.005	
	2.0	lo3 _{Ru}	0.1	0.1	0.001	
	1.0	131 I	0.2	0.2	0.001	
	1.0	¹³² Te	0.2	0.2	0.001	
	1.0	¹⁴ °Ba	0.3	0.3	0.001	
	1.0	¹⁴¹ Ce	0.6	0.6	0.002	
	3.0	²³⁹ Np	9.7	3.0	0.059	
Twin Falls, ID	362.3	gross β	26	<0.1	0.36	
	3.0	⁹⁵ Zr	1.6	0.2	0.007	
<i>.</i>	1.0	1°3Ru	0.3	0.3	0.001	
	0.0	¹³¹ I	ND	ND	ND	
	0.0	^{1 32} Te	ND	ND	ND	
	2.0	14 ° Ba	0.3	0.2	0.001	
	1.0	¹⁴¹ Ce	0.5	0.5.	0.001	
	4.9	²³⁹ Np	8.6	2.6	0.061	

0		The second second		ivity Con Ci/ml or	centration pCi/m ³
Sampling Location	No. Days Sampled ^a	Type of Radioactivity	C _{max}	C _{min}	C _{avg}
Iowa City, IA	348.8	gross β	2.2	<0.1	0.16
	0.0	⁹⁵ Zr	ND	ND	ND
•	0.0	¹⁰³ Ru	ND	ND	ND
	0.0	¹³¹ I	ND	ND	ND
•	0.0	^{1 32} Te	ND	ND	ND
	0.0	¹⁴ °Ba	ND	ND	ND
•	0.0	¹⁴¹ Ce	ND	ND	ND
•	0.0	s 39 Nb	ND	ND	ND
		· · · · · · · · · · · · · · · · · · ·			
Sioux City, IA	336.7	gross β	1.4	<0.1	0.17
	0.0	⁹⁵ Zr	ND	ND	ND
	0.0	¹⁰³ Ru	ND	ND	ND
	0.0	¹³¹ I	ND	ND	ND
	0.0	¹³² Te	ND	ND	ND
	0.0	^{14 °} Ba	ND	ND	ND
	0.0	141Ce	ND	ND	ND
•	0.0	²³⁹ Np	ND	ND	ND
Dodge City, KS	365.1	gross β	3.1	<0.1	0.20
	0.0	⁹⁵ Zr	ND	ND	ND
•	1.3	1°3Ru	0.1	0.1	<0.001
	1.3	¹³¹ I	0.1	0.1	<0.001
	0.0	¹³² Te	ND	ND	ND
	0.0	14 ° Ba	ND	ND	ND
	0.0	¹⁴¹ Ce	ND	ND	ND
	1.3	239 Np	3.0	3.0	0.010

Sampling	No. Days Type of		Radioactivity Concentration 10 ⁻¹² uCi/ml or pCi/m ³			
Location	Sampled ^a	Radioactivity	C _{max} .	C _{min}	Cavg	
Lake Charles, LA	365.5	gross β	7.5	<0.1	0.23	
	0.0	⁹⁵ Zr	ND	ND	ND	
	0.0	1°3 _{Ru}	ND	ND	ND	
	0.0	¹³¹ I	ND	ND	ND	
	0.0	^{1 32} Te	ND	ND	ND	
	3.0	^{14 °} Ba	0.06	0.06	<0.001	
	0.0	141Ce	ND	ND	ND	
	3.0	²³⁹ Np	1.7	1.7	0.014	
Monroe, LA	328.5	gross β	26	<0.1	0.24	
	1.3	⁹⁵ Zr	0.7	0.7	0.002	
	0.0	1°3Ru	ND	ND	ND	
	0.0	¹³¹ I	ND	ND	ND	
	0.0	¹³² Te	ND	ND	ND	
	0.0	14 °Ba	ND	ND	ND	
	1.3	¹⁴¹ Ce	0.2	0.2	0.001	
	1.3	²³⁹ Np	1.5	1.5	0.005	
New Orleans, LA	360.5	gross β	4.5	<0.1	0.21	
	1.0	⁹⁵ Zr	0.5	0.5	0.001	
	0.0	103Ru	ND	ND	ND	
	0.0	¹³¹ I	ND	ND	ND	
	0.0	¹³² Te	ND	ND	ND	
	0.0	14°Ba	ND	ND	ND	
	1.0	141 Ce	0.3	0.3 ·	0.001	
	1.0	²³⁹ Np	0.5	0.5	0.001	

Sompling	No. Days Type of			vity Cond i/ml or p	centration Ci/m ³
Sampling Location	Sampled [®]	Radioactivity	C _{max}	C _{min}	C _{avg}
Minneapolis, MN	349.5	gross β	2.4	<0.1	0.15
	6.0	⁹⁵ Zr	0.05	0.05	0.001
	0.0	1°3Ru	ND	ND	ND
	0.0	1 31 I	ND	ND	ND
·	0.0	^{1 32} Te	ND	ND	ND
	0.0	^{14 °} Ba	ND	ND	ND
	0.0	¹⁴¹ Ce	ND	ND	ND
	0.0	239Np	ND	ND	ND
Joplin, MO	356.2	gross β	5.7	<0.1	0.20
	1.0	⁹⁵ Zr	1.4	1.4	0.004
	0.0	103Ru	ND	ND	ND
	0.0	^{1,31} I	ND	ND	ND
	0.0	¹³² Te	ND	ND	ND
•	0.0	^{14 °} Ba	ND	ND	ND
	1.0	¹⁴¹ Ce	0.1	0.1	<0.001
•	0.0	²³⁹ Np	ND	ND	ND
St. Joseph, MO	366.0	gross β	2.4	<0.1	0.20
	3.0	⁹⁵ Zr	1.0	0.2	0.004
	0.0	1°3 _{Ru}	ND	ND	ND
	0.0	^{1 31} I	ND	ND	ND
	0.0	^{1 32} Te	ND	ND	ND
	1.0	^{14 o} Ba	0.2	0.2	0.001
	1.0	¹⁴¹ Ce	0.4	0.4	0.001
	2.0	239 Np	4.2	1.4	0.015

Sampling	No. Days Type of			Radioactivity Concentration 10 ¹² uCi/ml or pCi/m ³		
Location	Sampled ^a	Radioactivity	C _{max}	C _{min}	Cavg	
St. Louis, MO	358.1	gross β	2.7	<0.1	0.18	
	0.9	⁹⁵ Zr	1.5	1.5	0.004	
	0.0	^{1 ° 3} Ru	ND	ND	ND	
	0.0	¹³¹ I	ND	ND	ND	
	0.0	^{1 32} Te	ND	ND	ND	
•	0.0	^{14 °} Ba	ND	ND	ND	
	0.9	¹⁴¹ Ce	0.3	0.3	0.001	
	0.0	²³⁹ Np	ND	ND	ND	
North Platte, NE	346.6	gross β	2.9	<0.1	0.21	
	1.1	⁹⁵ Zr	0.9	0.9	0.003	
	0.0	103 _{Ru}	. ND	ND	ND	
	0.0	¹³¹ I	ND	ND	ND	
	0.0	¹³² Te	ND	ND	ND	
	0.0	^{14 °} Ba	ND	ND	ND	
	1.1	¹⁴¹ Ce	0.2	0.2	0.001	
•	3.0	²³⁹ Np	2.1	1.5	0.014	
Alamo, NV	358.3	gross β	16	<0.1	0.35	
•	3.0	⁹⁵ Zr	1.4	0.2	0.006	
•	0.0	1°3Ru	ND	ND	ND	
	1.0	¹³¹ I	0.2	0.2	0.001	
	0.0	¹³² Te	ND	ND	ND	
	1.0	^{14 °} Ba	0.3	0.3	0.001	
	1.0	¹⁴¹ Ce	0.5	0.5	0.001	
	4.1	²³⁹ Np	4.4	1.8	0.039	

Sampling	No. Days Type of		10 ⁻¹² u0	Radioactivity Concentration 10 ⁻¹² uCi/ml or pCi/m ³			
Location	Sampled ^a	Radioactivity	C _{max}	C _{min}	C _{avg}		
Austin, NV	322.4	gross β	13	<0.1	0.29		
	7.1	⁹⁵ Zr	2.1	0.2	0.017		
	4.1	103Ru	0.2	0.1	0.001		
	0.0	¹³¹ I	ND	ND	ND		
	0.0	¹³² Te	ND	ND	ND		
	0.0	^{14 °} Ba	ND	ND	ND		
	3.0	¹⁴¹ Ce	0.3	0.2	0.002		
	2.0	²³⁹ Np	9.0	3.3	0.034		
Battle Mountain, NV	361.7	gross β	11	<0.1	0.27		
•	0.8	⁹⁵ Zr	0.3	0.3	0.001		
	0.0	¹⁰³ Ru	ND	ND	ND		
	0.0	¹³¹ I	ND	ND	ND		
· ·	0.0	¹³² Te	ND	ND	ND		
	0.0	^{14 °} Ba	ND	ND	ND		
х.	0.8	¹⁴¹ Ce	0.2	0.2	<0.001		
	0.0	²³⁹ Np	ND	ND	ND		
Beatty, NV	361.5	gross β	13	<0.1	0.39		
	3.0	⁹⁵ Zr	0.5	0.1	0.002		
	0.0	103Ru	ND	ND	ND		
	2.9	¹³¹ I	0.2	0.2	0.002		
	2.0	¹³² Te	0.6	0.2	0.002		
· .	3.0	14 ° Ba	0.2	0.2	0.002		
	1.0	¹⁴¹ Ce	0.2	0.2	0.001		
	5.0	239 Np	10	2.4	0.079		

Sampling	No. Days Type of		Radioactivity Concentration 10 ¹² uCi/ml or pCi/m ³			
Location	Sampled ^a	Radioactivity	C _{max}	C _{min}	Cavg	
Blue Jay, NV	363.6	gross β	19	<0.1	0.31	
	3.0	⁹⁵ Zr	1.4	0.3	0.005	
	1.0	1°3Ru	0.2	0.2	0.001	
	0.0	¹³¹ I	ND	ND	ND	
	0.0	¹³² Te	ND	ND	ND	
	1.0	¹⁴ °Ba	0.2	0.2	0.001	
•	2.0	¹⁴¹ Ce	0.4	0.1	0.001	
	2.0	²³⁹ Np	3.9	1.7	0.015	
Caliente, NV	358.7	gross β	30	<0.1	0.41	
	6.7	⁹⁵ Zr	1.3	0.2	0.012	
	3.8	103Ru	0.2	0.1	0.001	
	0.0	¹³¹ I	ND	ND	ND	
	0.0	¹³² Te	ND	ND	ND	
	1.3	^{14 °} Ba	0.3	0.3	0.001	
•	4.8	¹⁴¹ Ce	0.6	0.2	0.004	
	3.1	239 Np	5.0	2.2	0.032	
	0.9	²³⁷ U	0.6	0.6	0.002	
Currant, NV	334.0	gross β	8.7	<0.1	0.32	
Blue Eagle Ranch	4.0	95 _{Zr}	0.5	0.5	0.005	
	4.0	103 _{Ru}	0.1	0.1	0.001	
	0.0	¹³¹ I	ND	ND	ND	
	0.0	¹³² Te	ND	ND	ND	
	0.0	14 ° Ba	ND	ND	ND	
	4.0	¹⁴¹ Ce	0.1	0.1	0.001	
	0.0	239 _{Np}	ND	ND	ND	

Compling	No. Days Type of			Radioactivity Concentratio 10 ¹² uCi/ml or pCi/m ³		
Sampling Location	Sampled [®]	Radioactivity	C _{max}	C _{min}	Cavg	
Currant Ranch, NV	362.1	gross β	24	<0.1	0.35	
•	2.0	95 _{Zr}	2.4	0.6	0.008	
	0.0	los _{Ru}	ND	ND	ND	
	0.0	¹³¹ I	ND	ND	ND	
•	0.0	^{1 32} Te	ND	ND	ND	
	0.0	^{14 o} Ba	ND	ND	ND	
	2.0	¹⁴¹ Ce	0.2	0.1	0.001	
	1.0	²³⁹ Np	4.7	4.7	0.013	
Currie, NV	346.6	gross β	22	<0.1	0.32	
	3.0	⁹⁵ Zr	1.2	0.1	0.005	
	0.0	103Ru	ND	ND	ND	
	0.0	131 [°] I	ND	ND	ND	
	0.0	132 _{Te}	ND	ND	ND	
	0.0	14 ° Ba	ND	ND	ND	
	2.0	¹⁴¹ Ce	0.1	0.1	0.001	
	0.0	²³⁹ Np	ND	ND	ND	
Diablo, NV	362.6	gross β	16	<0.1	0.32	
	1.0	95 _{Zr}	0.8	0.8	0.002	
	0.0	1°3 _{Ru}	ND	ND	ND	
	1.0	¹³¹ I	0.1	0.1	<0.001	
	0.0	¹³² Te	ND	ND	ND	
	1.0	^{14 o} Ba	0.2	0.2	0.001	
	1.0	¹⁴¹ Ce	0:3	0.3 .	0.001	
	1.0	239 Np	0.9	0.9	0.002	

No.

Sampling	No. Days Type of		Radioactivity Concentratio 10 ⁻¹² uCi/ml or pCi/m ³			
Location	Sampled ^a	Radioactivity	C _{max}	C _{min}	Cavg	
Duckwater, NV	334.4	gross β	14	<0.1	0.30	
	3.5	⁹⁵ Zr	0.5	0.2	0.004	
	2.1	103 _{Ru}	0.5	0.2	0.002	
	2.1	¹³¹ I	1.3	0.4	0.005	
	2.1	^{1 32} Te	2.9	0.7	0.010	
	2.1	14 °Ba	1.2	0.5	0,005	
	0.0	¹⁴¹ Ce	ND	ND	ND	
	1.4	²³⁹ Np	4.8	4.8	0.018	
Elko, NV	352.0	gross β	8.3	<0.1	0.31	
	7.3	⁹⁵ Zr	2.8	0.1	0.016	
	2.0	103 Ru	0.2	0.1	0.001	
	3.2	¹ 31 I	0.7	0.2	0.003	
•	3.2	¹³² Te	1.1	0.4	0.005	
	4.2	14 ° Ba	0.6	0.2	0.005	
	2.0	¹⁴¹ Ce	0.9	0.8	0.005	
	2.0	²³⁹ Np	6.2	1.9	0.022	
Ely, NV	364.2	gross β	9.1	<0.1	0.26	
	2.1	95 _{Zr}	0.3	0.2	0.001	
	2.1	los _{Ru}	0.4	0.3	0.002	
	2.8	131 I	0.9	0.3	0.005	
	2.1	^{1 32} Te	2.2	1.0	0.009	
	2.1	14 ° Ba	1.0	0.4	0.004	
	0.0	141 Ce	ND	ND	ND	
	0.7	²³⁹ Np	2.1	2.1	0.004	

Sampling Location	No. Days Sampled ^ª	Type of	Radioactivity Concentration 10 ¹² uCi/ml or pCi/m ³		
and the second		Radioactivity	C _{max}	C _{min}	C _{avg}
Eureka, NV	365.0	gross β	17	<0.1	0.34
	8.0	⁹⁵ Zr	2.3	0.3	0.025
	2.0	1°3 _{Ru}	0.1	0.1	0.001
	3.0	¹³¹ I	0.9	0.2	0.004
	3.0	^{1 32} Te	1.8	0.3	0.007
	5.0	14 °Ba	1.0	0.2	0.005
	4.0	141Ce	0.5	0.2	0.004
	4.0	239 Np	7.7	1.6	0.041
Fallon, NV	364.3	gross β	7.1	<0.1	0.28
•	3.9	⁹⁵ Zr	3.2	0.3	0.012
	2.0	los _{Ru}	0.2	0.1	0.001
	1.0	¹³¹ I	0.4	0.4	0.001
	3.0	132 _{Te}	0.7	0.3	0.004
	1.9	^{14 °} Ba	0.5	0.3	0.002
	2.9	141Ce	0.7	0.1	0.003
	1.0	²³⁹ Np	3.2	3.2	0.008
Frenchman Station,	NV 339.0	gross β	9.2	<0.1	0.26
•	3.9	95Zr	1.2	0.1	0.005
	2.9	1°3Ru	0.2	0.1	0.001
	2.8	¹³¹ I	0.5	0.1	0.003
	3.8	¹³² Te	1.1	0.2	0.007
	5.7	14 ° Ba	0.6	0.1	0.004
	1.0	¹⁴¹ Ce	0.4	0.4 ·	0.001
	1.9	²³⁹ Np	3.6	1.2	0.013

	No. Days Type of		Radioactivity Concentrat 10 ¹² uCi/ml or pCi/m ³			
Sampling Location	No. Days Sampled [®]	Radioactivity	C _{max}	C _{min}	Cavg	
Geyser Maintenance	338.2	gross β	12	<0.1	0.35	
Station, NV	6.3	95 _{Zr}	1.5	0.2	0.009	
	3.1	lo3 _{Ru}	0.2	0.1	0.001	
	3.1	¹³¹ I	0.7	0.2	0.004	
	3.1	^{1 32} Te	1.6	0.2	0.008	
· ·	4.1	14 °Ba	0.8	0.2	0.005	
	2.2	¹⁴¹ Ce	0.4	. 0.2	0.002	
	5.4	²³⁹ Np	16	1.5	0.084	
Goldfield, NV	337.4	gross β	15	<0.1	0.31	
	4.0	⁹⁵ Zr	0.3	0.2	0.002	
	1.0	¹⁰³ Ru	0.3	0.3	0.001	
	4.1	¹³¹ I	0.9	0,1	0.004	
	2.0	¹³² Te	2.0	0.5	0.007	
•	3.0	14 ° Ba	1.3	0.2	0.005	
	1.0	¹⁴¹ Ce	0.2	0.2	0.001	
	3.0	²³⁹ Np	4.5	1.0	0.024	
Groom Lake, NV	363.2	gross β	21	<0.1	0.38	
	12.0	⁹⁵ Zr	0.8	0.2	0.013	
	4.0	1°3Ru	0.2	0.1	0.002	
	6.0	¹³¹ I	1.5	0.1	0.008	
· ·	6.0	¹³² Te	3.5	0.2	0.016	
	9,9	14 ° Ba	2.0	0.1	0.01	
	5.0	¹⁴¹ Ce	0.3	0.1	0.00	
	7.0	²³⁹ Np	4.6	1.2	0.043	

	No. Days Type of		_	Radioactivity Concentration 10 ¹² uCi/ml or pCi/m ³			
Sampling Location	Sampled ^a	Radioactivity	C _{max}	C _{min}	Cavg		
Hiko, NV	332.4	gross β	18	<0.1	0.40		
	9.0	⁹⁵ Zr	1.0	0.1	0.010		
	6.0	¹⁰³ Ru	0.5	0.1	0.004		
	7.0	¹³¹ I	1.2	0.2	0.007		
	3.0	^{1 32} Te	2.3	0.2	0.008		
	11.0	^{14 o} Ba	1.3	0.1	0.010		
	2.0	¹⁴¹ Ce	0.4	0.2	0.002		
•	4.0	²³⁹ Np	11	2.4	0.055		
14		· .					
Indian Springs, NV	351.2	gross β	25	<0.1	0.38		
	9.0	⁹⁵ Zr	1.5	0.1	0.012		
	4.0	103Ru	0.3	0.1	0,002		
	7.0	¹³¹ I	1.4	0.1	0.007		
	3.0	^{1 32} Te	3.6	0.5	0.013		
•	9.0	14 ° Ba	1.9	0.1	0.010		
	2.0	¹⁴¹ Ce	0.6	0.2	0.002		
	3.0	²³⁹ Np	14	3.2	0,083		
	1.0	²³⁷ U	1.1	1.1	0.003		
Las Vegas, NV	361.2	gross β	55	<0.1	0.52		
	26.0	⁹⁵ Zr	0.9	0.1	0.021		
•	20.9	lo3Ru	0.5	0.05	0.007		
	14.9	¹³¹ I	0.9	0.1	0.012		
	7.0	¹³² Te	2.6	0.4	0.018		
	15.9	^{14 °} Ba	1.1	0.1	0.012		
	15.0	¹⁴¹ Ce	12	0.05	0.038		
	10.0	²³⁹ Np	34	0.7	0.135		

0	No. Days Type of		Radioactivity Concentrati 10 ⁻¹² uCi/ml or pCi/m ³		
Sampling Location	NO. Days Sampled [®]	Radioactivity	C _{max}	C _{min}	Cavg
Lathrop Wells, NV	359.6	gross β	27	<0.1	0.42
	9.0	95 _{Zr}	2.0	0.1	0.013
	11.0	103 _{Ru}	. 0.4	0.07	0.004
	14.0	¹³¹ I	1.9	0.1	0.011
	6.0	^{1 32} Te	4.6	0.1	0.016
· .	11.0	^{14 °} Ba	2.2	0.1	0.011
	4.0	¹⁴¹ Ce	0.4	0.07	0.003
•	5.0	²³⁹ Np	9.0	1.2	0.057
Lida, NV	362.5	gross β	14	<0.1	0.43
	5.3	⁹⁵ Zr	0.5	0.3	0.006
•	4.3	103 _{Ru}	0.4	0.1	0.003
	3.4	^{1 31} I	0.9	0.4	0.006
	3.4	¹³² Te	1.6	0.3	0.009
	3.4	14 ° Ba	0.9	0.3	0.006
	0.0	141Ce	ND	ND	ND
•	3.3	²³⁹ Np	26	2.5	0.116
Lovelock, NV	365.7	gross β	7.7	<0.1	0.30
· .	10.0	⁹⁵ Zr	1.5	0.2	0.016
	4.0	¹⁰³ Ru	0.2	0.1	0.002
	3.0	^{1 31} I	0.4	0.1	0.002
	3.0	¹³² Te	0.9	0.4	0.005
	6.0	^{14 °} Ba	0.6	0.2	0.005
• · ·	6.0	141 Ce	0.4	0.1	0.004
	3.0	239 Np	4.4	1.1	0.020

0	No. Days Type of		Radioactivity Concentration 10 ¹² uCi/ml or pCi/m ³			
Sampling Location	No. Days Sampled [®]	Radioactivity	C _{max}	C _{min}	Cavg	
Lund, NV	349.7	gross β	19	<0.1	0.35	
	8.0	⁹⁵ Zr	3.1	0.1	0.020	
	6.0	¹⁰³ Ru	0.3	0.1	0.002	
	5.0	¹³¹ I	1.3	0.1	0.006	
	3.0	¹³² Te	3.0	0.4	0.012	
	6.1	^{14 °} Ba	1.5	0.1	0.009	
	4.0	141 Ce	0.6	0.1	0.003	
	2.0	239 Np	4.2	2.5	0.018	
Mesquite, NV	364.7	gross β	8.4	<0.1	0.35	
mesquite, MV	12.0	95Zr	0.6	0.1	0.009	
	10.0	103 _{Ru}	0.2	0.1	0.005	
	9.0	¹³¹ I	0.4	0.2	0.006	
	5.0	¹ 32 _{Te}	1.1	0.3	0.009	
•	13.0	¹⁴ °Ba	0.5	0.2	0.010	
•	5.0	¹⁴¹ Ce	0.3	0.2	0.003	
• .	6.0	239 _{Np}	7.7	2.1	0.068	
Nyala, NV	347.7	gross β	22	<0.1	0.26	
	1.0	⁹⁵ Zr	0.8	0.8	0.002	
	1.0	1°3Ru	0.5	0.5	0.001	
	3.0	¹³¹ I	1.5	0.2	0.005	
	2.0	¹³² Te	2.9	0.4	0.009	
	2.0	14 ° Ba	1.5	0.2	0.005	
	0.0	¹⁴¹ Ce	ND	ND	ND	
	0.0	239 Np	ND	ND	ND	

			Radioactivity Concentration 10 ⁻¹² uCi/ml or pCi/m ³			
Sampling Location	No. Days Sampled ^a	Type of Radioactivity	C _{max}	C _{min}	Cavg	
Pahrump, NV	308.1	gross β	34	<0.1	0.38	
· .	7.8	95 _{Zr}	0.7	0.1	0.005	
· · · · ·	13.0	¹⁰³ Ru	0.6	0.06	0.005	
	8.9	¹³¹ I	2.2	0.2	0.011	
	7.0	^{1 32} Te	4.6	0.2	0.018	
	11.7	^{14 o} Ba	2.7	0.1	0.014	
	4.0	¹⁴¹ Ce	0.1	0.1	0.001	
	9.1	539 Nb	11	0.8	0,073	
Pioche, NV	360.9	gross β	23	<0.1	0.38	
· .	5.0	⁹⁵ Zr	2.1	0.3	0.012	
	3.0	103Ru	0.3	0.1	0.001	
	3.1	¹³¹ I	1.3	0.1	0.005	
	3.1	¹³² Te	2.9	0.1	0.010	
	5.2	^{14 °} Ba	1.7	0.1	0.007	
	3.0	¹⁴¹ Ce	0.4	0.2	0.002	
•	9.0	²³⁹ Np	6.5	0.7	0.071	
Reno, NV	364.8	gross β	6.2	<0.1	0.26	
	3.0	⁹⁵ Zr	0.2	0.1	0.001	
•	4.0	1°3Ru	0.2	0.1	0.002	
	3.9	¹³¹ I	0.3	0.1	0.002	
	3.9	¹³² Te	0.8	0.3	0.005	
	4.9	^{14 °} Ba	0.3	0.2	0.003	
	0.0	¹⁴¹ Ce	ND	ND	ND	
	1.0	²³⁹ Np	3.7	3.7	0.010	

6		Trans. of	Radioactivity Concentration 10 ¹² uCi/ml or pCi/m ³			
Sampling Location	No. Days Sampled ^a	Type of Radioactivity	C _{max}	C _{min}	Cavg	
Round Mountain, NV	360.5	gross β	41	<0.1	0.43	
	5.2	⁹⁵ Zr	1.3	0.5	0.012	
	2.2	^{1 0 3} Ru	0.7	0.3	0.003	
	2.2	¹³¹ I	2.0	1.3	0.010	
	2.2	^{1 32} Te	5.0	2.7	0.022	
· .	2.2	^{14 °} Ba	2.1	1.5	0.010	
	3.0	¹⁴¹ Ce	0.4	0.2	0.002	
	3.0	.239 Np	6.5	1.0	0.030	
Scotty's Junction,	359.3	gross β	13	<0.1	0.35	
NV	4.0	⁹⁵ Zr	0.4 .	0.2	0.003	
	5.0	103Ru	0.3	0.1	0.002	
	5.0	¹³¹ I	0.9	0.2	0.006	
	2.0	¹³² Te	1.7	1.1	0.008	
	4.0	^{14 °} Ba	0.8	0.2	0.005	
	2.0	¹⁴¹ Ce	0.1	0.1	0.001	
•	3.0	239 ^{Nb}	4.9	3.2	0.035	
Stone Cabin Ranch,	352.3	gross β	31	<0.1	0.34	
NV	3.0	⁹⁵ Zr	1.2	0.4	0.006	
	0.0	1°3 Ru	ND	ND	ND	
	0.0	¹³¹ I	ND	ND	ND	
	0.0	¹³² Te	ND	ND	ND	
	0.0	^{14 o} Ba	ND	ND	ND	
	1.0	¹⁴¹ Ce	0.2	0.2 .	0.001	
•	1.0	239 NP	3.0	3.0	0.008	

	N		Radioactivity Conce 10 ¹² uCi/ml or pC		
Sampling Location	No. Days Sampled ^a	Type of Radioactivity	C _{max}	C _{min}	Cavg
Sunnyside, NV	357.9	gross β	10	<0.1	0.30
	5.4	⁹⁵ Zr	0.6	0.1	0.004
	2.0	1°3Ru	0.4	0.1	0.001
,	4.4	¹³¹ I	0.6	0.2	0.004
	0.9	^{1 32} Te	1.4	1.4	0.004
	4.1	^{14 °} Ba	0.8	0.2	0.004
	0.0	¹⁴¹ Ce	ND	ND	ND
	3.4	²³⁹ Np	4.3	1.0	0.018
Tonopah, NV	365.0	gross β	13	<0.1	0.32
	3.0	⁹⁵ Zr	0.5	0.3	0.003
	3.0	losRu	0.1	0.1	0.001
	4.0	¹³¹ I	0.8	0.2	0.004
	3.0	¹³² Te	1.7	0.2	0.008
	4.0	¹⁴ °Ba	0.9	0.1	0.004
	1.0	¹⁴¹ Ce	0.2	0.2	0.001
	3.0	²³⁹ Np	4.6	1.5	0.028
Fonopah T est Range,	355.5	gross β	8.4	<0.1	0.29
V	10.9	⁹⁵ Zr	0.9	0.08	0.009
	6.0	¹⁰³ Ru	0.2	0.1	0.002
	7.0	¹³¹ I	0.5	0.1	0.005
	2.0	¹³² Te	1.2	1.2	0.007
	4.1	^{14 °} Ba	0.7	0.1	0.004
	1.9	¹⁴¹ Ce	0.2	0.1	0.001
	2.9	239 _{Np}	4.4	2.1	0.023

Complian	No. Doug	Type of	Radioactivity Concentration 10 ⁻¹² uCi/ml or pCi/m ³			
Sampling Location	No. Days Sampled ^a	Radioactivity	C _{max}	C _{min}	Cavg	
Twin Springs Ranch	347.2	gross β	16	<0.1	0.33	
(Fallini's), NV	4.0	⁹⁵ Zr	0.4	0.2	0.004	
· · ·	2.0	¹⁰³ Ru	0.3	0.1	0.001	
	4.0	¹³¹ I	1.1	0.2	0.006	
	2.0	^{1 32} Te	2.5	0.6	0.009	
	2.0	^{14 °} Ba	1.4	0.4	0.005	
	1.0	¹⁴¹ Ce	0.3	0.3	0.001	
	2.0	²³⁹ Np	3.5	1.8	0.014	
Warm Springs, NV	181.1	gross β	0.9	<0.1	0.16 ^b	
	1.0	⁹⁵ Zr	0.2	0.2	0.001 ^b	
	0.0	1°3 _{Ru}	ND	ND	ND	
	0.0	¹³¹ I	ND	ND	ND	
	0.0	132 _{Te}	ND	ND	ND	
	0.0	^{14 °} Ba	ND	ND	ND	
	0.0	141Ce	ND	ND	ND	
	0.0	²³⁹ Np	ND	ND	ND	
Warm Springs Ranch,	352.2	gross β	.6.8	<0.1	0.32	
NV	7.0	⁹⁵ Zr	0.9	0.1	0.007	
	5.0	103 Ru	0.3	0.1	0.003	
	11.0	^{1 31} I	0.4	0.1	0.006	
	4.0	¹³² Te	0.8	0.2	0.005	
	11.0	^{14 °} Ba	0.4	0.1	0.007	
	3.0	¹⁴¹ Ce	0.2	0.2 .	0.002	
	5.0	²³⁹ Np	5.2	2.3	0.049	

• • • • • • • • •	No. D		Radioact 10 ¹² u		
Sampling Location	No. Days Sampled [®]	Type of Radioactivity	C _{max}	C _{min}	Cavg
Wells, NV	362.8	gross β	5.3	<0.1	0.27
	4.0	⁹⁵ Zr	0.8	0.1	0.004
	1.0	103Ru	0.2	0.2	0.001
	3.0	¹³¹ I	0.4	0.1	0.002
	3.0	^{1 32} Te	0.7	0.2	0.004
	3.0	^{14 °} Ba	0.4	0.3	0.003
	1.0	¹⁴¹ Ce	0.3	0.3	0.001
	0.0	s 39 Nb	ND	ND	ND ·
Winnemucca, NV	365.6	gross β	6.6	<0.1	0.26
	5.0	⁹⁵ Zr	0.8	0.1	0.007
	2.0	¹⁰³ Ru	0.1	0.1	0.001
	2.0	^{1 31} I	0.4	0.2	0.002
	2.0	^{1 32} Te	0.7	0.5	0.003
	3.0	^{14 °} Ba	0.4	0.1	0.002
	2.0	¹⁴¹ Ce	0.2	0.2	0.001
	2.0	²³⁹ Np	2.5	0.8	0.009
Albuquerque, NM	351.9	gross β	47	<0.1	0.57
	17.9	⁹⁵ Zr	1.6	0.09	0.031
• ·	16.0	103 Ru	0.3	0.07	0.006
	9.0	131 I	3.1	0.1	0.014
	6.1	¹³² Te	6.5	0.2	0.025
-	13.1	^{14 °} Ba	3.3	0.1	0.019
	9.9	¹⁴¹ Ce	0.5	0.1	0.008
	4.9	239 Np	22	2.2	0,095
	3.1	²³⁷ U	0.6	0.6	0.00

				Radioactivity Concentration 10 ⁻¹² uCi/ml or pCi/m ³		
Sampling Location	No. Days Sampled [®]	Type of Radioactivity	C _{max}	C _{min}	Cavg	
Carlsbad, NM	360.9	gross β	21	<0.1	0.54	
	12.0	⁹⁵ Zr	1.8	0.2	0.019	
	12.0	lo3Ru	0.7	0.1	0.009	
	10.0	¹³¹ I	0.9	0.1	0.012	
	6.0	^{1 32} Te	2.2	0.3	0.018	
	12.0	^{14 o} Ba	1.2	0.2	0.018	
	4.0	¹⁴¹ Ce	0.6	0.2	0.005	
	8.0	239 ND	26	0.9	0.246	
Muskogee, OK	361.5	gross β	10	<0.1	0.20	
	1.0	⁹⁵ Zr	0.1	0.1	<0.001	
	1.0	103 _{Ru}	0.3	0.3	0.001	
	3.0	1 31 I	0.8	0.1	0.003	
·	3.0	¹³² Te	1.6	0.2	0.006	
	2.8	¹⁴ ° Ba	0.8	0.1	0.003	
	0.0	¹⁴¹ Ce	ND	ND	ND	
	0.0	²³⁹ Np	ND	ND	ND	
Medford, OR	357.3	gross β	3.2	<0.1	0.16	
	0.0	⁹⁵ Zr	ND	ND	ND	
•	0.0	^{1°3} Ru	ND	ND	ND	
	0.0	¹³¹ I	ND	ND	ND	
	0.0	¹³² Te	ND	ND	ND	
	0.0	^{14 °} Ba	ND	ND	ND	
	0.0	¹⁴¹ Ce	ND	ND	ND	
· · · · · · · · · · · · · · · · · · ·	2.1	²³⁹ Np	3.1	3.1	0.018	

			Radioactivity Concentration 10 ¹² uCi/ml or pCi/m ³			
Sampling Location	No. Days Sampled [®]	Type of Radioactivity	C _{max}	C _{min}	Cavg	
Burns, OR	363.9	gross β	25	<0.1	0.29	
	3.0	⁹⁵ Zr	1.4	0.1	0.005	
•	2.0	¹⁰³ Ru	0.2	0.2	0.001	
	4.0	¹³¹ I	0.4	0.2	0.003	
	2.0	^{1 32} Te	0.3	0.2	0.001	
	5.0	^{14 °} Ba	0.4	0.2	0.004	
	1.0	¹⁴¹ Ce	0.3	0.3	0.001	
	2.0	²³⁹ Np	25	4.1	0.080	
Aberdeen, SD	340.1	gross β	0.9	<0.1	0.15	
	0.0	⁹⁵ Zr	ND	ND	ND	
	0.0	103Ru	ND	ND	ND	
	0.0	131 ['] I	ND	ND	ND	
	0.0	¹³² Te	ND	ND	ND	
	0.0	^{14 °} Ba	ND	ND	ND	
	0.0	¹⁴¹ Ce	ND	ND	. ND	
•	0.0	239Np	ND	ND	ND	
Rapid City, SD	365.0	gross β	1.5	<0.1	0.16	
	0.0	⁹⁵ Zr	ND	ND	ND	
	0.0	1°3Ru	ND	ND	ND	
	0.0	¹³¹ I	ND	ND	ND	
	0.0	¹³² Te	ND	ND	ND	
	0.0	^{14 °} Ba	ND	ND	ND	
	0.0	¹⁴¹ Ce	ND	ND.	ND	
	0.0	²³⁹ Np	ND	ND	ND	

				tivity Concentration Ci/ml or pCi/m ³		
Sampling Location	No. Days Sampled [®]	Type of Radioactivity	C _{max}	C _{min}	Cavg	
Abilene, TX	347.2	gross β	8.6	<0.1	0.31	
	5.2	⁹⁵ Zr	0.2	0.1	0.002	
	5.1	lo3 _{Ru}	0.3	0.1	0.003	
	5.2	131 I	0.6	0.2	0,006	
	1.2	^{1 32} Te	0.2	0.2	0.001	
	7.1	^{14 °} Ba	0.8	0.2	0.008	
	0.0	¹⁴¹ Ce	ND	ND	ND	
	2.1	239 Np	7.2	6.9	0.041	
		•	,			
Amarillo, TX	363.6	gross β	37	<0.1	0.37	
	9.0	⁹⁵ Zr	1.5	0.1	0.013	
	6.0	1°3 _{Ru}	0.9	0.1	0.005	
	6.0	¹³¹ I	2.3	0.1	0.011	
	6.0	¹³² Te	4.9	0.2	0.021	
·	9.0	^{14 °} Ba	2.6	0.1	0.015	
	2.0	141Ce	0.2	0.2	0.001	
•	5.0	²³⁹ Np	6.4	1.1	0.050	
Austin, TX	329.6	gross β	23	<0.1	0.35	
	12.0	⁹⁵ Zr	0.7	0.1	0.010	
	12.0	¹⁰³ Ru	0.7	0.05	0.006	
	4.0	¹³¹ I	1.3	0.7	0.010	
	5.0	¹³² Te	3.2	0.3	0.022	
	5.0	¹⁴ °Ba	1.7	0.2	0.012	
	4.0	¹⁴¹ Ce	0.08	0.08	0.001	
	4.0	239 Np	0.8	0.8	0.009	

for the Air Surveillance Network

Sampling	No. Days	Type of	10 ¹² u	ctivity Concentratio ³ uCi/ml or pCi/m ³		
Location	Sampled ^a	Radioactivity	C _{max}	C _{min}	Cavg	
Ft Worth, TX	344.7	gross β	33	<0.1	0.32	
	5.3	95 _{Zr}	0.6	0.1	0.005	
	2.1	¹⁰³ Ru	0.6	0.1	0.002	
	3.1	¹³¹ I	1.6	0.2	0.006	
	4.2	^{1 32} Te	4.3	0.3	0.015	
	4.2	^{14 °} Ba	2.0	0.2	0.008	
	2.2	¹⁴¹ Ce	0.2	0.1	0.001	
	1.0	239 _{Np}	2.4	2.4	0.007	
Bryce Canyon, UT	342.7	gross β	23	<0.1	0.42	
•	11.1	95 _{Zr}	1.1	0.1	0.011	
	6.1	¹⁰³ Ru	0.7	0.08	0.003	
	4.1	^{1 31} I	1.5	0.3	0,007	
·	4.1	^{1 32} Te	3.0	0.7	0.015	
	4.1	^{14 °} Ba	1.6	0.3	0.007	
	7.0	¹⁴¹ Ce	0.2	0.06	0.002	
	3.2	239 _{Np}	4.5	2.7	0.029	
Cedar City, UT	363.6	gross β	11	<0.1	0.38	
•	6.8	95 _{Zr}	0.5	0.1	0.005	
• • • • • • • • • • • • • • • • • • •	3.0	1°3Ru	0.2	0.1	0.001	
	6.0	^{1 31} I	1.3	0.2	0.007	
	4.0	^{1 32} Te	1.5	0.1	0.009	
	8.9	^{14 °} Ba	1.5	0.1	0.010	
	1.9	¹⁴¹ Ce	0.2	0.1	0.001	
	4.9	239 _{Np}	10	1.2	0.057	

0	No. Dovo	Type of		ivity Con Ci/ml or	ncentration pCi/m ³	
Sampling Location	No. Days Sampled [®]	Radioactivity	C _{max}	C _{min}	Cavg	
Delta, UT	362.9	gross β	16	<0.1	0.35	
	6.2	95Zr	1.9	0.2	0.014	
	3.0	los _{Ru}	0.6	0.2	0.003	
	4.0	¹³¹ I	0.9	0.2	0.006	
	3.0	^{1 32} Te	2.5	0.2	0.011	
	4.1	^{14 o} Ba	1.0	0.2	0.005	
	2.1	141 Ce	0.5	0.4	0.003	
	3.1	²³⁹ Np	6.2	2.2	0.007	
Dugway, UT	362.6	gross β	17	<0.1	0.29	
, ,	2.7	9 ⁵ Zr	0.2	0.2	0.001	
	1.7	103 _{Ru}	0.2	0.1	0.001	
	3.7	1 31 I	0.8	0.2	0.004	
	1.7 .	^{1 32} Te	2.4	0.3	0.005	
	2.7	14 ° Ba	1.0	0.2	0.003	
	0.0	¹⁴¹ Ce	ND	ND	ND	
	1.0	²³⁹ Np	2.5	2.5	0.007	
Enterprise, UT	363.2	gross β	13	<0.1	0.35	
	10.2	95Zr	1.0	0.1	0.010	
	7.1	1°3Ru	0.2	0.1	0.003	
	7.1	¹³¹ I	. 0.6	0.1	0.005	
	3.0	^{1 32} Te	1.5	0.2	0.006	
	9.0	^{14 °} Ba	1.0	0.2	0.009	
	4.1	¹⁴¹ Ce	0.2	0.1 .	0.002	
· · · ·	5.0	²³⁹ Np	11 -	1.2	0.053	

Table 4 1972 Summary of Analytical Results

for the Air Surveillance Network

.

Compline	No. Down	Turne of	Radioactivity Concentration 10 ¹² uCi/ml or pCi/m ³			
Sampling Location	No. Days Sampled [®]	Type of Radioactivity	C _{max}	C _{min}	Cavg	
Garrison, UT	365.0	gross β	14	<0.1	0.32	
	3.0	⁹⁵ Zr	0.6	0.2	0.003	
	2.0	l° ³ Ru	0.3	0.2	0.001	
	4.0	131 I	0.6	0.2	0.005	
•	3.0	¹ ³² Te	1.8	1.0	0.011	
	4.0	¹⁴ ^o Ba	1.0	0.3	0.007	
	0.0	¹⁴¹ Ce	ND	ND	ND	
	1.0	²³⁹ Np	3.3	3.3	0.009	
Logan, UT	360.4	gross β	64	<0.1	0.46	
	5.0	⁹⁵ Zr	1.2	0.3	0.010	
	1.0	103 _{Ru}	1.4	1.4	0.004	
	3.1	¹³¹ I	3.7	0.2	0.012	
· •	3.1	¹³² Te	10	0.2	0.031	
-	5.1	^{14 °} Ba	4.2	0.1	0.015	
	2.0	¹⁴¹ Ce	0.5	0.1	0.002	
•	3.0	239 _{Np}	3.9	1.7	0.022	
Milford, UT	359.0	gross β	12	<0.1	0.35	
	7.1	95 _{Zr}	2.0	0.2	0.011	
	5.0	1°3 _{Ru}	0.5	0.1	0.003	
	5.0	¹³¹ I	0.8	0.2	0.005	
	2.0	¹³² Te	1.8	0.7	0.007	
	60	^{14 o} Ba	0.9	0.2	0.007	
· · · · · · · · · · · · · · · · · · ·	2.0	¹⁴¹ Ce	0.4	0.3	0.002	
	5.0	239Np	10	1.1	0.048	

		7	Radioactivity Concentrati 10 ⁻¹² uCi/ml or pCi/m ³			
Sampling Location	No. Days Sampled ^a	Type of Radioactivity	C _{max}	C _{min}	Cavg	
Monticello, UT	286.9	gross β	23	<0.1	0.47	
	9.0	⁹⁵ Zr	0.5	0.1	0.007	
	8.0	103 _{Ru}	0.5	0.1	0.004	
	6.0	1 31 I	1.3	0.2	0.008	
	6.0	¹³² Te	2.9	0.2	0.018	
	9.0	^{14 °} Ba	1.3	0.2	0.011	
	1.0	141Ce	0.3	0.3	0.001	
	6.1	²³⁹ Np	5.2	1.2	0.045	
Parowan, UT	334.7	gross β	20	<0.1	0.40	
	8.0	95 _{Zr}	2.6	0.1	0.017	
	6.0	los _{Ru}	0.5	0.1	0.004	
	4.0	¹³¹ I	0.8	0.2	0.005	
	2.0	¹³² Te	1.2	1.0	0.006	
·	7.0	^{14 °} Ba	1.0	0.2	0.007	
	4.0	¹⁴¹ Ce	0.5	0.3	0.004	
	6.0	²³⁹ Np	8.2	1.5	0.065	
Provo, UT	359.6	gross β	49	<0.1	0.47	
	5.9	⁹⁵ Zr	0.8	0.2	0.007	
•	4.0	¹⁰³ Ru	. 0.4	0.1	0,003	
	6.0	^{1 31} I	2.7	1.0	0.031	
	4.0	¹³² Te	7.7	0.3	0.027	
	.5.0	^{14 °} Ba	3.0	0.1	0.012	
	1.0	¹⁴¹ Ce	0.2	0.2	0.001	
	1.0	²³⁹ Np	3.9	3.9	0.01	

. •

<u>sani 19</u>

.

Table 4 1972 Summary of Analytical Results

for the Air Surveillance Network

			Radioactivity Concentration 10 ¹² uCi/ml or pCi/m ³			
Sampling Location	No. Days Sampled [®]	Type of Radioactivity	C _{max}	C _{min}	Cavg	
Roosevelt, UT	358.2	gross β	55	<0.1	0.43	
	8.0	⁹⁵ Zr	1.0	0.2	0.010	
	5.0	¹⁰³ Ru	0.9	0.1	0.004	
	6.0	¹³¹ I	2.6	0.3	0.013	
	6.0	^{1 32} Te	7.2	0.2	0,026	
	6.0	^{14 °} Ba	3.1	0.2	0.013	
	3.0	¹⁴¹ Ce	0.2	0.2	0,002	
	2.0	s sa Nb	6.2	1.4	0.021	
	1.0	² 37 U	0.5	0.5	0.001	
St. George, UT	363.4	gross β	17	<0.1	0.39	
	5.0	⁹⁵ Zr	0.4	0.2	0.004	
	3.9	¹⁰³ Ru	0.3	0.2	0.002	
	5.0	¹³¹ I	1.1	0.2	0.006	
	3.0	^{1 32} Te	2.5	0.7	0.012	
	8.8	^{14 °} Ba	1.2	0.02	0.009	
	1.1	¹⁴¹ Ce	0.1	0.1	<0.001	
•	3.8	²³⁹ Np	4.7	1.9	0.037	
Salt Lake City, UT	363.5	gross β	68	<0.1	0,47	
	6.0	⁹⁵ Zr	1.7	0.1	0.012	
	3.9	1°3 _{Ru}	1.2	0.1	0.004	
	5.9	¹³¹ I	3.3	0.9	0.028	
	4.9	¹³² Te	9.6	0.1	0.031	
	4.9	^{14 o} Ba	4.4	0.1	0.016	
	2.0	¹⁴¹ Ce	0.4	0.3	0.002	
	1.0	239 NP	2.9	2.9	0.008	

Sampling	No. Days	Type of	Radioactivity Concentration 10 ¹² uCi/ml or pCi/m ³			
Location	Sampled ⁴	Radioactivity	C _{max}	C _{min}	Cavg	
Wendover, UT	338.8	gross β	15	<0.1	0.36	
	9.0	⁹⁵ Zr	1.3	0.1	0.011	
	5.0	^{1 ° 3} Ru	0.2	0.1	0.002	
	6.0	131 _I	0.6	0.2	0.006	
	4.0	^{1 32} Te	1.8	0.4	0.011	
•	6.0	^{14 o} Ba	0.7	0.2	0.006	
	2.0	¹⁴¹ Ce	0.4	0.2	0.002	
	2.0	²³⁹ Np	3.8	3.7	0.020	
		•	•			
Seattle, WA	364.3	gross β	22	<0.1	0.13	
	0.0	⁹⁵ Zr	ND	ND	ND	
	0.0	lo3Ru	ND	ND	ND	
	1.0	¹³¹ I	0.2	0.2	0.001	
•	1.0	¹³² Te	0.2	0.2	0.001	
	0.0	14 ° Ba	ND	ND	ND	
	0.0	¹⁴¹ Ce	ND	ND	ND	
	0.0	²³⁹ Np	ND	ND	ND	
Spokane, WA	343.0	gross β	1.4	<0.1	0.08	
	3.0	⁹⁵ Zr	0.05	0.05	<0.001	
	3.0	1°3Ru	0.03	0.03	<0.001	
	3.0	¹³¹ I	0.06	0.06	<0.001	
	3.0	¹³² Te	0.09	0.09	0.001	
	3.0	^{14 °} Ba	0.05	0.05	<0.001	
	0.0	¹⁴¹ Ce	ND	ND	ND	
	3.0	s 39 Nb	1.0	1.0	0.008	

÷.

Table 4 1972 Summary of Analytical Results

for the Air Surveillance Network

Sampling	No. Dovo	Type of Radioactivity	Radioactivity Concentration 10 ¹² uCi/ml or pCi/m ³			
Location	No. Days Sampled ^a		C _{max}	C _{min}	Cavg	
Rock Springs, WY	360.6	gross β	91	<0.1	0.57	
	4.0	⁹⁵ Zr	1.0	0.2	0.006	
	4.0	¹⁰³ Ru	0.7	0.1	0.003	
	6.0	¹³¹ I	3.0	0.3	0.018	
	3.0	^{1 32} Te	11	0.7	0.036	
	4.0	¹⁴ °Ba	4.5	0.3	0.016	
	1.0	141Ce	0.2	0.2	0.001	
	2.0	²³⁹ Np	13	3.5	0.045	
Worland, WY	346.6	gross β	3.9	<0.1	0.20	
	0.0	⁹⁵ Zr	ND	ND	ND	
	0.0	1°3Ru	ND	ND	ND	
	1.0	¹³¹ I	0.2	0.2	0.001	
	1.0	¹³² Te	0.4	0.4	0.001	
	1.0	^{14 °} Ba	0.1	0.1	<0.001	
	0.0	¹⁴¹ Ce	ND	ND	ND	
	0.0	²³⁹ Np	ND	ND	ND	

^a For gross beta, this number represents the number of days of the year that the sampler was operated. For radionuclides, this number represents the number of sampling days of the year during which the radionuclide was detected.

^b Since station operated only during six months of the year, the average was computed over 181 days instead of 366 days.

	for the N	oble Gas	and Tritium	n Sampling N	etwork		
		Type of		Radioactiv	ity Conce	entrations	S
Sampling Location	No. Days Sampled	Radio- activit	y Uni		Cmax	C _{min}	C _{avg}
				<u> </u>			
Hiko, NV	189.9	⁸⁵ Kr	10 ⁻¹² µCi/ml	or pCi/m ³	19	12	15.7
	195.8	¹³³ Xe	10 ⁻¹² µCi/ml	or pCi/m ³	570	< 2	<33.1
	153.0	Снэт	10 ⁻¹² µCi/ml	or pCi/m ³	< 5	< 5	< 5.00
	212.1	зн	10 ⁻⁶ µCi/ml	or pCi/ml	0.98	< 0.20	< 0.422
•	205.0	HTO	10 ⁻¹² µCi/ml	or pCi/m ³	13	< 1.0	< 4.42
	112.8	HT	10 ⁻¹² µCi/ml	or pCi/m ³	18	< 0.45	< 4.10
Las Vegas, NV	207.3	⁸⁵ Kr	10 ⁻¹² µCi/ml	or pCi/m ³	18	10	15.8
NVOO	234.5	Xe	10 ⁻¹² µCi/ml	or pCi/m ³	< 2	< 2	< 2.00
	201.7	CH ₃ T	10 ⁻¹² µCi/ml	or pCi/m ³	< 5	< 5	< 5.00
	260.0	ЗH	10 ⁻⁶ µCi/ml	or pCi/ml	1.40	< 0.22	< 0.513
	260.0	HTO	10 ⁻¹² µCi/ml	or pCi/m ³	12	< 0.33	< 4.66
	174.8	HT	10 ⁻¹² µCi/ml	or pCi/m ³	14	0.50	< 5.21
Tonopah, NV	234.9	⁸⁵ Kr	10 ⁻¹² µCi/ml	or pCi/m ³	21	12	16.0
	259.4	Xe	10 ⁻¹² µCi/ml	or pCi/m ³	< 2	< 2	< 2.00
	251.4	СНзТ	10 ⁻¹² µCi/ml	or pCi/m ³	< 5	< 5	< 5.00
	252.6	зH	10 ⁻⁶ µCi/ml	or pCi/ml	1.1	< 0.20	< 0.503
	252.6	HTO	10 ⁻¹² µCi/ml	or pCi/m ³	7	< 0.64	< 3.00
	162.2	HT	10 ⁻¹² µCi/ml	or pCi/m ³	11	0.46	< 4.01

Table 5 1972 Summary of Analytical Results

Table 5 1972 Summary of Analytical Results

for the Noble Gas and Tritium Sampling Network

Sampling	No. Days	Type of Radio-	Radioactiv	Radioactivity Concentrations				
Location	Sampled	activit	y Units	C max	C _{min}	C avg		
Death Valley	208.7	⁸⁵ Kr	10 ⁻¹² µCi/ml or pCi/m ³	25	10	15.6		
Jct., CA	236.6	Xe	10 ⁻¹² µCi/ml or pCi/m ³	< 2	< 2	< 2.00		
	221.6	CHBT	10 ⁻¹² µCi/ml or pCi/m ³	< 5	< 2	< 4.89		
	238.7	зн	10 ⁻⁶ µCi/ml or pCi/ml	0.94	0.21	< 0.472		
	238.7	HTO	10 ⁻¹² µCi/ml or pCi/m ³	7.1	1.0	< 2.89		
	170.6	HT	10 ⁻¹² µCi/ml or pCi/m ³	11	1.4	< 4.49		
Beatty, NV	190.7	⁸⁵ Kr	10 ⁻¹² µCi/ml or pCi/m ³	22	12	16.0		
	210.5	¹³³ Xe	10 ⁻¹² µCi/ml or pCi/m ³	17	< 2	< 2.57		
	182.5	CH3 T	10 ⁻¹² µCi/ml or pCi/m ³	< 5	< 5	< 5.00		
	231.7	зH	10 ⁻⁶ µCi/ml or pCi/ml	1	0.24	< 0.570		
	225.7	HTO	10 ⁻¹² µCi/ml or pCi/m ³	9.4	0.86	< 4.08		
	100.0	HT	10 ⁻¹² µCi/ml or pCi/m ³	8.6	1.3	< 4.04		
Diablo, NV	210.3	⁸⁵ Kr	10 ⁻¹² µCi/ml or pCi/m ³	22	12	16.3		
	210.3	¹³³ Xe	10 ⁻¹² µCi/ml or pCi/m ³	33	< 2	< 2.86		
	204.6	СЊТ	10 ¹² µCi/ml or pCi/m ³	< 5	< 5	< 5.00		
•	233.7	^З Н	10 ⁻⁶ µCi/ml or pCi/m1	0 .96	< 0.25	< 0.52		
	220.6	HTO	10 ¹² µCi/ml or pCi/m ³	13	< 0.92	< 4.20		
	105.6	HT	10 ⁻¹² µCi/ml or pCi/m ³	16	0.65	< 5.31		

Table	5	1972	Summa ry	of	Analytical	Results	

for the Noble Gas and Tritium Sampling Network

	No. Dovo	Type of Radio-	Radioactivity Concentrations				
Sampling Location	No. Days Sampled	activit	y Units	C _{max}	C _{min}	Cavg	
						· .	
NTS, NV Desert Rock	237.4	⁸⁵ Kr	10 ¹² µCi/ml or pCi/m ³	25	12	15.9	
	250.5	¹³³ Xe	10 ¹² µCi/ml or pCi/m ³	.30	< 2	< 2.78	
	223.6	СНзТ	10 ¹² µCi/ml or pCi/m ³	< 5	< 5	< 5.00	
	223.4	зн	10 ⁻⁶ μCi/ml or pCi/ml	1.6	0.27	< 0.548	
	223.4	HTO	10 ¹² µCi/ml or pCi/m ³	15	0.71	< 3.83	
	134.6	HT	10 ⁻¹² µCi/ml or pCi/m ³	12	< 0.50	< 4.48	
NTS, NV BJY	278.6	⁸⁵ Kr	10 ¹² µCi/ml or pCi/m ³	23	12	16.7	
DJI	291.7	¹³³ Xe	10 ¹² µCi/ml or pCi/m ³	530	< 2	< 36.0	
. *	237.8	СҢ _З Т	$10^{12} \mu \text{Ci/ml} \text{ or } p\text{Ci/m}^3$	< 5	< 5	< 5.00	
	284.8	зн	10 ⁻⁶ µCi/ml or pCi/m1	15	< 0.22	< 3.37	
	284.8	HTO	10 ¹² µCi/ml or pCi/m ³	75	< 0.26	< 20.1	
	188.1	HT	10 ¹² µCi/ml or pCi/m ³	23	0.92	5.95	
NTS, NV Gate 700	252.4	⁸⁵ Kr	10 ¹² µCi/ml or pCi/m ³	23	13	15.8	
Gale 100	246.4	Хе	10 ¹² µCi/ml or pCi/m ³	< 2	< 2	< 2.00	
	217.7	СҢ _З Т	10 ¹² µCi/ml or pCi/m ³	< 5	< 5	< 5.00	
	201.7	зH	10 ⁻⁸ µCi/ml or pCi/ml	2.7	0.23	< 0.826	
	201.7	HTO	10 ¹² µCi/ml or pCi/m ³	15	< 0.83	< 5.20	
	120.8	HT	10 ⁻¹² µCi/ml or pCi/m ³	11.6	1.1	5.36	

Table 5 1972 Summary of Analytical Results

Sampling	No Dava	Type of	Radioactiv	Radioactivity Concentrations					
Location	No. Days Sampled	Radio- activit		Cmax	C _{min}	C avg			
NTS, NV Area 12	244.4	⁸⁵ Kr	10 ⁻¹² µCi/ml or pCi/m ³	23	11	15.6			
	270.4	¹³³ Xe	10 ¹² µCi/ml or pCi/m ³	14	< 2	< 2.38			
	217.4	СҢ ₃ Т	10 ¹² µCi/ml or pCi/m ³	< 5	< 5	< 5.00			
	257.0	зн	10 ⁻⁶ µCi/ml or pCi/ml	130	3.4	30.3			
	257.0	HTO	10 ¹² µCi/ml or pCi/m ³	910	18	221.			
	167.6	HT	10 ¹² µCi/ml or pCi/m ³	2 0	2.5	6.77			

for the Noble Gas and Tritium Sampling Network

.

Station	Мар	Measurement	Backg Equivalen	round I		Annual Adjusted Background Dose Equivalent
Location	No.	Period	Max.	Min.	Avg.	(mrem/a)
Adaven, NV	1	1/10/72 - 1/17/73	0.7	0.4	0.54	200
Alamo, NV	2	1/10/72 - 1/8/73	0.5	0.3	0.38	140
Ash Meadows, NV	3	1/5/72 - 1/9/73	0.4	0.3	0.34	120
Austin, NV	4	1/12/72 - 1/16/73	0.8	0.4	0.56	200
Baker, CA	5	1/5/72 - 1/2/73	0.5	0.2	0.29	110
Barstow, CA	6	1/5/72 - 1/2/73	0.7	0.2	0.39	140
Beatty, NV	7	1/6/72 - 1/10/73	0.6	0.4	0.47	170
Beaver Dam Summit, UT	8	1/10/72 - 1/8/73	0.4	0.2	0.28	100
Big Pine, CA	9	1/6/72 - 1/3/73	0.6	0.2	0.38	140
Bishop, CA	10	1/6/72 - 1/3/73	0.6	0.3	0.41	150
Blue Eagle Ranch, NV	11	1/13/72 - 1/10/73	0.5	0.2	0.29	110
Blue Jay, NV	12	1/11/72 - 1/11/73	0.7	0.4	0.47	170
Sheri's Bar, NV	13	1/10/72 - 1/8/73	0.5	0.2	0.31	. 110
Cactus Springs, NV	14	1/6/72 - 1/10/73	0.4	0.2	0.28	100
Caliente, NV	15	1/11/72 - 1/10/73	0.7	0.3	0.45	160
Casey's Ranch, NV	16	1/11/72 - 1/16/73	0.5	0.3	0.34	120
Cedar City, UT	17	1/11/72 - 1/9/73	0.4	0,2	0.30	110
Clark Station, NV	18	1/11/72 - 1/10/73	0.5	0.3	0.46	170
Coyote Summit, NV	19	1/10/72 - 1/10/73	0.6	0.4	0.48	180
Currant, NV	20	1/13/72 - 1/10/73	0.6	0.3	0.37	140
Currant Maint. Sta., NV	21	1/13/72 - 1/10/73	0.6	0.3	0.38	140
Death Valley Jct., CA	22	1/5/72 - 1/4/73	0.5	0.3	0.35	130
Desert Game Range, NV	23	1/6/72 - 1/11/73	0.3	0.2	0.25	92
Diablo Maint. Sta., NV	24	1/10/72 - 1/10/73	0.6	0.4	0.53	190
Duckwater, NV	25	1/13/72 - 1/10/73	0.7	0.2	0.37	140
Elgin, NV	26	1/12/72 - 1/10/73	0.7	0.3	0.49	180
Ely, NV	27	1/11/72 - 1/9/73	0.9	0.3	0.50	180
Eureka Maint. Sta., NV	28	1/12/72 - 1/9/73	0.6	0.3	0.37	140
Furnace Creek, CA	29	1/6/72 - 1/4/73	0.6	0.2	0.32	120
•						

		•				Annual Adjusted Background
Station Location	Map No.	Measurement Period	Backs Equivaler <u>Max.</u>	Dose Equivalent (mrem/a)		
Gardner Ranch, NV	30	1/13/72 - 1/10/73	0.6	0.4	0.45	160
Garrison, UT	31	1/12/72 - 1/12/73	0.7	0.3	0.36	130
Geyser Maint. Sta., NV	32	1/10/72 - 1/8/73	0.6	0.3	0.38	140
Goldfield, NV	33	1/11/72 - 1/15/73	0.6	0.3	0.38	140
Groom Lake, NV	34	1/10/72 - 1/10/73	0.6	0.2	0.31	110
Hancock Summit, NV	35	1/10/72 - 1/10/73	0.7	0.4	0.55	200
Hiko, NV	36	1/10/72 - 1/8/73	0.6	0.2	0.36	130
Hot Creek Ranch, NV	37	1/11/72 - 1/11/73	0.6	0.3	0.38	140
Independence, CA	38	1/6/72 - 1/3/73	0.6	0.3	0.38	140
Indian Springs, NV	39	1/6/72 - 1/11/73	0.8	0.2	0.34	120
Koynes, NV	40	1/10/72 - 1/10/73	0.5	0.3	0.35	130
Las Vegas (Placak), NV	41	1/12/72 - 1/12/73	0.4	0.2	0.23	84
Las Vegas (USDI), NV	42	1/7/72 - 1/12/73	0.5	0.2	0.25	92
Lathrop Wells, NV	43	1/5/72 - 1/9/73	0.6	0.4	0.45	160
Littlefield, AZ	44	1/10/72 - 1/8/73	0.4	0.2	0.33	120
Lockes Ranch, NV	45	1/13/72 - 1/10/73	0.6	0.3	0.39	140
Logandale, NV	46	1/10/72 - 1/8/73	0.4	0.3	0.33	120
Lone Pine, CA	47	1/6/72 - 1/3/73	0.6	0.2	0.38	140
Lida, NV	48	1/10/72 - 1/15/73	0.6	0.3	0.37	140
Lida Junction, NV	49	1/10/72 - 1/15/73	0.7	0.3	0.47	170
Lund, NV	50	1/11/72 - 1/11/73	0.6	0.2	0.32	120
Manhattan, NV	51	1/12/72 - 1/16/73	0.7	0.3	0.43	160
Mesquite, NV	52	1/10/72 - 1/8/73	0.4	0.2	0.28	100
Milford, UT	53	2/9/72 - 1/9/73	0.5	0.3	0.39	140
Modena, UT	54	1/11/72 - 1/9/73	0.7	0.4	0.53	190
Nevada Farms, NV	55	1/10/72 - 1/10/73	0.6	0.4	0.49	180
Newcastle, UT	56	1/11/72 - 1/9/73	0.6	0.4	0.43	160
Nuclear Eng. Co., NV	57	1/6/72 - 1/10/73	1.6	0.3	0.52	190
Nyala, NV	62	1/11/72 - 1/16/73	0.6	0.3	0.39	140

· · · · ·	-	·	Back	Annual Adjusted Background Dose		
Station Location	Map No.	Measurement Period	Equivale <u>Max.</u>		(mrem/d) Avg.	Equivalent (mrem/a)
Olancha, CA	63	1/6/72 - 1/3/73	0.6	0.2	0.35	130
Pahrump, NV	64	1/4/72 - 1/8/73	0.5	0.2	0.33	120
Pine Creek Ranch, NV	65	1/10/72 - 1/17/73	0.6	0.4	0.53	190
Pioche, NV	66	1/11/72 - 1/9/73	0.6	0.3	0.39	140
Queen City Summit, NV	67	1/10/72 - 1/10/73	0.7	0.4	0.51	190
Randsburg, CA	68	1/6/72 - 1/3/73	0.6	0.2	0.33	120
Reed Ranch, NV	69	1/10/72 - 1/10/73	0.6	0.4	0.44	160
Ridgecrest, CA	70	1/6/72 - 1/3/73	0.6	0.2	0.32	120
Round Mountain, NV	71	1/12/72 - 1/16/73	0.9	0.3	0.49	180
St. George, UT	72	1/11/72 - 1/8/73	0.4	0.2	0.26	95
Scotty's Junction, NV	73	1/10/72 - 1/15/73	0.6	0.3	0.48	180
Selbach Ranch, NV	74	1/5/72 - 1/9/73	0.6	0.3	0.46	170
Shell Oil Site, NV	75	1/13/72 - 1/10/73	0.5	0.2	0.28	100
Shoshone, CA	76	1/4/72 - 1/2/73	0.7	0.4	0.46	170
Site C, NV	77	1/11/72 - 1/11/73	0.6	0.3	0.43	160
Springdale, NV	78	1/5/72 - 1/10/73	0.6	0.4	0.51	190
Spring Meadows, NV	79	1/5/72 - 1/9/73	0.4	0.3	0.34	120
Sunnyside, NV	80	1/11/72 - 1/11/73	0.6	0.3	0.36	130
Tempiute, NV	81	1/10/72 - 1/10/73	0.6	0.3	0.43	160
Tonopah, NV	82	1/11/72 - 1/17/73	0.8	0.3	0.48	180
Tonopah (Airport), NV	83	1/11/72 - 1/17/73	0.7	0.3	0.40	150
Tonopah Test Range, NV	84	1/11/72 - 1/17/73	0.6	0.3	0.36	130
Twin Springs Ranch, NV	85	1/10/72 - 1/11/73	0.6	0.3	0.43	160
Ursine, NV	86	1/11/72 - 1/9/73	0.7	0.4	0.47	170
Valley of Fire, NV	87	1/10/72 - 1/8/73	0.5	0.3	0.31	110
Warm Springs, NV	88	1/11/72 - 1/11/73	0.6	0.4	0.48	180
Warm Springs Ranch, NV	89	1/10/72 - 1/8/73	0.5	0.2	0.30	110
Mammoth Lake, CA	90	5/9/72 - 1/4/73	0.7	0.4	0.53	190

Station Location	Map No.	Measurement Period	Backgrou Equivalent R Max. Mi	ate (mrem/d)	Annual Adjusted Background Dose Equivalent (mrem/a)
Montgomery Pass, NV	a	1/6/72 -4/5/7	2 0.5 0.		180
Las Vegas (Airport), NV	Ъ	1/25/72 - 11/1	4/72 0.4 0.	2 0.23	84

^a = Station was deleted in April due to frequent theft of TLD's.

^b = Map reference not included until January 1973.

Personne	el TLD's
----------	----------

Personnel	Map	Measurem	TLD Readings		
Location	No.	Issue Date	Collection Date	(mrem)	
Beatty, NV	7	1/5/72 3/8/72	2/8/72 4/12/72	13,000 70	
Caliente, NV	15	1/11/72 3/8/72	2/10/72 4/5/72	57 150	
St. George, UT	72	3/14/72	4/5/72	48	
Goldfield, NV	33	7/31/72	9/5/72	460	

Station TLD's

Station	Map	Measurem	TLD Readings			
Location	No.	Issue Date	Collection Date		(mre	m)
Lida Junction, NV	49	2/8/72	3/6/72	12	90ª -	14
Manhattan, NV	51	3/8/72	4/5/72	15	16	34ª
Nucle ar E ng. Co., NV	57	3/8/72 4/11/72 11/29/72	4/11/72 5/3/72 1/10/73	21 32 11	20 51ª 11	180ª 25 200ª
Site C, NV	77	5/3/72	5/31/72	15	8 7ª	1,300ª
Scotty's Junction, NV	73	5/5/72	5/30/72	16	150 ^a	16
Groom Lake, NV	34	7/5/72	7/31/72	7	230ª	8
Modena, UT	54	9/6/72	10/3/72	13	13	87ª
Garrison, UT	31	9/6/72	10/2/72	8	840 *	1,100ª
Furnace Creek, CA	29	9/8/72	10/13/72	10	10	63 *
Shoshone, CA	76	9/8/72	10/13/72	14	15	54ª

^a = Anomalous values

Table 8 197

_

1972 Summary of Analytical Results for the Milk Surveillance Network

			No.	Type of	Radioactivity Conc. 10 ⁻⁹ µCi/ml or pCi/1		
Sampling Location	Map No.	Sample Type ^a	of Samples	Radio- activity	C _{max}	C _{min}	CI/I C _{avg}
Bishop, CA	5	11	12	¹³⁷ Cs	<10	<10	<10
Sierra Farms			12	⁸⁹ Sr	<5	<2	<2.4
			12	⁹⁰ Sr	4	<1	<2.2
			0	з _Н	NA	NA	NA
Hinkley, CA	13	12	12	137 _{Cs}	<10	<10	<10
Bill Nelson Dairy			12	⁸⁹ Sr	2	<1	<1.8
	•		12	⁹⁰ Sr	2	<1	<1.1
			0	з _Н	NA	NA	NA
Independence, CA	14	13	11	¹³⁷ Cs	<100	<10	<30
Smith Ranch		20	11	⁸⁹ Sr	6	<2	<2.5
			11	90Sr	4	<1	<2.0
			0	з _Н	NA	NA	NA
Olancha, CA	30	13	8	137 _{Cs}	<100	<10	<40
Hunter Ranch		,	8	⁸⁹ Sr	<3	· <2	<2.1
			8	⁹⁰ Sr	4	<1	<2.3
		·	0	зн	NA	NA	NA
Alamo, NV	1	12	12	¹³⁷ Cs	10	<10	<10
Williams Dairy	-		12	⁸⁹ Sr	4	<2	<2.3
			12	⁹⁰ Sr	4	<1	<2.5
			0	З _Н	NA	NA	NA
Austin, NV	3	13	4	¹³⁷ Cs	<10	<10	<10
Young's Ranch	-		4	⁸⁹ Sr	<3	<2	<2.3
			4	⁹⁰ Sr	5	2	3.0
			0	з _Н	NA	NA	NA

		- -	No.	Type of		Radioactivity Conc. 10 ⁻⁹ µCi/ml or pCi/l		
Sampling Location	Map No.	Sample Type ^a	of Samples	Radio- activity	$10^{-5}\mu C$ C_{max}	i/ml or p C _{min}	Ci/l Cavg	
Austin, NV	2	13	6	¹³⁷ Cs	10	<10	<10	
Triple T Ranch	_		6	⁸⁹ Sr	6	<2	<2.7	
			6	90sr	7	<1	<3.0	
			6	з _Н	850	350	600	
Belmont, NV	4	13	6	137 _{Cs}	<100	10	<30	
Pine Creek Ranch			6	⁸⁹ Sr	-<6	<2	<3.7	
•			6	⁹⁰ Sr	8	2	4.8	
			0	з _Н	NA	NA	NA	
Caliente, NV	6	13	6	¹³⁷ Cs	<10	<10	<10	
Tennille Ranch			6	⁸⁹ Sr	5	<2	<3.2	
			6	⁹⁰ Sr	4	1	<2.3	
			. 0	З _Н	NA	NA	NA	
Currant, NV	7	13	8	¹³⁷ Cs	100	<10	<40	
Blue Eagle Ranch			8	⁸⁹ Sr	3	<2	<2.4	
			8	⁹⁰ Sr	6	1	3.5	
			0	3 _H	NA	NA	NA	
Duckwater, NV	8	13	8	¹³⁷ Cs	<100	<10	<20	
Halstead Ranch			8	⁸⁹ Sr	6	<2	<2.6	
			8	⁹⁰ Sr	7	<1	<3.3	
			0	з _Н	NA	NA	NA	
Eureka, NV	10	13	12	¹³⁷ Cs	<100	<10	<20	
Martin Ranch			12	⁸⁹ Sr	7	<3	<4.3	
			12	⁹⁰ Sr	11	4	6.7	
			0	³ н	NA	NA	NA	

Sampling Location	Map No.	Sample Type ^a	No. of Samples	Type of Radio- activity		activity Ci/ml or p C _{min}	
Hiko, NV	12	12	12	137Cs	10	<10	<10
Schofield Dairy			12	⁸⁹ Sr	3	<2	<2.1
			12	⁹⁰ Sr	- 5	<1	<2.4
			12	з _Н	840	200	<290
Indian Springs, NV	16	13	2	¹³⁷ Cs	<10	<10	<10
Cambern Ranch			2	⁸⁹ Sr	1	<1	<1.0
			2	⁹⁰ Sr	<1	<1	<1.0
		•	0	з _Н	NA	NA	NA
Indian Springs, NV	15	13	3	¹³⁷ Cs	<10	<10	<10
Indian Springs Rch			3	⁸⁹ Sr	<2	ĺ	<1.7
			3	⁹⁰ Sr	4	<1	<2.0
			0	зн	NA	NA	NA
Las Vegas, NV	17	11	11	¹³⁷ Cs	<10	<10	<10
Anderson Dairy			11	⁸⁹ Sr	2	<2	<2.0
			11	⁹⁰ Sr	3	<1	<1.8
			0	з _Н	NA	NA	NA
Las Vegas, NV	18	11	11	¹³⁷ Cs	<10	<10	<10
Arden Dairy			10	⁸⁹ Sr	2	<2	<2.0
			. 10	⁹⁰ Sr	3	<1	<1.6
			0	з _Н	NA	NA	NA
Las Vegas, NV	19	12	11	¹³⁷ Cs	<10	<10	<10
LDS Dairy Farms			11	⁸⁹ Sr	<2	<1	<1.9
· · · · ·			11	⁹⁰ Sr	3	<1	<1.6
			11	з _Н	<290	<190	<230

Ta	Ъ	1	0	8
10	.U	-	с.	0

. ...

1972 Summary of Analytical Results for the Milk Surveillance Network

Sampling	Мар	o Sample	No. of	Type of Radio-	Radioactivity Conc. 10 ⁻⁹ µCi/ml or pCi/l		
Location	No.	Type ^a		activity	Č _{max}	^C min	Cavg
Lathrop Wells, NV	20	13	8	¹³⁷ Cs	<100	<10	<20
Mills Ranch			8	⁸⁹ Sr	<3	<1	<1.9
			8	⁹⁰ Sr	2	<1	<1.3
			0	З _Н	NA	NA	NA
Lida, NV	21	13	8	137 _{Cs}	<10	<10	<10
Lida Livestock Company			8	⁸⁹ Sr	<2	<1	<1.9
• • • • • • • • • • • • • • • • • • •		· .	8	⁹⁰ Sr	4	<1	<2.5
			0	з _Н	NA	NA	NA
Logandale, NV	22	12	12	¹³⁷ Cs	<10	<10	<10
Vegas Valley Dairy			10	⁸⁹ Sr	4	· 1	<2.1
· ·			10	⁹⁰ Sr	3	<1	<1.5
			0	ЗH	NA	NA	NA
Lund, NV	23	12	11	¹³⁷ Cs	10	<10	<10
McKenzie Dairy			11	⁸⁹ Sr	3	<2	<2.4
			11	⁹⁰ Sr	6	<1	<2.8
			11	з _Н	320	<190	<250
McGill, NV	24	13	8	¹³⁷ Cs	<10	<10	<10
Larsen Ranch			8	⁸⁹ Sr	7	<1	<2.4
			8	⁹⁰ Sr	2	<1	<1.5
			0	зн	NA	NA	NA
Mesquite, NV	25	12	12	¹³⁷ Cs	<10	<10	<10
Hughes Bros. Dairy			12	⁸⁹ Sr	<3	<1	<1.8
			12	⁹⁰ Sr	2	<1	<1.4
			12	з _Н	730	<200	<290

83.

Sampling	Мар	Sample	No. of	Type of Radio- activity	Radioactivity Conc. 10 ⁻⁹ µCi/ml or pCi/1		
Location	No.	Type ^a	Samples	activity	Cmax	Cmin	Cavg
Moapa, NV	26	12	11	¹³⁷ Cs	<100	<10	<20
Searles Dairy			11	⁸⁹ Sr	5	<2	<2.5
			11	⁹⁰ Sr	5	<1	<2.1
			0	з _Н	NA	NA	NA
Nyala, NV	28	13	12	¹³⁷ Cs	<100	<10	· <20
Sharp's Ranch			10	⁸⁹ Sr	3	<2	<2.2
			10	⁹⁰ Sr	5	<2	<3.1
			12	з _Н	<290	<190	<220
			•				
Pahrump, NV Owens Ranch	31	13	12	¹³⁷ Cs	<10	<10	<10
			11	⁸⁹ Sr	<3	<1	<1.5
			. 11	⁹⁰ Sr	2	1	<1.2
			. 0	з _Н	NA	NA	NA
Panaca, NV	33	13	12	^{- 137} Cs	10	<10	<10
Kenneth Lee Ranch			12	⁸⁹ Sr	5	<2	<2.5
•			12	⁹⁰ Sr	4	2	<2.8
	•		0	з _Н	NÁ	NA	NA
Round Mt., NV	34	13	5	¹³⁷ Cs	20	<10	<20
Russell Berg Ranch			5	⁸⁹ Sr	<3	<2	<2.6
· .			5	⁹⁰ Sr	9	3	5.8
			0	З _Н	NA	NA	NA
Shoshone, NV	35	13	9	¹³⁷ Cs	10	<10	<10
Kirkeby Ranch			9	⁸⁹ Sr	3	<2	<2.4
			9	90 Sr	6	2	<3.9
			0	з _Н	NA	NA	NA

Sampling Location	Map No.	Sample Type ^a	No. of Samples	Type of Radio- activity		activity (i/ml or p(^C min	
Springdale, NV ^b	36	. 13	4	¹³⁷ Cs	<100	<10	<30
McCurdy Ranch			4	⁸⁹ Sr	<2	<1	<1.8
· ·			4	⁹⁰ Sr	2	<1	<1.8
			0	з _Н	NA	NA	NA
Springdale, NV	36	13	8	137 _{Cs}	<100	<10	<20
Seidentopf Ranch			8	⁸⁹ Sr	5	<2	<2.5
•			· 8	⁹⁰ Sr	3	<1	<1.6
			0	з _Н	NA	NA	NA
Garrison, UT	11	13	11	¹³⁷ Cs	<10	<10	<10
Gonders Ranch			11	⁸⁹ Sr	<3	<2	<2.1
			11	⁹⁰ Sr	3	<2	<2.2
			Ö	з _Н	NA	NA	NA
Newcastle, UT	27	12	11	¹³⁷ Cs	10	<10	<10
Newcastle Dairy		x.	10	⁸⁹ Sr	<4	<2	<2.2
			10	⁹⁰ Sr	4	<1	<2.3
			0	з _Н	NA	NA	NA
St. George, UT	37	12	11	¹³⁷ Cs	20	<10	<10
R. Cox Dairy		•	11	⁸⁹ Sr	3	<1	<1.9
			11	⁹⁰ Sr	4	<1	<2.4
			0	з _Н	NA	NA	NA

Table 8 1972 Summary of Analytical Results for the Milk Surveillance Network

* 11 = Pasteurized Milk

12 = Raw Milk from Grade A Producer(s)

13 = Raw Milk from family cow(s)

Ъ = Discontinued

NA = Not Analyzed

		•	No.	Type of	Radioa	% of		
Sampling Location	Map No.	Sample Type [*]	of <u>Samples</u>	Radio- activity	10 ^{- ۹} µ C _{max}	Ci/ml or C _{min}	pCi/l C _{avg}	Conc. Guide
Bishop, CA	-9	23 ^d	12	gross α	<3	<1	<1.9	<6
Fish & Game Office	·	••	. 12	gross β	10		<3.9	<13
			0	зн	NA	NA	NA	•
			2	⁸⁹ Sr	<4	<3	<3.5	<0.12
			2	90 Sr	<1	<0.9	<0.95	<0.32
			·2	²²⁶ Ra	0.2	0.1	0.15	0.50
			0	238 Pu	NA	NA	NA	-
			0	239 Pu	NA	NA	NA	-
			1	234 U	0.30	0.30	0.30	<0.01
			1	235 U	<0.01	<0.01	<0.01	<0.01
			1	238 U	0.20	0.20	0.20	<0.01
Bishop, CA	10	22	12	gross α	9	<3	<5.2	<17
Owens River 3 Mi E			12	gross β	9	3	<5.1	<17
			0	зн	NA	NA	NA	-
			0	⁸⁹ Sr	NA	NA	NA	-
· · ·			0	⁹⁰ Sr	NA	NA	NA	-
· -			0	226 Ra	NÀ	NA	NA	-
			1.	238 Pu	<0.02	<0.02	<0.02	<0.0
			. 1	239 Pu	0.01	0.01	0.01	<0.0
		è	0	234 U	NA	NA	NA	-
			0	235 U	NA	NĄ	NA	-
			0	238 U	NA	NA	NA	•
Death Valley Jct, CA	21	23	12	gross α	14	<5	<8.0	<27
Lila's Cafe			12	gross β	12	7	9.3	31
			12	зн	<320	<200	<233	<0.0
			1	⁸⁹ Sr	<4	. <4	<4	<0.1
			1	⁹⁰ Sr	<1	<1	<1	<0.3
			1	²²⁶ Ra	0.1	0.1	0.1	0.3
			0	238 Pu	NA	NA	NA	-
			0	239 Pu	NA	NA	NA	-
			1	²³⁴ U	1.6	1.6	1.6	0.0
			1	235 U	0.06	0.06	0.06	<0.0
			1	238 U	1.5	1.5	1.5	0.0

Sampling	Мар	Sample	No. of	Type of Radio-		tivity Co i/ml or p		% of Conc.
Location	No.	Type	Samples	activity	C _{max}	C _{min}	Cave	Guide
Furnace Creek, CA	28	21	12	gross a	8.	<3	<5.5	<18
Pond			12	gross β	14	6	10.0	33
			• 0	зн	NA	NA	NA	-
			0	⁸⁹ Sr	NA	NA	NA	-
			0	90 Sr	NA	NA	NA	-
			1	²²⁶ Ra	0.1	0.1	0.1	0.33
			1	238 Pu	<0.02	<0.02	<0.02	<0.01
			1	239 Pu	0.02	0.02	0.02	<0.01
			0	234 U	NA	NA	NA	-
			0	235 U	NA	NA	NA	-
			0	238 U	NA	NA	NA	-
Furnace Creek, CA	29	27 ^d	12	gross α	7	<3	<5.2	<17
Visitor Center			12	gross β	16	7	10.2	34
	· .		0	зн	NA	NA	NA	-
			1	⁸⁹ Sr	<4	<4	<4	<0.13
			1	90 Sr	<1	<1	<1	<0.33
			1	²²⁶ Ra	0.3	0.3	0.3	1.00
			0.	238 Pu	NA	NA	NA	- .
			0	239 Pu	NA	NA	NA	-
			1	234 U	1.0	1.0	1.0	<0.01
			1	2 35 U	0.04	0.04	0.04	<0.01
			1	538 N	1.0	1.0	1.0	<0.01
Hinkley, CA	39	2 3 ^d	12	gross α	27	<5	<10.3	<34
Bill Nelson Dairy			12	gross β	17	6	8.6	29
		·	0	зн	NA	NA	NA	-
			1	⁸⁹ Sr	<4	<4	<4	<0.13
			1	⁹⁰ Sr	<1	<1	<1	<0.33
			5	^{2 26} Ra	0.5	0.12	0.34	1.15
			0	23e Pu	NA	NA	NA	-
			0	239 Pu	NA	NA	NA	-
			1	234 U	5.1	5.1	5.1	0.02
,			. 1	235 U	0.18	0.18	0.18	<0.01
		·	1	238 U	4.8	4.8	4.8	0.02

			No.	Type of		tivity Co		% of
Sampling	Мар	Sample		Radio-		i/ml or p		Conc.
Location	No.	Type [*]	Samples	activity	C _{max}	C _{min}	Cavg	Guide
Little Lake, CA	60	21	12	gross α	27	<5	<13.3	
Little Lake Rch			12	gross β	32	<4	<23.6	<79
			0	зн	NA	NA	NA	-
			0	⁸⁹ Sr	NA	NA	NA	-
			0	90 Sr	NA	NA	NA	- '
			0	²²⁶ Ra	NA	NA	NA	-
			1	²³⁸ Pu	<0.02	<0.02	<0.02	<0.01
			1	²³⁹ Pu	0.01	0.01	0.01	<0.01
			0	234 U	NA	NA	NA	-
			0	235 U	NA	NA	NA	
			0	238 U	NA	NA	NA	-
Lone Pine, CA	61	21	12	gross α	33	13	22 .2	74
Diaz Lake			12	gross β	41	19	27.8	93
			0	зн	NA	NA	NA	-
			0	⁸⁹ Sr	NA	NA	NA	-
			0	⁹⁰ Sr	NA	NA	NA	-
			2	²²⁶ Ra	0.6	0.3	0.45	1.50
			1	²³⁸ Pu	<0.03	< 0. 03	<0.03	<0.01
			1	239 Pu	0.02	0.02	0.02	<0.01
			1	²³⁴ U	12	12	12.0	0.04
			1	235 U	0.45	0.45	0.45	
		•	1	238 U	12	12	12.0	0.06
Lone Pine, CA	62	23ª	12	gross α	6	<2	<2.6	<9
Forest Ser Rngr Sta			12	gross β	7	<3	<3.6	<12
			0	зн	NA	NA	NA	-
			2	⁸⁹ Sr	<4	<3	<3.5	<0.12
			2	⁹⁰ Sr	<1	<1	<1	<0.33
			2	²²⁶ Ra	0.3	0.1	0.2	0.67
			-	238 Pu	NA	NA	NA	
			0	239 Pu	NA	NA	NA	-
				234 U	0.44	0.44	0.44	- - -
			1				0.0	
·			1	235U	0.01	0.01		
· ·	•	•	1	238 U	0.43	0.43	0.4	3 <0.01

			No.	Type of	Radioac	tivity Co	nc.	% of
Sampling	Map	Sample	of	Radio-	10 ⁻⁹ μC	i/ml or p		Conc.
Location	No.	Type	Samples	activity	Cmax	C _{min}	Cavg	Guide
Olancha, CA	73	21	12	gross α	29	3	<7.5	<25
Haiwee Reservoir			12	gross β	11	4	6.7	22
			0	зн	NA	NA	NA	-
			0	⁸⁹ Sr	NA	NA	NA	
			0	90 Sr	NA	NA	NA.	- `
·			0	²²⁶ Ra	NA	NA	NA	-
			1	238 Pu	<0.02	<0.02	<0.02	<0.01
			1	239 Pu	<0.10	<0.10	<0.10	<0.01
		· .	0	234 U	NA	NA	NA	-
		•	0	835 U	NA	NA	NA	-
			0	238 U	NA	NA	NA	-
Ridgecrest, CA	76	23 ^d	12	gross α	7	<3	<4.4	<15
City Hall			12	gross β	9	3	<4.2	<14
а -			ο	з _Н	NA	NA	NA	-
			2	⁸⁹ Sr	<5	<3	<4	<0.13
			2	⁹⁰ Sr	<3	<1	<2.0	<0.50
			2	226 Ra	0.5	0.1	0.3	1
			0	238 Pu	NA	NA	NA	-
			0	239 Pu	NA	NA	NA	-
			2	234 U	2.6	0.40	1.50	<0.01
			2	235 U	0.09	0.01		<0.01
			2	238 U	2.5	0.40	1.45	
•								
Shoshone, CA	79	2 7 4	12	gross α	<8	<5	<6.3	<21
Chevron Ser Sta			12	gross β	23	15	18.5	62
•			0	зН	NA	NA	NA	-
			1	⁸⁹ Sr	<4	<4	<4	<0.13
			1	⁹⁰ Sr	<1	<1	<1	<0.33
			1	²²⁶ Ra	0.2	0.2	0.2	0.67
			0	²³⁸ Pu	NA	NA	NA	-
			0	239 Pu	NA	NA	NA	
			0	234 U	NA	NA	NA	-
			0	235 U	NA	NA	NA	-
	•		0	238 U	NA	NA	NA	•
			-	-				

n an an an an an an Art

and a second

		•	No.	Type of		tivity Co		% of
Sampling Location	Map No.	Sample Type ^a	of <u>Samples</u>	Radio- activity	10 ⁻⁹ μC C _{max}	i/ml or p C _{min}	Ci/l C _{avg}	Conc. Guide
Adaven, NV	1	2.2 ^d	12	gross a	10	<3	<5.0	<17
Canfield Ranch	-		12	gross β	8	<3	<4.3	<14
			0	зН	NA	NA	NA	-
	-		0	⁸⁹ Sr	NA	NA	NA	•
			0	90 Sr	NA	NA	NA	-
			0	²²⁶ Ra	NA	NA	NA	-
			0	238 Pu	NA	NA	NA	-
			0	239 Pu	NA	NA	NA	-
			0	234 U	NA	NA	NA	-
			0	235 U	NA	NA	NA	÷
			0	238 U	NA	NA	NA	•
Alamo, NV	3	21	. 12	gross a	30	11	19.0	63
Pahranagat Lake			12	gross β	37	14	25.7	86
			0	зн	NA	NA	NA	-
			5	⁸⁹ Sr	<5	<1	<2.8	<0.
			5	⁹⁰ Sr	1	<0.1	<0.82	<0.
		•	3	²²⁶ Ra	0.5	0.3	0.43	1.
· .			2	238 Pu	<0.03	<0.02	<0.03	<0.
			2	239 Pu	0.03	<0.01	<0.02	<0.
			1	2 34 U	6.8	6.8	6.8	0.
•		н. А.	1	នះខេត្ត	0.30	0.30	0.30	<0.
			1	538 A	6.4	6.4	6.4	0.
lamo, NV	2	23ª	12	gross a	6	<3	<4.0	
heri's Bar			12	gross β	7	3	<4.1	<14
			0	зн	NA	NA	NA	-
			0	⁸⁹ Sr	NA	NA	NA	-
	·		0	⁹⁰ Sr	NA	NA	NA	-
·			0	^{2 26} Ra	NA	NA	NA	-
•			0	238 Pu	NA	NA	NA	-
			0	239 Pu	NA	NA	NA	-
			0	234 U	NA	NA	NA	-
			0	235 U	NA	NA	NA	-
			0	538 N	NA	NA	NA	-

			No.	Type of	Radioa	ctivity C	onc.	% of
Sampling	Map	Sample	of	Radio-		Ci/ml or j		Conc.
Location	No.	Type	Samples_	activity	Cmax	C _{min}	Cavg	Guide
Alamo, NV	4	2 3 ^d	12	gross α	8	<3	<5 . 2	<17
Williams Dairy			12	gross β	15	9	11.8	39
			0	зН	NA	NA	NA	-
			2	^{ee} Sr	<4	<4	<4	<0.13
			2	⁹⁰ Sr	<1	<1	<1	<0.33
			3	²²⁶ Ra	0.3	0.1	0.2	0.67
			1	238 Pu	<0.02	<0.02	<0.02	<0.01
			1	239 Pu	<0.01	<0.01	<0.01	<0.01
			2	234 U	1.7	1.7	1.70	0.01
· ·			2	235 U	0.09	0.08	0.08	<0.01
			2	538 U	1.6	1.6	1.60	0.01
Ash Meadows, NV	5	2 3 ^d	10	gross α	10	6	<8.5	<28
Ash Meadows Lodge			10	gross β	19	12	16.2	54
•			11	зн	380	<200	<236	<0.01
			2	⁸⁹ Sr	<5	<4	<4.5	<0.15
		·	2	⁹⁰ Sr	<1	<1	<1	<0.33
			5	226 Ra	0.7	0.3	0.56	1.87
			1	238 Pu	<0.02	<0.02	<0.02	<0.01
			1	239 Pu	<0.01	<0.01	<0.01	<0.01
			2	234 U	1.6	0.80	1.20	<0.01
			2	2 35U	0.06	0.03	0.04	<0.01
			2	538 N	1.6	0.80	1.20	0.01
Ash Meadows, NV	6	21	10	gross a	19	<6	<11.4	<38
Ash Meadows Pond			11	gross B	27	15	20.6	69
			. 0	зН	NA	NA	NA	-
			2	89Sr	<4	<3	<3.5	<0.12
			2	90 Sr	<1	_ <1	<1	<0.33
			. 4	²²⁶ Ra	0.6	0.1	0.3	1.00
			2	²³⁸ Pu	<0.02	<0.02	<0.02	<0.01
			2	239 Pu	0.02	<0.01	<0.02	<0.01
			3	²³⁴ U	7.9	4.2	6.17	0.02
			3	235 y	0.21	0.17	0.19	<0.01
		,	3	238 U	7.5	3.9	5.83	0.03

. Sec. gald comments.

			No.	Type of		ctivity C		% of
Sampling Location	Map No.	Sample Type [*]	of Samples	Radio- activity	10 ⁻⁹ μ C _{max}	Ci/ml or C _{min}	pCi/l C _{avg}	Conc. Guide
Austin, NV	7	2 7 d	12	gross a	30	<3	<21.1	<70
County Courthouse			12	gross β	24	.<3	<17.0	<57
•			0	з _Н	NA	NA	NA	-
			2	⁸⁹ Sr	≪4	<4	<4	<0.13
			2	90 Sr	<1	<1	<1	<0.33
			8	226 Ra	<0.6	0.1	<0.33	<1.10
			1	238 Pu	<0.02	<0.02	<0.02	<0.01
			1	239 Pu	<0.01	<0.01	<0.01	<0.01
			2	234 U	14	13	13.4	0.04
			· 2	235 U	0.50	0.37	0.44	<0.01
			2	²³⁸ U	13	12	12.5	0.06
Beatty, NV	8	2 3 ^d	12	gross α	15	5	<10.1	<34
Richfield Ser Sta		-	12	gross β	16	7	10.0	33
			12	зн	<310	<200	<231	<0.01
			2	⁸⁹ Sr	<4	<4	<4	<0.13
			2	⁹⁰ Sr	<1	<1	<1	<0.33
			6	²²⁶ Ra	0.47	0.1	0.28	0.93
			1	²³⁸ Pu	<0.03	<0.03	<0.03	<0.01
			1	239 Pu	<0.02	<0.02	<0.02	<0.01
			2	²³⁴ U	2.8	2.2	2.50	0.01
			2	²³⁵ U	0.09	0.07	0.08	<0.01
			2	538 N	2.8	2.1	2.45	0.01
lue Diamond, NV	11	2 3 ª	12	gross α	9	<3.	<4.8	<16
ost Office			12	gross β	13	3	<4.3	<14
			12	зН	<320	<200	<241	<0.01
			1	⁸⁹ Sr.	<3	<3	<3	<0.10
			1	90 Sr	<0.8	<0.8	<0.8	<0.27
			2	²²⁶ Ra	2.7	1.2	1.95	6.50
			0	23e Pu	NA	NA	NA	–
			0	239 Pu	NA	NA	NA	-
,			0	²³⁴ U	NA	NA	NA	5
			0	²³⁵ U	NA	NA	NA	
			0.0	238 U	NA	NA	NA	

-			No.	Type of	Radioad	tivity C	onc.	% of
Sampling	Мар	Sample	of	Radio-		li/ml or		Conc.
Location	No.	Type	Samples	activity	C _{max}	C _{min}	Cavg	Guide
Blue Jay Hwy Maint	: Sta 12	2 3 ⁴	12	gross a	9	3	<5.1	<17
NV			12	gross β	9	<3	<5.7	<19
			· 0	зH	NA	NA	NA	-
			1	⁸⁹ Sr	<3	<3	<3	<0.10
	•		1	90 Sr	<1	<1	<1	<0.33
			1	226 Ra	<0.6	<0.6	<0.6	<2.00
			0	238 Pu	NA	NA	NA	-
		•	0	239 Pu	NA	NA	NA	-
			1	234 U	1.3	1.3	1.3	<0.01
			1	235 U	0.04	0.04	0.04	<0.01
			1	538 U	1.2	1.2	1.2	0.01
Cactus Springs, N	7 13	2 7 ⁴	11	gross α	4	<2	<3.2	<11
Mobil Ser Sta		· .	11	gross β	4	<3	<3.3	<11
			11	зн	360	200	<249	<0.01
			1	⁸⁹ Sr	<4	<4	<4	<0.13
			1	⁹⁰ Sr	<1	<1	<1	<0.33
			1	²²⁶ Ra	0.2	0.2	0.2	0.67
			0	238 Pu	NA	NA	NA	-
			0	239 Pu	NA	NA	NA	- .
			1	234 U	0.53	0.53	0.53	<0.01
•			·1 ·	5 32 N	0.02	0.02	0.02	<0.01
			. 1	538 N	0.50	0.50	0.50	<0.01
Caliente, NV	14	23ª	12	gross a	12	<3	<6.6	<22
Agr Ext Station	•		12	gross β	7	<4	<5.1	<17
			0	зН	NA	NA	NA	-
			1	⁸⁹ Sr	<4	<4	<4	<0.13
			1	⁹⁰ Sr	<1	.<1	<1	<0.33
			1	^{2 26} Ra	0.1	0.1	0.1	0.33
			0	238 Pu	NA	NA	NA	-
			0	239 Pu	NA	NA	NA	-
			1	²³⁴ U	1.8	1.8	1.8	0.01
· · ·			1	sзеЛ	<0.01	<0.01	<0.01	<0.01
			1	238 U	1.7	1.7	1.7	0.01
,				•				

				_ ·	- •	-		
				tivity Co		% of		
Sampling Location	Map No.	Sample Type ^a	of Samples	Radio- activity	¹⁰ ^σ μα C _{max}	C _{min}	Cavg	Conc. Guide
Caliente, NV	15	22	12	gross a	14	5	<7.9	
Meadow Valley Wash			12	gross β	18	<4	<13.3	
	•		0 .	зн	NA	NA	NA	-
			0	89 Sr	NA	NA	NA	-
			0	⁹⁰ Sr	NA	NA	NA	-
			0	²²⁶ Ra	NA	NA	NA	•
	•		1	238 Pu	<0.02	<0.02		<0.01
			1	239 Pu	<0.01	<0.01	<0.01	
		•	0	234 U	NA	NA	NA	-
			0	235 U	NA	NA .	NA	-
			0	238 U	NA	NA	NA	-
Clark Station, NV	17	2 7 4	11	gross α	5	<2	<3.5	<12
Five Mile Ranch			11	- gross β	10	<3	<5 .9	<20
			0	зн	NA	NA	NA	-
			2	⁸⁹ Sr	<5	<3	<4	<0.1
			2	⁹⁰ Sr	<1	<1	<1	<0.3
			2	226 Ra	0.6	<0.3	<0.45	
			1	238 Pu	<0.04	<0.04	<0.04	<0.0
			1	239 Pu	<0.02	<0.02	<0.02	<0.0
			2	234 U	0.30	0.20	0.25	<0.0
. ·			2	2 35 U	0.02	0.02	0.02	<0.0
			2	538 N	0.20	0.20	0.20	<0.0
Coyote Summit, NV	18	23	9	gross a	41	<3	<23.5	<78
and Spg Well			9	gross β	26	5	17.0	57
			0	з _Н	NA	NA	NA	-
			0	⁸⁹ Sr	NA	NA	NA	-
			0	90 Sr	NA	NA	NA	-
			3	226 Ra	<0.6	0.3	<0.42	<1.3
			1	238 Pu	<0.02	<0.02	<0.02	<0.0
			1	239 Pu	0.01	0.01	0.01	<0.0
			1	^{2 34} U	14	14	14.0	0.0
		•	í	235U	0.48	0.48	0.48	
•			1	238 U	13	13	13.0	0.0

			No.	Type of	Radioac	tivity Co	nc.	% of
Sampling	Мар	Sample	of	Radio-		i/ml or p		Conc.
Location	No.	Type	Samples	activity	C _{max}	C _{min}	Cave	Guide
Currant, NV	19	21	11	gross α	13	<4	<7.8	<26
Currant Pond			11	gross β	11	<3	<6.1	<20
			0	зН	NA.	NA	NA	-
			0	⁸⁹ Sr	NA	NA	NA	-
			0	90 Sr	NA	NA	NA	-
			0	226 Ra	NA	NA	NA	-
			1	238 Pu ~	<0.02	<0.02	<0.02	<0.01
			1	239 Pu	<0.01	<0.01	<0.01	<0.01
			0	234 U	NA	NA	NA	, -
			0	235 U	NA	NA	NA	-
			0	238 U	NA	NA	NA	-
						•		
Currant, NV	20	27 4	12	gross α	22	5	10.4	35
Currant Ranch Cafe			12	gross β	28	<3	<7.8	<26
			0	зH	NA	NA	NA	-
			1	⁸⁹ Sr	<4	<4	<4	<0.13
			1	⁹⁰ Sr	<1	<1	<1	<0.33
			4	²²⁶ Ra	0.5	0.2	0.31	1.03
			0	238 Pu	NA	NA	NA	-
			0	239 Pu	NA	NA	NA	-
			1	234 U	2.5	2.5	2.5	0.01
			1	235 U	0.08	0.08	0.08	<0.01
		χ.	1	238 U	2.4	2.4	2.4	0.01
Diablo Hwy Maint Sta	22	23 ^d	12	gross α	5	<3	<3.8	<13
NV			12	gross β	10	<4	<7.1	<24
			0	зН	NA	NA	NA	-
			1	⁸⁹ Sr	<5	<5	<5	<0.17
	•		1	⁹⁰ Sr	<1	<1	<1	<0.33
			1	²²⁶ Ra	<0.6	<0.6	<0.6	<2.00
			0	238 Pu	NA	NA	NA	-
•			0	239 Pu	NA	NA	NA	-
			1	²³⁴ U	0.72	0.72	0.72	<0.01
			1	гзел	0.03	0,03	0.04	
			1	238 U	0.67	0.67	0.67	
			-	-			0.07	

ão:

Table 9	1972	Summary o	of Analyt	ical Resu	lts fo	r the	Water	Surveillance	Network
---------	------	-----------	-----------	-----------	--------	-------	-------	--------------	---------

		No.	Type of				% of	
Map No,	Sample Type ^a	of Samples	Radio- activity		i/ml or µ C _{min}	Ci/l C _{avg}	Conc. Guide	
23	21	12	gross a	35	<5	<22.2	<74	
		12	gross β	44	8	24.2	81	
		0	зH	NA	NA	NA	-	
		4	⁸⁹ Sr	<4	<3	<3.3	<0.11	
		4	⁹⁰ Sr	3	<1	<1.5	<0.50	
		3	226 Ra	0.2	0.2	0.2	0.6	
		2	238 Pu	<0.04	<0.03	<0.04	<0.02	
		2	239 Pu	0.02	<0.02	<0.02	<0.02	
		1	234 U	3.0	3.0	3.0	0.01	
	•	1	235 U	0.20	0.20	0.20	<0.03	
		1	238 U	2.8	2.8	2.8	0.0	
24	2 3 ^d	11	gross α	21	5	<9.2	<31	
		11	gross β	13	5	9.9	33	
		0	зН	NA	NA	NA	-	
		2	⁸⁹ Sr	<4	<2	<3	<0.10	
		2	⁹⁰ Sr	<1	<0.8	<0.9	<0.30	
		3	²²⁶ Ra	0.4	0.2	0.27	0.8	
		0	238 Pu	NA	NÁ	NA	-	
		0	239 Pu	NA	NA	NA	-	
		1 .	234 U	2.4	2.4	2.4	0.0	
		1	235 U	0.10	0.10	0.10	<0.0	
		1	538 N	2.3	2.3	2.3	0.0	
25	24 ^d	12	gross α	6	<2	<3.7	<12	
		12	gross β	4	<3	<3.3	<11	
		0	зн	NA	NA	NA	-	
		1	⁸⁹ Sr	<3	<3	<3	<0.10	
		1	90 Sr	<0.9	<0.9	<0.9	<0.3	
		1	^{2 26} Ra				1.6	
		0	238 Pu	NA	NA	NA	-	
		0	239 Pu	NA	NA		-	
		1	234 U				<0.0	
		_					<0.0	
		*	•	~. ~.	~ ~ ~ ~		~~	
	<u>No.</u> 23 24	<u>No. Type</u> ^a 23 21 24 23 ^d	Map Sample of No. Type* Samples 23 21 12 0 4 4 4 3 2 2 2 2 1 1 1 24 23 ^d 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Map Sample of Radio- activity. 23 21 12 gross α 12 gross β 0 ³ H 4 ⁸⁹ Sr 4 ⁹⁰ Sr 3 ²²⁶ Ra 2 ³⁸ Pu 2 ²³⁹ Pu 234 U 2 1 ²³⁵ U 234 U 1 24 23 ^d 11 gross α 1 ²³⁵ U 1 ²³⁶ U 24 23 ^d 11 gross α 1 ²³⁵ U 1 ²³⁶ U 24 23 ^d 11 gross α 1 ²³⁵ U 1 ²³⁶ U 2 ⁹⁰ Sr 2 ⁹⁰ Sr 2 ⁹⁰ Sr 3 ²²⁶ Ra 0 ²³⁸ Pu 234 U 234 U 1 ²³⁶ U 239 Pu 1 1 ²³⁶ U 239 U 1 25 24 ^d 12 gross β 0 </td <td>Map No.Sample Type*of SamplesRadio- activity$10^{-9} \mu C$ max232112gross α3512gross β440$^3 H$NA490 Sr33226 Ra0.22239 Pu$<0.04$2239 Pu$<0.04$2239 Pu$0.02$1234 U$3.0$1235 U$0.20$1236 U$2.8$24$23^4$11gross β11gross β1303HNA290 Sr$<1$3226 Ra$0.4$039 PuNA1236 U$2.4$1239 PuNA1236 U$2.4$1236 U$2.4$1236 U$2.3$25$24^4$12gross β4$0$3HNA189 Sr$<3$25$24^4$12gross β1030 Sr$<3$25$24^4$12gross β190 Sr$<3$190 Sr$<3$190 Sr$<3$190 Sr$<3$190 Sr$<3$190 Sr$<0.9$1236 PuNA0239 Pu<</td> <td>Map No.Sample Type*of SamplesRadio- activity.<math>10^{-9} \ \mu \text{Ci/ml or primeCmaxCminCmin232112gross α35<5</math></td> 12gross β 4480 ³ HNANA4 90 Sr3<1	Map No.Sample Type*of SamplesRadio- activity $10^{-9} \mu C$ max232112gross α 3512gross β 440 $^3 H$ NA4 90 Sr33 226 Ra0.22 239 Pu <0.04 2 239 Pu <0.04 2 239 Pu 0.02 1 234 U 3.0 1 235 U 0.20 1 236 U 2.8 24 23^4 11gross β 11gross β 130 3H NA2 90 Sr <1 3 226 Ra 0.4 0 39 PuNA1 236 U 2.4 1 239 PuNA1 236 U 2.4 1 236 U 2.4 1 236 U 2.3 25 24^4 12gross β 4 0 3H NA1 89 Sr <3 25 24^4 12gross β 10 30 Sr <3 25 24^4 12gross β 1 90 Sr <3 1 90 Sr <0.9 1 236 PuNA0 239 Pu<	Map No.Sample Type*of SamplesRadio- activity. $10^{-9} \ \mu \text{Ci/ml or primeCmaxCminCmin232112gross \alpha35<5$	Map No.Type* Type*of SamplesRadio- activity. $10^{-9} \mu$ Ci/ml or pCi/l CmaxCmin CminCave Cave232112gross α 35<5	

			No.	Type of	Radioac	tivity Co	nc.	% of
Sampling	Map	Sample	of	Radio-		i/ml or p		Conc.
Location	No.	Type*	Samples	<u>activity</u>	C _{max}	C _{min}	Cavg	Guide
Ely, NV	26	21	9	gross α	13	3	<9.1	<30
Comins Lake			9	gross β	59	5	35.7	119
•			0	зH.	NA	NA	NA	-
			6	⁸⁹ Sr	<4	<2	<3.2	<0.11
		÷	6	⁹⁰ Sr	2	<1	<1.3	<0.44
			1	²²⁶ Ra	0.3	0.3	0.3	1.00
			1	238 Pu	<0.02	<0.02	<0.02	<0.01
			1	2.39 Pu	0.01	0.01	0.01	<0.01
			2	234 U	4.5	3.0	3.75	0.01
			2	235 U	0.17	0.14	0.16	<0.01
			. 2	538 N	4.2	2.80	3.50	0.02
Eureka, NV	27	24 ^d	12	gross α	7	<3	<4.3	<14
Chevron Ser Sta			12	gross B	.9	3	<4.3	<14
			0	зн	NA	NA	NA	-
		•	1	⁸⁹ Sr	<4	<4	<4	<0.13
		•	1	90 Sr	<1	<1	<1	<0.33
			1	226 Ra	0.1	0.1	0.1	0.33
			. 0	238 Pu	NA	NA	NA	•
			0	²³⁹ Pu	NA	NA	NA	-
			1	²³⁴ U	0.62	0.62	0.62	<0.01
			1	235 U	0.02	0.02	0.02	<0.01
•			1	558 N	0.59	0.59	0.59	<0.01
Glendale, NV	32 -	2 7 ^d	12	gross α	10	<5	<6.8	<23
Chevron Ser Sta			12	gross B	17	7	11.5	38
			0	зН	NA	NA	NA	-
			1	⁸⁹ Sr	<4	<4	<4	<0.13
			1	^{ç0} Sr	<0.9	· <0 . 9	<0.9	<0.30
			1	²²⁶ Ra	0.6	0.6	0.6	2.00
			0	239 Pu	NA	NA	NA	-
			0	239 Pu	NA	NA	NA	-
			1	234 U	1.3	1.3	1.3	<0.01
			1	235 U	0.05	0.05	0.05	5 <0.01
			1	238 U	1.2	1.2	1.2	0.01

			No.	Type of	Radioa	onc.	% of	
Sampling	Мар	Sample	of	Radio-		Ci/ml or p		Conc.
Location	No.	Type ^a	Samples	<u>activity</u>	C _{max}	C _{min}	Cave	Guide
Glendale, NV Muddy River	33	22	12	gross α	19	5	<8.4	<28
Muddy River			12	gross β	25	8	15.2	51
			0	зн	NA	NA	NA	-
			2	⁸⁹ Sr	<2	<2	<2	<0.07
			2	⁹⁰ Sr	<1	<0.7	<0.85	<0.28
			0	²²⁶ Ra	NA	NA	NA	-
			0	²³⁸ Pu	NA	NA	NA	-
			0	²³⁹ Pu	NA	NA	NA	-
			0	234 U	NA	NA	NA	
			0	235 U	NA	NA	NA	- "
			0	238 U	NA	NA	NA	-
Goldfield, NV	34	21	12	gross α	29	<4	<9.7	-22
Alkali Springs	24		12	gross β	46	6	24.9	83
	•		0	3H	40 NA	NA	24.9 NA	60
•			5	⁸⁹ Sr	<4	<2	<3.2	<0.11
•			5	⁹⁰ Sr	<4 <1	<1	<1	<0.33
			2	²²⁶ Ra	<0.6	0.5	<0.55	<1.83
			2	238 Pu	<0.03	<0.03	<0.03	<0.01
			2	239 Pu	0.03	<0.03	<0.02	<0.01
			2	234 U	0.04	0.03	0.04	<0.01
			2	235 U	0.01	<0.01	<0.01	<0.01
			2	sse n	0.04	0.02	0.03	<0.01
			,					
Goldfield, NV Chevron Ser Sta	35	2 3 ^d	12	gross α	<6	<4	<4.8	<16
GHEVION DEL DEL			12	gross β	10	3	<4.2	<14
			0	зн	NA	NA	NA	-
			1	⁸⁹ Sr	<4	<4	<4	<0.13
			1	90 Sr	<1	<1	<1	<0.33
			1	²²⁶ Ra	0.3	0.3	0.3	1.00
		•	0	²³⁸ Pu	NA	NA	NA	-
,	•		0	239 Pu	NA	NA	NA	• .
			1	^{2 34} U	0.12	0.12	0.12	<0.01
			1	235 U	<0.01	<0.01	<0.01	<0.01
			1	238 U	0.11	0.11	0.11	<0.01

			No.	Type of	Radioa	ctivity C	onc.	% of
Sampling	Мар	Sample	of	Radio-		Ci/ml or		Conc.
Location	No.	Type	Samples	activity	Cmax	C _{min}	Cavg	Guide
Hawthorne, NV ^c	36	21	5	gross α	<39	<12	<26.6	<89
Walker Lake		5	5	gross β	390	<16	<195.0	<651
			1	зн	420	420	420	0.01
		•	3	⁸⁹ Sr	<3	<2	<2.3	<0.08
٠			3	90 Sr	2	<1	<1.7	<0.56
			2	²²⁶ Ra	0.4	0.2	0.3	1.00
			0	238 Pu	NA	NA	NA	-
			0	2:39 Pu	NA	NA	NA	• '
			1	234 U	36	36	36	0.12
			1	235 U	1.1	1.1	1.1	<0.01
	•		1	538 N	33	33	33	0.16
Hiko, NV	37	27 ^d	12	gross α	14	4	<7.0	<23
Crystal Springs			12	gross β	10	4	6.8	23
			0	зн	NA	NA	NA	-
			2	⁸⁹ Sr	<4	<4	<4	<0.13
			2	⁹⁰ Sr	<1	<1	<1	<0.33
			2	226 Ra	0.8	0.8	0.8	2.67
			1	238 Pu	<0.02	<0.02	<0.02	<0.01
			1	239 Pu	<0.01	<0.01	<0.01	<0.01
	•		2	234 U	1.4	1.3	1.35	<0.01
			2	235 U	0.08	0.04	0.06	<0.01
			2	538 N	1.4	1.2	.1.30	0.01
Hiko, NV	38	2 3 ^d	12	gross a	38	19	27.7	92
Schofield Dairy			12	gross β	39	21	31.7	106
			• 0	зн	NA	NA	NA	-
			7	⁸⁹ Sr	<3	<2	<2.9	<0.10
			7	90 Sr	<3	<0.9	<1.3	<0.38
			7	²²⁶ Ra	0.7	0.2	. 0.4	1.32
			1	238 Pu	<0.02	<0.02	<0.02	2 <0.01
			1	239 Pu	<0.01	<0.01	<0.0	l <0.01
			2	^{2 34} U	9.6	9.5	9.5	5 0.03
			2	гзел	0.36	0.33	0.3	5 <0.01
			2	238 U	9.1	9.0	9.0	5 0.05

Table 9	1972	Summary	7 of	Analyti	al Resul:	ts for	the	Water	Surveillan	ce Network
---------	------	---------	------	---------	-----------	--------	-----	-------	------------	------------

				•			% of
Map				~			Conc.
	d						Guide
40	.23		-				<17
			-				<12
							<0.0
				-			<0.1
							<0.3
		3	226 Ra				0.8
		1	238 Pu	<0.03	<0.03	<0.03	<0.0
		1	ane Pu	<0.02	<0.02	<0.02	<0.0
		2	234 U	0.64	0.60	0.62	<0.0
		2	²³⁵ U	0.03	0.03	0.03	<0.0
		2	S36 N	0.60	0.50	0.55	<0.0
41	23 ^d	11	gross O	5	<3	< 3 9	~13
	23		-				<16
			-				<0.0
							<0.1
					÷		<0.3
							2.3
							-
							-
						· .	-
			-				-
		0	538 U	NA	NA	NA	
42	2 3 ⁴	11	gross α	10	3	<5.9	<20
		11	gross β	10	5	5.7	19
		11	з _Н	380	<200	<245	<0.0
		1	⁸⁹ Sr	<4	<4	<4	<0.1
		1	90 Sr	<1	<1	<1	<0.3
	•		226 Ra	1.6			5.3
							-
							-
		1	234 U	1.0	1.0	1.0	<0.0
		T T	~				
		1	235 U	0.03	0.03	0.03	<0.0
	<u>No.</u> 40	<u>No. Type</u> ^a 40 23 41 23 ^d	Map Sample of No. Type* Samples 40 23^d 12 12 12 12 12 2 2 2 3 1 1 1 1 2 2 2 3 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Map Sample Type* of Samples Radio- activity 40 23 12 gross α 12 gross β 12 gross β 12 3H 2 99 Sr 2 90 Sr 3 226 Ra 1 239 Pu 2 330 Pu 1 239 Pu 2 330 Pu 2 234 U 2 35U 2 235 U 2 235 U 2 234 U 2 235 U 1 90 Sr 1 226 Ra 0 239 Pu 0 239 Pu 0 234 U 0 235 U 0 239 Pu 0 236 U 1 90 Sr 1 90 Sr 1 90 Sr 1 90 Sr 1 90 Sr<	Map No.Sample Type*of SamplesRadio- activity 10^{-9} μ cmax40 23^d 12gross α 1412gross β 512 3 H<310	MapSample Type*of SamplesRadio* activity 10^{-p} 	No.Type*SamplesactivityCmaxCminCave402312gross α 142<5.0

			No.	Type of		ctivity C		% of
Sampling	Map	Sample	of	Radio-	10 ⁻⁹ µ С _{max}	Ci/ml or C _{min}	pCi/l C _{avg}	Conc.
Location	No.	<u>Type</u> 23 ^d	Samples	activity				Guide
Las Vegas, NV Cunningham Ranch	43	23	11	gross α	10	<2	<4.0	<13
5			11	gross β	11	<3	<5.0	<17
			11	³ Н	320	<200	<237	<0.01
			1	⁸⁹ Sr	<4	<4	<4	<0.13
			1	⁹⁰ Sr	<1	<1	<1	<0.33
			1	²²⁶ Ra	0.3	0.3	0.3	1.00
			0	²³⁸ Pu	NA	NA	NA	-
			0	239 Pu	NA	NA	NA	-
		÷.	1	234 U	0.59	0.59	0.59	<0.01
			1	235U	0.03	0.03	0.03	<0.01
			1	²³⁸ U	0.56	0.56	0.56	<0.01
				· .		۰.		
Las Vegas, NV	44	23 ^d	12	gross α	22	<4	<7.7	<26
Desert Game Range			12	gross β	14	<3	<5.8	<19
			12	зН	400	<210	<253	<0.01
			2	⁸⁹ Sr	<4	<4	<4	<0.13
			2	⁹⁰ Sr	<1	<1	<1	<0.33
			2	²²⁶ Ra	0.3	0.2	0.25	0.83
			1	238 Pu	<0.02	<0.02	<0.02	<0.01
			1	239 Pu	<0.02	<0.02	<0.02	<0.01
			2	2 34 U	1.3	0.87	1.09	<0.01
			2	ខ 35 ប្រ	<0,50	0.05	<0.27	<0.01
			2	538 N	1.2	0.81	1.01	0.01
Las Vegas, NV	45	21	12	gross α	5	<3	<3.8	<13
Desert Game Rng Pond			12	gross β	4	<3	<3.4	<11
			. 11	зн	<310	<200	<234	<0.01
			0	⁸⁹ Sr	NA	NA	NA	-
			0	⁹⁰ Sr	NA	NA	NA	-
· ·	•		0	226 Ra	NA	NA	NA	-
			1	238 Pu	<0.02	<0.02	<0.02	<0.01
			1	239 Pu	0.02	0.02	0.02	
			0	234 U	NA	NA	NA	-
			0	235U	NA	NA	NA	-
			0	238U	NA	NA NA	NA	-
				~~~	<b>N A</b>			

			No.	Type of	Radio	activity (	Conc.	% of
Sampling	Мар	Sample	of	Radio-		µCi/ml or		Conc.
Location	No.	Type	Samples	activity	C _{max}	C _{min}	Cavg	Guide
Las Vegas, NV	46	2 3 ^d	11	gross $\alpha$	<7	<4	<5.6	<19
Francis Residence			11	gross β	5	<3	<3.7	<12
			· 11	зн	<290	<190	<229	<0.01
x			2	⁸⁹ Sr	<4	<3	<3.5	<0.12
			2	⁹⁰ Sr	<1	<1	. <1	<0.33
			1	226 Ra	0.3	0.3	0.3	1.00
			0	238 Pu	NA	NA	NA	-,
			0	239 Pu	NA	NA	NA	-
			1	234 U	1.6	1.6	1.6	0.01
			1	235 U	0.08	0.08	0.08	<0.01
			1	538 U	1.4	1.4	1.4	0.01
Las Vegas, NV	51	2,3 ^d	11	gross $\alpha$	13	<2	<4.4	<15
L V Water Dist Well 28	•		11	gross β	5	3	<3.5	<12
			11	зн	<290	<200	<234	<0.01
			1.	⁸⁹ Sr	<4	<4	<4	<0.13
			1	⁹⁰ Sr	<1	<1	<1	<0.33
			1	226 Ra	0.2	0.2	0.2	0.67
			0	238 Pu	NA	NA	NA	-
			0	239 Pu	NA	NA	NA	-
			1	234 U	0.29	0.29	0.29	<0.01
			1	235 U	0.01		0.01	
			1	538 N	0.28			<0.01
Las Vegas, NV	47	24 ^d	11	gross α	9	<5	<5.9	<20
Lab II NERC			11	gross B	12	5	· 7.7	26
			11	зН	1100	400	<del>9</del> 09	0.03
			1	⁸⁹ Sr	<5	<5	<5	<0.17
			1	⁹⁰ Sr	<2	<2	<2	0.67
			2	226 Ra	0.3	0.2	0.25	0.83
			0	23e Pu	NA	NA	NA	-
			0	239 Pu	NA	NA	NA	-
			1.	234 U	1.9	1.9	1.9	0.01
			1	235 U	0.06		0.06	<0.01
			1	238 U	1.8	1.8	1.8	0.01
		•	Ŧ		1.0	1.0	1.0	0.01

			No.	Type of	Radioa	ctivity (	Conc.	% of
Sampling	Map	Sample	of	Radio-		Ci/ml or		Conc.
Location	No.	Type	Samples	activity	Cmax	C _{min}	Cavg	Guide
Las Vegas, NV Lake Mead Vegas Wash	48	21	11	gross $\alpha$	<7	<5	<5.8	<19
Lake Mead Vegas wash			11	<b>gross</b> β	11	5	7.8	26
			11	зН	1400	760	948 ·	0.03
			. 0	⁸⁹ Sr	NA	NA	NA	-
			0	⁹⁰ Sr	NA	NA	NA	-
			0	²²⁶ Ra	NA	NA	NA	-
			1	238 Pu	<0.02	<0.02	<0.02	<0.01
			1	239 Pu	0.01	0.01	0.01	<0.01
			0	234 U	NA	NA	NA	° <b>-</b>
			0	235 U	NA	NA	NA	
			0	238 U	NA	NA	NA	-
Las Vegas, NV	49	23 ^d	11	gross α	14	<7	<10.1	<34
LDS Dairy Farms			11 *	gross β	18	<4	<12.2	<41
			11	зН	<280	<200	<227	<0.01
			1	⁸⁹ Sr	<4	<4	<4	<0.13
			1	⁹⁰ Sr	<1	<1	<1	<0.33
			4	226 Ra	0.33	0.1	0.21	0.69
•			0	238 pu	NA	NA	NA	-
•			0	239 Pu	NA	NA	NA	-
		·	1	²³⁴ U	1.8	1.8	1.8	0.01
			1	235 U	0.07	0.07	0.07	<0.01
			1	538 N	1.7	1.7	1.7	0.01
Las Vegas, NV	50	23 ^d	11	gross α	11	<5	<6.7	<22
Lloyd Ranch			11	gross β	9	<4	<6.5	<22
			11	зH	360	<190	<235	<0.01
			1	⁸⁹ Sr	<4	<4	<4	<0.13
			1	90 Sr	<1	<1	<1	<0.33
			1	226 Ra	0.2	0.2	0.2	0.67
			0	238 Pu	NA	NA	NA	-
			0	²³⁹ Pu	NA	NA	NA	-
			1	234 U	1.6	1.6	1.6	0.01
•			1	235U	0.06	0.06	0.06	
			1	238 U	1.5	1.5	1.5	0.01
			103					

Table	9	1972	Summary	of	Analy	ytical	Results	for	the	Water	Surveill	ance	Network	
-------	---	------	---------	----	-------	--------	---------	-----	-----	-------	----------	------	---------	--

		Sample	No.	Type of	Radioa		% of	
Sampling	Мар	Sample	of	Radio-		Ci/ml or		Conc.
Location	No.	Type	Samples	activity	C _{max}	C _{min}	Cave	Guide
as Vegas, NV	52	23	11	gross $\alpha$	5	<3	<3.8	<13
Iunicipal Golf Course			11	gross β [.]	11	<3	<4.8	<16 .
	÷.		11	зн	<290	<210	<235	<0.0
			1	⁸⁹ Sr	<4	<4	<4	<0.1
			. 1	90 Sr	<1	<1	<1	<0.3
•			2	²²⁶ Ra	0.3	0.3	0.3	1.0
			0	238 Pu	NA	NA	NA	-
			0	239 Pu	NA	NA	NA	-
		· ·	1	234 U	0.65	0.65	0.65	<0.0
			1	²³⁵ U	0.02	0.02	0.02	0.0
			1	238 U	0.62	0.62	0.62	<0.0
as Vegas, NV	53	23 ^d	12	<b>gross</b> α	10	<3	<4.2	<14
ule Springs			12	gross β	9	<3	<3.9	<13
· · · · · ·			12	зн	<340	<200	<237	<0.
			1	⁸⁹ Sr	<4	<4	<4	<0.
			1	⁹⁰ Sr	<1	<1	<1	<0.
			2	226 Ra	0.4	<0.1	<0.25	<0.
`			0	238 Pu	NA	NA	NA	-
•			0	239 Pu	NA	NA	NA	-
			1	234 U	0.67	0.67	0.67	<0.
			1	<b>2</b> 35 U	0.03	0.03	0.03	<0.
			1	238 U	0.62	0.62	0.62	<0.
as Vegas, NV	54	21	12	gross α	13	<2	<5.1	<17
ule Springs Pond			12	gross β	6	<3	<4.4	<15
			0.	зн	NA	NA	NA	-
			0	⁸⁹ Sr	NA	NA	NA	-
			0	90 Sr	NA	NA	NA	-
			0	2 26 Ra	NA	NA	NA	-
			0	238 Pu	NA	NA	NA	-
			о	239 Pu	NA	NA	NA	_
			1	²³⁴ U	1.3	1.3	1.3	<0.
•			1	235U	0.05	0.05		<0.
			1	238 U	1.2	1.2	1.2	ď.

			No.	Type of	Radioa	activity (	Conc.	% of
Sampling	Мар	Sample	of	Radio-		uCi/ml or		Conc.
Location	No.	Туре	Samples	activity	C _{max}	C _{min}	Cave	Guide
Las Vegas, NV	55	2 3 ^d	11	gross $\alpha$	<8	<4	<6.2	<21 ·
Vegas Estates			11	gross β	13	7	10.8	36
			11	зН	<290	<200	<230	<0.01
	÷ .		1	⁸⁹ Sr	<4	<4	<4	<0.13
			1	90 Sr	<0.9	<0.9	<0.9	<0.30
		•	1	²²⁶ Ra	0.2	0.2	0.2	0.67
,			0	²³⁸ Pu	NA	NA	NA	-
			0	239 Pu	NA	NA	NA	
			1	234 U	0.47	0.47	0.47	<0.01
			1	^{ຂ35} ປ	0.02	0.02	0.02	<0.01
			1	238 U	0.44	0.44	0.44	<0.01
Lathrop Wells, NV	56	2 3 ^d	12	gross α	7	<3	<4.6	<15
Texaco Ser Sta	2-		12	gross β	12	<3	<4.7	<16
			12	зн	<320	<200	<233	<0.01
			2	⁸⁹ Sr	<4	<2	<3	<0.10
			2	⁹⁰ Sr	<1	<1	<1	<0.33
•			1	226 Ra	0.1	0.1	0.1	0.33
· ·			0	238 Pu	NA	NA	NA	-
			0	239 Pu	NA	NA	NA	-
			1	234 U	0.36	0.36	0.36	<0.01
			1	235 U	0.01		0.01	
			1	238 U	0.34		0.34	
tide NV	58	2 7 ^d	12	gross α	9	<3	<4.3	<14
Lida, NV Lida Livestock Company		- /	12	gross β	8	3		<12
			0	з _Н	NA	NA	NA	-
			1	⁸⁹ Sr	<4	<4	<4	<0.13
			1	⁹⁰ Sr	<1	<1	<1	<0.33
			1	226 Ra	0.1	0.1	0.1	0.33
			0	238 Pu	NA	NA	NA	-
			0	239 Pu	NA	NA	NA	-
			1	234 U	0.64			<0.01
				-				
			1	235U	0.02			
			1	238 U	0.61	0.61	0.6	1 <0.01

			No.	Type of	Radioac	tivity Co	onc.	% of
Sampling	Мар	Sample	of	Radio-		i/ml or p		Conc.
Location	No.	Type	Samples	activity	Cmax	Cmin	Cave	Guide
Manhattan, NV	64	23 ^d	12	gross $\alpha$	.26	10	16.9	56
Country Store			12	gross β	12	5	8.3	28
			0	зн	NA	NA	NA	-
		۰.	ì	⁸⁹ Sr	<3	<3	<3	<0.10
			1	9° Sr	<1	<1	<1	<0.33
			9	²²⁶ Ra	0.7	0.2	<0.37	<1.22
			0	238 Pu	NA	NA	NA	
			0	239 Pu	NA	NA	NA	-
			1	234 y	4.0	4.0	4.0	0.01
			1	235 U	0.26	0.26	0.26	<0.01
			1	238 U	3.8	3.8	3.8	0.02
Manhattan, NV	65	21	8	gross α	38	<3	<13.2	<44
Seyler Reservoir			8	gross β	65	6	26.8	89
			0	зH	NA	NA	NA	-
			2	⁸⁹ Sr	<4	<2	<3	<0.10
			2	⁹⁰ Sr	<1	<1	<1	<0.33
			1	226 Ra	0.3	0.3	0.3	1.00
			1	239 Pu	<0.02	<0.02	<0.02	<0.01
			1	239 Pu	0.02	0.02	0.02	<0.01
			0.	²³⁴ U	NA	NA	NA	-
			0	235 U	NA	NA	NA	· <b>-</b> ·
			0	238 U	NA	NA	NA	-
Mercury, NV	66	23 ^d	12	gross α	7	<3	<4.2	<14
Groom Lake			12	gross β	· 7	<1	<4.7	<16
			0	зн	NA	NA	NA	-
		•	1	⁸⁹ Sr	<3	<3	<3	<0.10
			1	⁹⁰ Sr	<1	<1	<1	<0.33
			1	226 Ra	<0.6	<0.6	<0.6	<2.00
			0	238 Pu	NA	NA	NA	-
			0	239 Pu	NA	NA	NA	-
			1	234 U	0.88	0.88	0.88	<0.01
			1	235 U	0.04	0.04	0.04	
			1	238 U	0.83	0.83	0.83	

Sampling	Мар	Sample	No. of	Type of Radio-		tivity Co Ci/ml or p		% of Conc.
Location	No.	Type	Samples	activity	Cmax	Cmin	Cavg	Guide
Lida, NV	59	21	12	gross $\alpha$	14	<3	<4.9	<16
Pond at Storage Tank			12	gross β	6	3	<4.0	<13
			0	зн	NA	NA	NA	-
			0	⁸⁹ Sr	NA	NA	NA	-
			0	90 Sr	NA	NA	NA	-
			0	²²⁶ Ra	NA	NA	NA	-
			.1	²³⁸ Pu	<0.02	<0.02	<0.02	<0.01
			1	239 Pu	0.01	0.01	0.01	<0.01
			0	234 U	NA	NA	NA	-
			0	<b>ខ</b> 35ប្រ	NA	NA	NA	-
		•	0	sse N	NA	NA	NA	-
Lida Jct, NV	57	<b>2</b> 3 ^d	11	gross α	17	<3	<6.5	<22
Cottontail Ránch			11	gross β	16	9	13.5	45
			0	зн	NA	NA	NA	-
			2	⁸⁹ Sr	<4	<2	<3	<0.10
			2	⁹⁰ Sr	<1	<1	<1	<0.33
			· 3	²²⁶ Ra	0.4	0.1	<0.3	<1.00
			0	238 Pu	NA	NA	NA	• _
а. А.			0	239 Pu	NA	NA	NA	-
			1	234 U	1.3	1.3	1.3	<0.01
			1	235 U	0.06	0.06	0.06	
			1	sse N	1.2	1.2	1.2	0.01
Lund, NV	63	2 3 ^d	12	gross $\alpha$	15	<3	<5.5	<18
Gardner Grocery	05	23	12	gross β	12	<3	<5.4	
			0	зн	NA	NA	NA NA	-
				⁸⁹ Sr	<4	<4	<4	<0.13
			1 1	⁹⁰ Sr	<4 <1	<4 <1	<1	<0.13
				²²⁶ Ra	0.2	0.2	0.2	0.67
			1					-
			0	238 Pu	NA	NA	NA	-
			0	239 Pu	NA	NA	NA	-
			1	234 U	1.1	1.1	1.1	<0.01
			1	235U	0.03	0.03	0.03	
			1	538 N	1.1	1.1	1.1	0,01

			No.	Type of	Radioa	ctivity C	onc.	% of
Sampling	Мар	Sample	of	Radio-		Ci/ml or		Conc.
Location	No.	Type ^a	Samples	activity	Cmax	C _{min}	Cavg	Guide
Moapa, NV	67	27ª	12	gross $\alpha$	8	<5	<6.7	<22
Pedersen Valley View	Rch		12	gross β	16	5	10.4	35
			0	зн	NA	NA	NA	-
			2	⁸⁹ Sr	<4	<3	<3.5	<0.12
			2	90 Sr	<1	<0.9	<0.95	<0.32
			1	226 Ra	1	1	1	3.33
			0	238 Pu	ŅA	NA	NA	-
			0	239 Pu	NA	NA	NA	-
			1	234 U	1.3	1.3	1.3	<0.01
			1	235 U	0.05	0.05	0.05	<0.01
			1	ззв <mark>П</mark>	1.2	1.2	1.2	0.01
•								
Mt Charleston, NV ^b	68	27ª	3	gross a	<3	<2	<2.4	<8
Kyle Canyon			3	gross β	<3	<3	<3.2	<11
			3	зн	380	280	327	0.01
•			0	⁸⁹ Sr	NA	NA	NA	
•			0	90 Sr	NA	NA	NA	-
			0	²²⁶ Ra	NA	NA	NA	-
			0	238 Pu	NA	NA	NA	-
			0	239 Pu	NA	NA	NA	-
			0	234 U	NA	NA	NA	-
			0	235 U	NA	NA	NA	-
			0	238 U	NA	NA	NA	-
Mt Charleston, NV	68	27ª	7	gross α	<4	<2	<3.4	<11
Kyle Canyon Fire Sta			7	gross β	<4	<3	<3.3	<11
			. 7	зн	420	<210	<267	<0.01
			0	⁸⁹ Sr	NA	NA	NA	-
· ·			0	90 Sr	NA	NA	NA	-
			0	226 Ra	NA	NA	NA	-
			0	238 Pu	NA	NA	NA	-
			0	239 Pu	NA	NA	NA	-
			0	234 U	NA	NA	NA	-
			0	235U ·	NA	NA	NA	-
			0	238 U	NA	NA	NA	-
			v	0				

			No.	Type of		ctivity C		% of
Sampling Location	Map No.	Sample Type ^a	of Samples	Radio- activity	10 ⁻⁹ µ С _{тах}	Ci/ml or C _{min}	pci/l C _{avg}	Conc. Guide
Mt Charleston, NV	69	21	6	gross α	5	<3	<3.2	<11
Kyle Canyon Pond			6	gross β	11	<3	<8.4	<28
			1	зн	280	280	280	0.01
			0	⁸⁹ Sr	NA	NA	NA	-
			0	90 Sr	NA	NA	NA	· _
			0	226 Ra	NA	NA	NA	-
			1	238 Pu	<0.03	<0.03	<0.03	<0.01
			1	239 Pu	<0.01	<0.01	<0.01	<0.01
			0	234 U	NA	NA	NA	-
			0	235 U	NA	NA	NA .	-
			0	538 N	NA	NA	NA	-
Nyala, NV	72	23 ^d	12	gross $\alpha$	4	<3	<3.2	<11
Sharp's Ranch			12	gross β	5	3	<3.7	<12
			0	зн	NA	NA	NA	-
			1	⁸⁹ Sr	<5	<5	<5	<0.17
•			1	⁹⁰ Sr	<2	<2	<2	0.67
			1	226 Ra	<0.6	<0.6	<0.6	<2.00
			0	238 Pu	NA	NA	NA	-
			0	239 Pu	NA	NA	NA	-
			1	234 U	0.72	0.72	0.72	<0.01
			1	235 U	0.02	0.02	0.02	<0.01
			1	238 U	0.68	0.68	0.68	<0.01
Pahrump, NV	74	23ª	12	gross α	6	<2	<3.8	
Texaco Ser Sta			12	gross β	5	<3	<3.5	
			1	зн	<210	<210	<210	<0.01
			1	⁸⁹ Sr	<5	<5	<5	<0.17
			1	90 Sr	<1	<1	· <1	<0.33
•			1	²²⁶ Ra	0.2	0.2	0.2	0.67
			0	238 Pu	NA	NA	NA	-
			0	²³⁹ Pu	NA	NA	NA	-
			1	2 34 U	0.70	0.70	0.70	<0.01
			1	532 A	0.03	0.03	0.03	<0.01
			0	538 N	NA	NA	NA	-

			No.	Type of	Radioa	ctivity C	Conc.	% of
Sampling	Мар	Sample	of	Radio-		Ci/ml or		Conc.
Location	No.	Type [*]	Samples	activity	-	Cmin	Cave	Guide
Pioche, NV	75	24 [¢]	12	gross $\alpha$	4	<2	<3.3	<11
County Courthouse			12	gross β	11	<3	<6.1	<20
			0	зн	NA	NA	NA	•
			2	⁸⁹ Sr	<4	<2	<3	<0.10
		•	2	90 Sr	<1	<0.8	<0.9	<0.30
		•	2	226 Ra	0.5	0.1	0.3	1.00
			0	238 Pu	NA	NA	NA	-
· .			0	²³⁹ Pu	NA	NA	NA	-
,			1	234 U	0.70	0.70	0.70	<0.01
			1	235U	0.03	0.03	0.03	<0.01
			- 1	538 N	0.66	0.66	0.66	<0.01
Round Mt, NV	77	27 ^d	12	gross α	14	<2	<3.9	<13
Mobil Ser Sta			12	gross β	5.	<3	<3.6	<12
			0	зн	NA	NA	NA	-
			1	⁸⁹ Sr	<4	<4	<4	<0.13
			1	90 Sr	<1	<1	<1	<0.33
			1	226 Ra	0.2	0.2	0.2	0.67
			0	238 Pu	NA	NA	NA	-
			0	²³⁹ Pu	NA	NA	NA	-
			1	234 U	0.74	0.74	0.74	<0.01
			1 -	235 y	0.03	0.03	0.03	<0.01
			. 1	238 U	0.70	0.70	0.70	<0.01
Scotty's Jct, NV	78	23 ^d	11	gross α	<7	<4	<5.9	<20
Chevron Ser Sta			11	gross β	13	5	10.4	35
			11	з _Н	<290	<200	<221	<0.01
			1	⁸⁹ Sr	<4	<4	<4	<0.13
			1	90 Sr	<1	<1	<1	<0.33
			1	²²⁶ Ra	0.3	0.3	0.3	1. <b>0</b> 0
			0	238 Pu	NA	NA	NA	-
			Ο	239 Pu	NA	NA	NA	-
			1	²³⁴ U	1.9	1.9	1.9	0.01
			1	235U	0.08	0.08	0.08	<0.01
			1	238 U	1.8	1.8	1.8	0.01
			110	•				

1972 Summary of Analytical Results for the Water Surveillance Network Table 9

			No.	Type of		ctivity (		% of
Sampling Location	Map No.	Sample <u>Type^a</u>	of <u>Samples</u>	Radio- activity		Ci/ml or C _{min}	pCi/l C _{avg}	Conc. Guide
Springdale, NV	80	274	12	gross a	<7	<3	<4.8	<16
Peacock Ranch			12	gross β	11	5	8.0	27
			12	зH	<310	<200	<231	<0.01
			2	⁸⁹ Sr	<3	<2	<2.5	<0.08
			2	90 Sr	<1	<0.9	<0.95	<0.32
			1	²²⁶ Ra	0.2	0.2	0.2	0.67
			0	238 Pu	NA	NA	NA	-
	•		0	239 Pu	NA	NA	NA	-
			· 1	234 U	1	. 1	1	<0.01
			1	²³⁵ U	0.03	0.03	0.03	
			1	s 38 fl	0.90	0 <b>.90</b>	0.90	<0.01
Springdale, NV	81	21	12	gross α	8	4	<5.6	<19
Pond			12	<b>gross</b> β	14	4	10.3	34
		~	0	зн	NA	NA	NA	-
			0	⁸⁹ Sr	NA	NA	NA	-
			0	⁹⁰ Sr	NA	NA	NA	-
	-~~.		0	226 Ra	NA	NA	NA	-
			1	238 Pu	<0.02	<0.02	<0.02	<0.01
			1	239 Pu	<0.01	<0.01	<0.01	<0.01
			0	²³⁴ U	NA	NA	NA	-
			0	²³⁵ U	NA	NA	NA	-
			0	238 U	NA	NA	NA	-
Sunnyside, NV	83	21	12	gross α	15	<4	<8.1	<27
Adam McGill Reservoir	0.5		12	gross β	16	4	8.1	27
			0	з _Н	NA	NA	NA	-
			0	⁸⁹ Sr	NA	NA		-
				⁹⁰ Sr			NA	-
			0	²²⁶ Ra	NA	NA	NA	-
			0	238 Pu	NA	NA	NA	-
			0		NA	NA	NA	-
			0	239 Pu	NA	NA	NA	-
			0	234 U	NA	NA	NA	-
			0	532 N	NA	NA	NA	-
			0	238 U	NA	NA	NA	-

Sampling Location         Map         Sample Type*         of Samples         Radio- activity         10 ⁻⁹ µGi/ml or Cmax         Conto         Core         Guide           Sunnyside, NV Wildlife Mgt Hdqts         82         27 ⁴ 12         gross α         5         <2         <1.3         <11           Wildlife Mgt Hdqts         82         27 ⁴ 12         gross β         10         <3         <4.3         <14           0 ³ H         NA         NA         NA         NA         NA            1 ⁹ Sgr         <4         <4         <0.13          <0.33          <0.33          <0.11         <0.13          <0.11         <0.13         <0.11         <0.13         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.02         <0.01         <0.45         <0.01          <0         <0         <0         <0         <0         <0         <0         <0         <0         <0         <0         <0         <0         <0         <0         <0         <0         <0         <0         0				No.	Type of		tivity Co		% of
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		82	27*						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	withit we water				-				<14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1		-			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	· ·	• .		1					0.33
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0					-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0		NA		NA	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1	-	0.48	0.48	0.48	<0.01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1	235 U	0.02	0.02	0.02	<0.01
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1	538 N	0.45	0.45	0.45	<0.01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tonopah, NV	85	23 ^d	12	gross $\alpha$	6	<3	<4.3	<14
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Jerry's Chevron Sta			11	gross β	13	<4	<7.6	<25
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				0	зн	NA	NA	NA	· _ ·
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				0.	⁸⁹ Sr	NA	NA	NA	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				0	⁹⁰ Sr	NA	NA	NA	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	• •			0	226 Ra	NA	NA	NA	· <b>-</b>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				0	238 Pu	NA	NA	NA	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0	²³⁹ Pu	NA	NA	NA	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0	234 U	NA	NA	NA	-
Tonopah, NV 86 $23^4$ 12 gross $\alpha$ 10 <4 <6.0 <20 Tonopah Test Range CP-1 12 gross $\beta$ 10 4 6.8 23 0 ³ H NA NA NA - 1 ⁸⁹ Sr <4 <4 <4 <0.13 1 ⁹⁰ Sr <1 <1 <1 <0.33 2 ²²⁶ Ra 0.1 0.1 0.1 0.3 0 ²³⁸ Pu NA NA NA - 1 ²³⁹ Pu NA NA NA - 1 ²³⁴ U 1.7 1.7 1.7 0.01 1 ²³⁵ U 0.06 0.06 <0.06	•			0	235 U	NA	NA	NA	-
Tonopah Test Range CP-112gross $\beta$ 1046.8230 ${}^{3}H$ NANANA-1 ${}^{89}Sr$ <4				0	S38 A	NA	NA	NA	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			23 ⁴	12	gross $\alpha$	10	<4	<6.0	<20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tonopah Test Range CP-	-1		12	gross β	10	4	6.8	23
$1  {}^{90} Sr  <1  <1  <1  <0.33$ $2  {}^{228} Ra  0.1  0.1  0.1  0.33$ $0  {}^{238} Pu  NA  NA  NA  -$ $0  {}^{239} Pu  NA  NA  NA  -$ $1  {}^{234} U  1.7  1.7  1.7  0.01$ $1  {}^{235} U  0.06  0.06  0.06  <0.01$				0	зН	NA	NA	NA	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• *			1	⁸⁹ Sr	<4	<4	<4	<0.13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1	90 Sr	<1	<1	<1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•				^{2 26} Ra	0.1	0.1	0.1	0.33
0 ²³⁹ Pu NA NA NA - 1 ²³⁴ U 1.7 1.7 1.7 0.01 1 ²³⁵ U 0.06 0.06 <0.01	· · · · ·								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					²³⁹ Pu				-
1 ²³⁵ U 0.06 0.06 <0.01									0.01
					235 U	•			
				1	238 U	1.6	1.6	1.6	0.01

			No.	Type of	Radioac	tivity Co	onc.	% of
Sampling	Map	Sample	of	Radio-		i/ml or p		Conc.
Location	No.	Type	Samples	activity	Cmax	C _{min}	Cavg	Guide
Warm Springs, NV	90	23 ^d	12	gross $\alpha$	19	<3	<8.3	<28
Twin Springs Ranch			12	gross β	16	<3	<10.1	<34
			0	зН	NA	NA	NA	-
			1	⁸⁹ Sr	<3	<3	<3	<0.10
			1	⁹⁰ Sr	<1	<1	<1	<0.33
			3	²²⁶ Ra	0.4	<0.1	<0.23	<0.78
			0	238 Pu	NA	NA	NA	-
			· 0	2 39 Pu	NA	NA	NA	-
			1	234 U	1.4	1.4	1.4	<0.01
			1	235 U	0.05	0.05	0.05	<0.01
			1	238 U	1.3	1.3	1.3	0.01
						• *		
Cedar City, UT	16	24 ^d	12	gross $\alpha$	15	2	<4.0	<13
M. D. Baldwin Residenc	e		12	<b>gross</b> β	13	<3	<4.8	<16
			0	зн	NA	NA	NA .	-
			1	⁸⁹ Sr	<4	<4	<4	<0.13
			1	⁹⁰ Sr	<1	<1	<1	<0.33
		•	3	²²⁶ Ra	0.3	<0.1	<0.2	<0.67
			0	238 Pu	NA	NA	NA	-
			0	239 Pu	NA	NA	NA	-
			1	234 U	0.40	0.40	0.40	<0.01
			1	<b>ខ</b> 35 ប្រ	0.02	0.02	0.02	<0.01
			1	238 U	0.40	0.40	0.40	<0.01
,								
Garrison, UT ^c	30	21	3	gross α	21	11	15.7	52
Pruess Reservoir			3	gross β	16	14	15.0	50
			0	зн	NA	NA	NA	-
			0	⁸⁹ Sr	NA	NA	NA	-
			0	90 Sr	NA	NA	NA	-
			0	²²⁶ Ra	NA	NA	NA	-
			0	²³⁸ Pu	NA	NA	NA	
			0	239 Pu	NA	NA	NA	-
· .			0	234 U	NA	NA	NA	-
			0	235U	NA	NA	NA	-
				238 U				-
			0		NA	NA	NA	-

.

ы. Яла

.

2.531.253.21

			No.	Type of		ctivity Co		% of
Sampling	Map	Sample	of	Radio-	$10^{-9} \mu$	Ci/ml or p		Conc.
Location	No.	Type	<u>Samples</u>	activity	C _{max}	C _{min}	Cavg	Guide
Warm Springs, NV Fallini's Pond	87	21	10	gross a	42	12	24.1	80
			10	gross β	100	40	68.8	229
			0	зН	NA	NA	NA	-
			8	⁸⁹ Sr	<7	<2	<3.4	<0.11
			8	⁹⁰ Sr	4	<1	<1.6	<0.52
			4	²²⁶ Ra	1.3	0.6	1.1	3.67
			1	238 Pu	<0.03	<0.03	<0.03	<0.01
			1	239 Pu	0.09	0.09	0.09	<0.01
			2	234 U	5.0	2.6	3.80	0.01
			2	235U	0.19	0.14	0.17	<0.01
			2	538 N	4.8	2.4	3.60	0.02
Warm Springs, NV	88	27ª	12	gross α	<8	<4	<5.5	<18
Hot Creek Ranch			12	gross β	20	9	12.5	42
			0	зн	NA	NA	NA	-
•			2	⁸⁹ Sr	<3	<2	<2.5	<0.08
			2	⁹⁰ Sr	<1	<1	<1	<0.33
			1	²²⁶ Ra	<0.4	<0.4	<0.4	<1.33
			0	238 Pu	NA	NA	NA	
			Ō	²³⁹ Pu	NA	NA	NA	-
· · · ·			1	234 U	0.85	0.85	0.85	<0.01
			1	235 U	0.04	0.04		<0.01
			1	²³⁸ U	0.80	0.80	0.80	
Warm Springs, NV	89	27ª	11	gross α	57	9	25.2	84
Ser Sta & Cafe	•••		11	gross β	58	21		
			0'	³ H	NA	NA	30.3	101
			4	⁸⁹ Sr	<3	NA <2	NA	-
			4	⁹⁰ Sr			<2.3	<0.07
			8	²²⁶ Ra	<2	<1	<1.3	<0.60
					11	6.9	9.2	30.50
			0	²³⁸ Pu	NA	NA	NA	-
		•	0	²³⁹ Pu	NA	NA	NA	-
			1	234 U	0.28	0.28	0.28	<0.01
			1	sзеЛ	0.01	0.01	0.01	<0.01
			1	238 U	0.26	0.26	0.26	<0.01

		•	No.	Type of	Radioac	tivity Co	nc.	% of
Sampling	Мар	Sample	of	Radio-	_10 ⁻⁹ μC	i/ml or p		Conc.
Location	No.	Type	Samples	activity	Cmax	Cmin	Cave	Guide
Garrison, UT	31	23 ^d	12	gross $\alpha$	6	<2	<4.0	<13
Rowley Grocery			12	gross β	9	3	<4.3	<14
			0	зн	NA	NA	NA	-
			1	⁸⁹ Sr	<4	<4	<4	<0.13
			1	90 Sr	<1	<1	<1	<0.33
			1	²²⁶ Ra	0.2	0.2	0.2	0.67
			0	238 Pu	NA	NA	NA	_
			0	²³⁹ Pu	NA	NA	NA	-
			1	234 U	1.3	1.3	1.3	<0.01
			1	235U	0.05	0.05	0.05	<0.01
			1	238 U	1.3	1.3	1.3	0.01
								•
Newcastle, UT	71	24 ^d	12	gross $\alpha$	7	3	<5.0	<17
Newcastle Dairy			12	gross β	18	<4	<7.2	<24
			0	зн	NA	NA	NA	-
•			1	⁸⁹ Sr	<4	<4	<4	<0.13
			1	90 Sr	`<1	<1	<1	<0.33
			. 1	²²⁶ Ra	0.4	0.4	0.4	1.33
			0	238 Pu	NA	NA	NA	-
			0	239 Pu	NA	NA	NA	-
			1	²³⁴ U	1.2	1.2	1.2	<0.01
			1	²³⁵ U	0.05	0.05	0.05	<0.01
			1	238 U	1.1	1.1	1.1	0.01
							•	
Newcastle, UT	70	21	12	gross $\alpha$	21	<2	<8.4	<28
Municipal Reservoir			12	gross B	20	<3	<8.6	<29
			0	зн	NA	NA	NA	-
			0	⁸⁹ Sr	NA	NA	NA	-
			0	90 Sr	NA	NA	NA	-
			0	226 Ra	NA	NA	NA	-
			1	238 Pu	<0.02	<0.02	<0.02	<0.01
			1	239 Pu	0.02	0.02	0.02	<0.01
,			0	234 U	NA	NA	NA	-
			0	235 U	NA	NA	NA	-
·			0	238 U	NA	NA	NA	-
				-				

Sampling Location	Map No.	Sample Type [®]	No. of Samples	Type of Radio <del>-</del> activity		tivity Co Ci/ml or p 		% of Conc. Guide
St George, UT	82	24 ^d	12	gross $\alpha$	8	<2	<3.5	<12
R. Cox Dairy			12	gross β	8	<3	<4.1	<14
			0	зн	NA	NA	NA	-
			1	⁸⁹ Sr	<3	<3	<3	<0.10
			1	⁹⁰ Sr	<0.8	<0.8	<0.8	<0.27
			2	226 Ra	0.4	0.2	0.3	1.00
			0	238 Pu	NA	NA	NA	-
			0	239 Pu	NA	NA	NA	-
			1	234 U	0.98	0.98	0.98	<0.01
			1	235U	0.04	0.04	0.04	<0.01
		1	238 U	0.92	0 <b>.92</b>	0.92	<0.01	

21 = Pond, Lake, Reservoir, Stock Tank, Stock Pond

22 = Stream, River, Creek

23 = Well

24 = Multiple Supply - Mixed (A water sample consisting of mixed or multiple sources of water, such as well and spring.)

27 = Spring

^b = Discontinued.

c = Sampled quarterly.

^d = Drinking water.

NA = Not Analyzed.

## Table 10 1972 Summary of Analytical Results for Off-NTS Long-Term Hydrologic Monitoring Program

Sampling Location	Date	Sample Type	Depth Feet	Type of Radio- activity	Radioactivity Conc. 10 ⁻⁹ µCi/ml or pCi/l	% of Conc. Guide
		PRO.	JECT RULI	SON		
Anvil Points, Colo. Bernklau Ranch	9/16	27		gross α gross β ³ Η	<6.0 <3.2 250	<20 <11 <0.01
Grand Valley, Colo. Albert Gardner Ranch		23		gross α gross β ³ H	<4.4 <4.0 780	<15 <13 0.03
Grand Valley, Colo. City Water	9/16	27		gross α gross β ³ H	6 4 270	20 13 <0.01
Grand Valley, Colo. 300 Yds. N.W. of G.Z		27		gross α gross β ³ H	<4.4 <4.0 510	<15 <13 0.02
Grand Valley, Colo. Battlement Creek	9/17	22		gross α gross β ³ H	<2.2 <3.2 860	<7.3 <11 0.03
Grand Valley, Colo. CER Water Well	9/18	23	45.2	gross α gross β ³ Η	<2.3 <3.2 780	<7.7 <11 0.03
Rulison, Colo. Lee L. Hayward Ranch	9/18	23		gross α gross β ³ H	<5.9 7 370	<20 23 0.01
Rulison, Colo. Ernest R. Schwab Residence	9/17	23		gross α gross β ³ Η	<3.3 <3.1 730	<11 <10 0.02
Rulison, Colo. R. Bingman Sr. Ranch	9/16	23		gross α gross β ³ Η	<3.6 <4.0 230	<12 <13 <0.01
Rulison, Colo. Potter Ranch	9/18	27		gross α gross β ³ Η ²²⁶ Ra	8 7 570 0.2	27 23 0.02 0.67

## Table 10 1972 Summary of Analytical Results for Off-NTS Long-Term Hydrologic Monitoring Program

				•		
				Type of		
Sampling Location	Date	Sample Type	Depth Feet	Radio- activity	Radioactivity Conc. 10 ⁻⁹ µCi/ml or pCi/l	% of Conc. Guide
	• •	PRO	JECT DRI	BBLE	· ·	
Baxterville, Miss. City Water	4/21	23		gross α gross β ³ H	<1.5 <3.4 <210	<5 <11 <0.01
Baxterville, Miss. Lower Little Creel	4/24	22		gross α gross β ³ Η	<1.1 <3.4 <200	<3.7 <11 <0.01
Tatum Salt Dome, Miss. Pond West of G.Z.	10/15	21		з _Н	<230	<0.01
Tatum Salt Dome, Miss. Shell Well No. 1	10/15	23		з ^н	<230	<0.01
Tatum Salt Dome, Miss. HT-1	9/3	23	1,308	gross α gross β ³ H	<4.9 <3.4 <230	<16 <11 <0.01
	10/13	23	1,433	gross α gross β ³ H ⁸⁹ Sr ⁹⁰ Sr	<4.7 6.5 <230 <2 <1	<16 22 <0.01 <0.01 <0.33
	10/19	23	1,308	gross α gross β ³ H ⁸⁹ Sr ⁹⁰ Sr	<5.3 6 <190 <2 <1	<18 20 <0.01 <0.01 <0.33
	10/19	23	1,500	gross α gross β ³ H ⁸⁹ Sr ⁹⁰ Sr	<4.7 <3.5 310 <2 <1	<16 <12 0.01 <0.01 <0.33

Sampling Location	Date	Sample Type	Depth Feet	Type of Radio- activity	Radioactivity Conc. 10 ⁻⁹ µCi/ml or pCi/l	% of Conc. Guide
Tatum Salt Dome, Miss. HT-2C	9/3	23	355	gross α gross β ³ H	<2.6 <3.3 <230	<8.7 <11 <0.01
	10/13	23	355	gross α gross β ³ H ⁸⁹ Sr ⁹⁰ Sr	<2.4 <3.6 <230 <3 <1	<8 <12 <0.01 <0.01 <0.33
Tatum Salt Dome, Miss. HT-2M	9/3	23	100	³ Н	430	0.01
	9/3	23	600	зĦ	300	0.01
	9/3	23	1,100	з _Н	1,200	0.04
	9/3	23	1,600	з _Н	15,000	0.50
	9/3	23	2,100	з _Н	19,000	0.63
•	9/3	23	2,350	gross α gross β ³ H ²²⁶ Ra ⁸⁹ Sr ⁹⁰ Sr	<45 <20 31,000 5.2 <8 6	<150 <67 1 0.7 <0.03 2
	10/14	23	600	gross α gross β ³ H ⁸⁹ Sr ⁹⁰ Sr	<4.3 <3.4 <230 <3 <1	<14 <11 <0.01 <0.01 <0.33
	10/14	23	1,600	gross α gross β ³ H ⁸⁹ Sr ⁹⁰ Sr	<40 <19 10,000 <4 <2	<133 <63 0.33 <0.01 <0.67

# Table 10 1972 Summary of Analytical Results for Off-NTS Long-Term Hydrologic Monitoring Program

## Table 10 1972 Summary of Analytical Results

## for Off-NTS Long-Term Hydrologic Monitoring Program

Sampling Location	Date	Sample Type	Depth Feet	Type of Radio <del>-</del> activity	Radioactivity Conc. 10 ⁻⁹ µCi/ml or pCi/l	% of Conc. Guide
HT-2M (Continued)	10/14	23	2,350	gross α gross β ³ H	7.7 4.1 67,000	26 14 2.2
				⁸⁹ Sr ⁹⁰ Sr	<4 <2	<0.01 <0.67
	10/14	<b>23</b> ·	2,600	^З Н	8,100	0.27
Tatum Salt Dome, Miss. HT-4	9/3	23	400	gross α gross β ³ Η	<3.3 <3.3 <230	<11 <11 <0.01
· · · ·	10/13	23	400	gross α gross β ³ H ⁸⁹ Sr ⁹⁰ Sr	<3.0 <3.6 <230 <3 <1	<10 <12 <0.01 <0.01 <0.33
Tatum Salt Dome, Miss. HT-5	5/1	23	600	gross α gross β ³ H	<2.8 24 <200	<9.3 80 <0.01
	10/12	23	600	gross α gross β ³ H ⁸⁹ Sr ⁹⁰ Sr	<2.0 <3.6 <230 <3 2	<6.7 <12 <0.01 <0.01 0.67
Tatum Salt Dome, Miss. E-7	5/1	23	924	gross α gross β ³ H	<4.0 <3.6 <200	<13 <12 <0.01
Baxterville, Miss. Half Moon Creek	4/24	22		gross α gross β ³ Η	<1.1 <3.4 <200	<3.7 <11 <0.01
	10/15	22		з _Н	<230	<0.01
Half Moon Creek (Overflow)	10/15	22		з _Н	430	0.01

120

त्तवर्

## Table 10 1972 Summary of Analytical Results for Off-NTS Long-Term Hydrologic Monitoring Program

Sampling Location	Date	Sample Type	Depth Feet	Type of Radio- activity	Radioactivity Conc. _10 ⁻⁹ µCi/ml or pCi/l	% of Conc. Guide
		-//-				Jurde
Baxterville, Miss.	4/26	23		gross a	<2.2	<7.3
T. Speichts Residen	ce			gross β	<3.4	<11
				³ H	210	<0.01
Baxterville, Miss.	4/26	23		gross a	<1.9	<6.3
R. L. Anderson Resi	dence			gross β	5	17
				з ^н	340	0.01
Baxterville, Miss.	4/26	23		gross a	<2.6	<8.7
M. Lowe Residence				gross β	<3.4	<11
				3 ^H	<200	<0.01
Baxterville, Miss.	4/26	23		gross a	<1.3	<4.3
R. Ready Residence			• •	gross B	<3.1	<10
•				ЗH	<270	<0.01
Baxterville, Miss.	4/26	23		gross α	<1.1	<3.7
W. Daniels, Jr. Res				gross β	3	10
•				3 ^H	220	<0.01
Columbia, Miss.	4/24	23		gross a	2	6.7
City Water Well No.	64B			gross β	<3.1	<10
•				3 ^H	<210	<0.01
Lumberton, Miss.	4/18	23		gross a	<2.8	<9.3
City Water Well No.				gross β	<3.2	<10.7
				3 ^H	<210	<0.01
Purvis, Miss.	4/21	23		gross a	<2.1	<7.0
City Water	.,				<3.2	<11
<b>,</b>				gross β ³ H	<210	<0.01
		FAU	LTLESS EV	VENT		
n1 x x	1/10			<b>0</b>	E	17
Blue Jay, Nev.	1/13	23		gross a	5	37
Highway Maintenance	Station	1		$gross \beta$	11	<0.01
				ΞĦ	210	<0.01
Blue Jay, Nev.	1/13	27		gross a	8	27
Blue Jay Spring	, = -			gross β	15	50
,,_ <b></b>				3 _H	<200	<0.01

# Table 10 1972 Summary of Analytical Results

for Off-NTS Long-Term Hydrologic Monitoring Program

			<b>-</b> .1	Type of Radio-	Deliesetinite Cone	% of Conc.
Sampling Location	Date	Sample Type	Depth Feet	activity	Radioactivity Conc. 10 ⁻⁹ µCi/ml or pCi/l	Guide
Blue Jay, Nev.	1/13	23		gross a	5	17
Six Mile Well				gross β ³ H	8 260	27 <0.01
Site C, Nev.	3/2	23	850	gross a	3	10
HTH-1				gross β ³ H	6 <200	20 <0.01
Site C, Nev.	3/2	23	600	gross a	<5	<17
HTH-2				gross β ³ H	4 <200	13 <0.01
Warm Springs, Nev.	1/12	27		gross a	<5	<17
Hot Creek Ranch				gross β ³ H	13 340	43 0.01
		PR	OJECT SH	OAL		
Frenchman, Nev.	11/29	23		gross a	7.2	24
Frenchman Station				gross β ³ H	6.1 <220	20 <0.01
				226Ra	0.17	0.57
Frenchman, Nev.	11/29	23		gross α gross β	7.3 4.1	24 14
HS-1				з ^н	<210	<0.01
•				226 <b>Ra</b>	0.42	1.4
Frenchman, Nev.	11/28	23	375	gross a	<4.8 16	<16 53
Н-3				gross β ³ Η	<210	<0.01
				89Sr	<2	<0.01
			•	⁹⁰ Sr	<0.8	<0.27
Frenchman, Nev.	11/29	23		gross a	<12	<40
Flowing Well No. 2				gross β ³ H	38 <220	127 <0.01
				226 _{Ra}	0.28	0.93
				⁸⁹ Sr	<2	<0.01
				90Sr	<1.1	<0.04

## Table 10 1972 Summary of Analytical Results for Off-NTS Long-Term Hydrologic Monitoring Program

Sampling Location	Date	Sample Type	Depth Feet	Type of Radio <del>-</del> activity	Radioactivity Conc. 10 ⁻⁹ µCi/ml or pCi/l	% of Conc. Guide
Frenchman, Nev. Hunt's Station	11/28	23		gross α gross β ³ Η	<2.5 6.1 <210	<8.3 20 <0.01
		PRO	JECT GASE	UGGY		•
Blanco, N.M. San Juan River	9/13	22		gross α gross β ³ H	<3.6 <3.8 840	<12 <13 0.03
Dulce, N.M. City Water	9/8	21	•	gross α gross β ³ H	<2.8 <3.5 <220	<9.3 <12 <0.01
Dulce, N.M. La Jara Lake	9/13	21		gross α gross β ³ H ⁸⁹ Sr ⁹⁰ Sr	<9.8 36 740 <10 11	<33 120 0.03 <0.03 3.7
Jicarilla Apache Reservation, N.M. North	9/13	23	· .	gross α gross β ³ Η	<9.3 <3.4 350	<31 <11 0.01
Jicarilla Apache Reservation, N.M. South	9/13	23		grossα grossβ ³ H ²²⁶ Ra	16 5 <210 2.9	53 17 <0.01 9.7
Gobernador, N.M. Arnold Ranch	9/10	27		grossα grossβ ³ H	<11 4.6 210	<37 15 <0.01
Gobernador, N.M. Lower Burro Canyon	9/10	23		grossα grossβ ³ H	<11 <4.4 <210	<37 <15 <0.01
Gobernador, N.M. Bixler Ranch	9/13	23		grossα grossβ ³ Η	<6.4 <4.2 <210	<21 <14 <0.01

## Table 10 1972 Summary of Analytical Results

## for Off-NTS Long-Term Hydrologic Monitoring Program

Sampling Location	Date	Sample Type	Depth Feet	Type of Radio- activity	Radioactivity Conc. 10 ⁻⁹ µCi/ml or pCi/l	% of Conc. Guide
Gobernador, N.M. Cave Springs	9/10	27	•	gross α gross β ³ Η	4 <3.6 <210	13 <12 <0.01
Gobernador, N.M. Bubbling Spring	9/8	27		gross α gross β ³ H	<6.2 <4.1 310	<21 <14 0.01
Gobernador, N.M. EPNG Well 10-36	9/13	23	3,600	gross α gross β ³ H ⁸⁹ Sr ⁹⁰ Sr	<21 47 <210 <3 <1	<70 157 <0.01 <0.01 <0.33
		PRO	DJECT GNO	OME		•
Carlsbad, N.M. City Well No. 7	3/17	23		gross α gross β ³ H	<4.3 <3.4 <220	<14 <11 <0.01
Loving, N.M. City Well No. 2	3/21	23		gross α gross β ³ H	<4.8 9 <220	<16 30 <0.01
Malaga, N.M. USGS Well No. 1	3/15	23	528	gross α gross β ³ H	<6.2 6 <220	<21 20 <0.01
Malaga, N.M. USGS Well No. 4	3/15	23	486	gross α gross β ³ H ⁸⁹ Sr ⁹⁰ Sr	<12 24,000 1,300,000 <2,300 13,000	<40 80,000 43 <7.7 433
Malaga, N.M. USGS Well No. 8	3/15	23	473	137 _{Cs} gross α gross β ³ H ⁸⁹ Sr ⁹⁰ Sr	80 <10 26,000 1,500,000 <1,800 12,000	0.4 <33 87,000 50 <6 400

Sampling Location	Date	Sample Type	Depth Feet	Type of Radio- activity	Radioactivity Conc. 10 ⁻⁹ µCi/ml or pCi/1	% of Conc. Guide
Malaga, N.M. PHS Well No. 6	3/16	23		gross α gross β ³ H	<3.1 10 450	<10 33 0.02
Malaga, N.M. PHS Well No. 8	3/16	23		gross α gross β ³ Η	<11 <6.7 <220	<37 <22 <0.01
Malaga, N.M. PHS Well No. 9	3/16	23	÷	gross α gross β ³ H	<3.8 <3.4 <210	<13 <11 <0.01
Malaga, N.M. PHS Well No. 10	3/16	23	• • •	gross α gross β ³ H	<7 15 <210	<23 50 <0.01
Malaga, N.M. City Tap Water	3/20	24		gross α gross β ³ H	3 <3.3 <220	10 <11 <0.01
Malaga, N.M. Pecos River Pumping	3/18 Station	23	•	gross α gross β ³ H	<8.3 7 <220	<28 23 <0.01

## Table 10 1972 Summary of Analytical Results for Off-NTS Long-Term Hydrologic Monitoring Program

^a21 - Pond, Lake, Reservoir, Stock Tank, Stock Pond
22 - Stream, River, Creek
23 - Well
24 - Multiple Supply - Mixed (A water sample consisting of mixed or multiple sources of water, such as well and spring.)
27 - Spring

^bIf depth is not shown, water was collected at surface. All depths are below surface level.

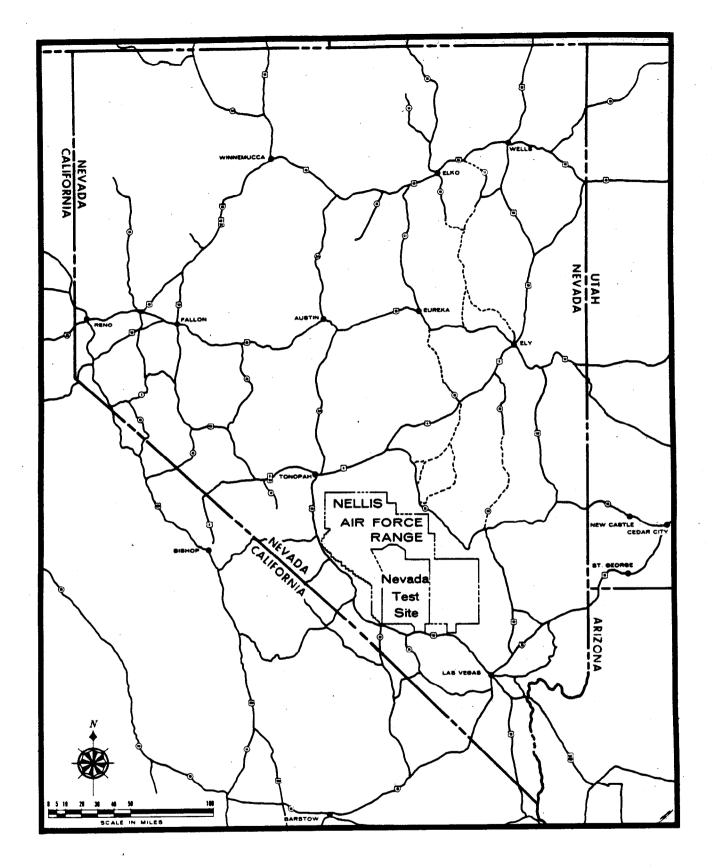



Figure 1. Nevada Test Site Location

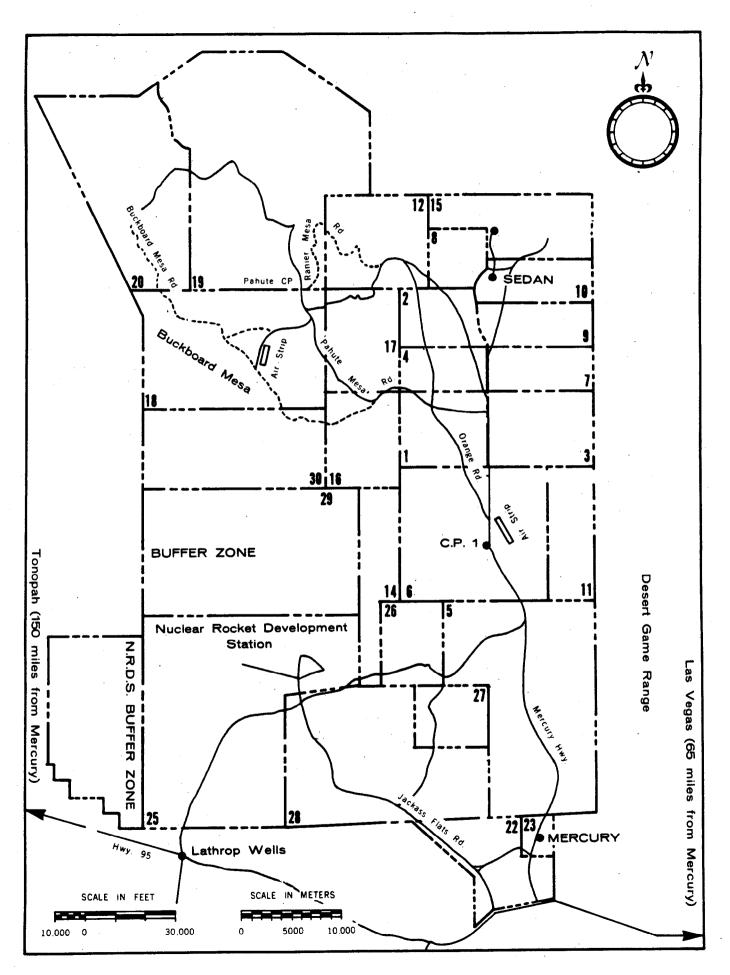



Figure 2. Nevada Test Site Road and Facility Map 127

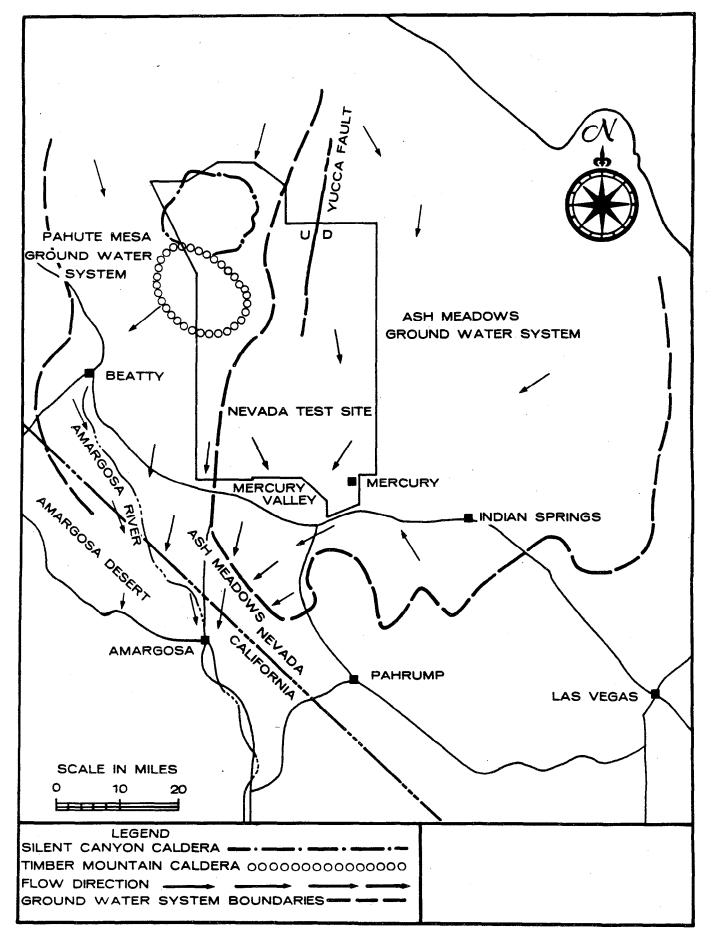



Figure 3. Ground Water Flow Systems - NTS

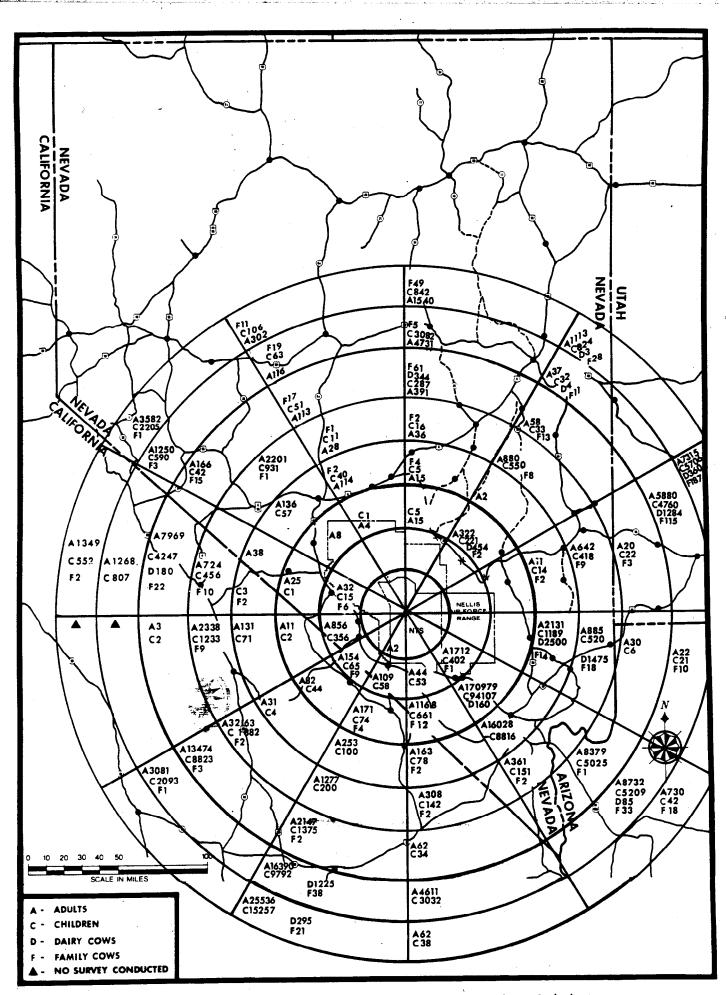
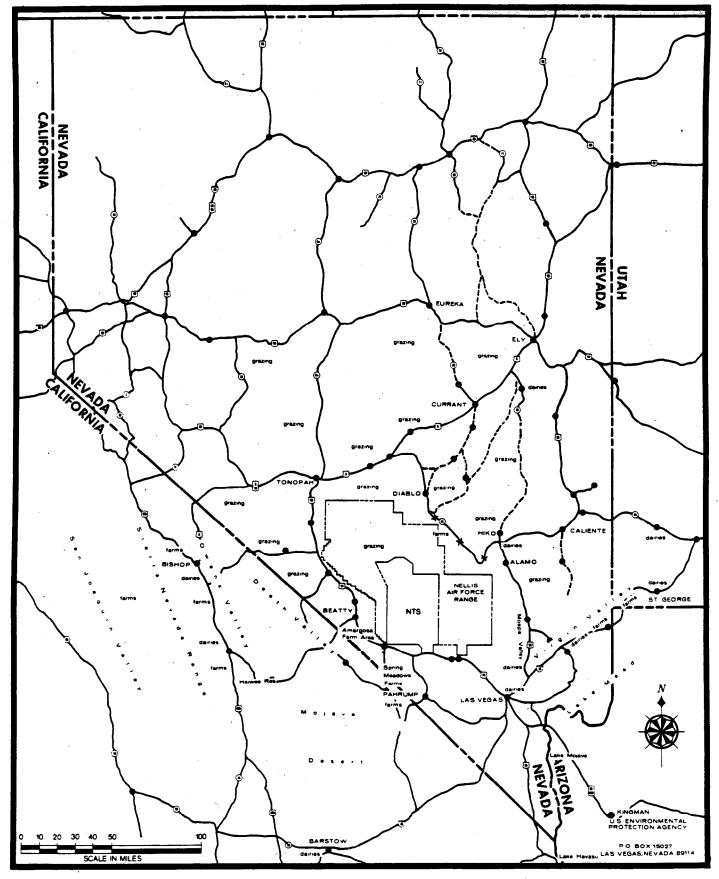
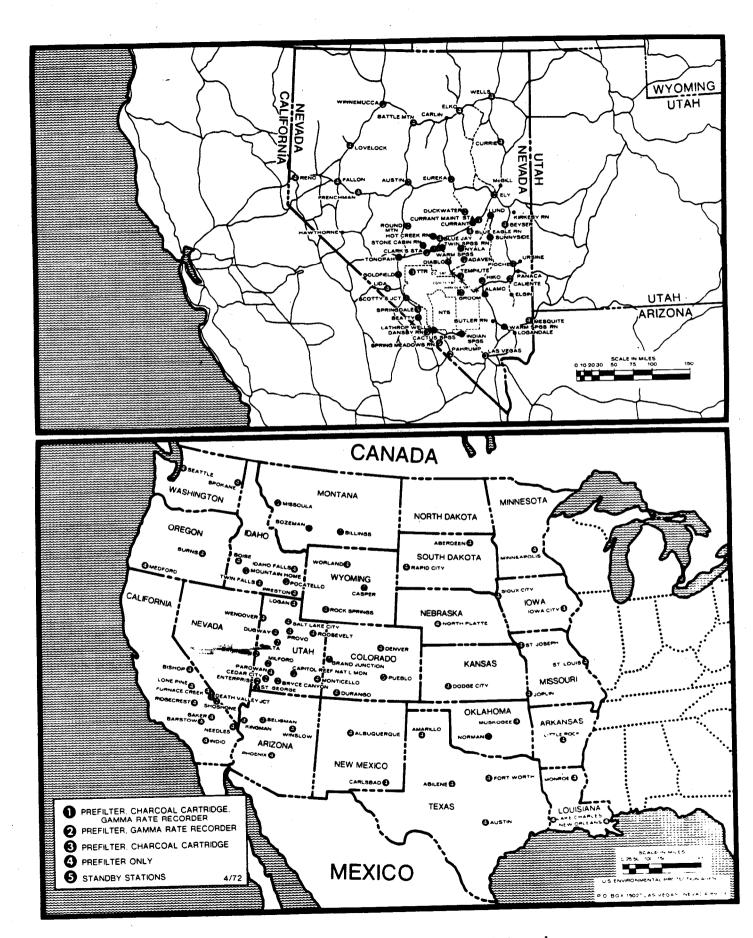
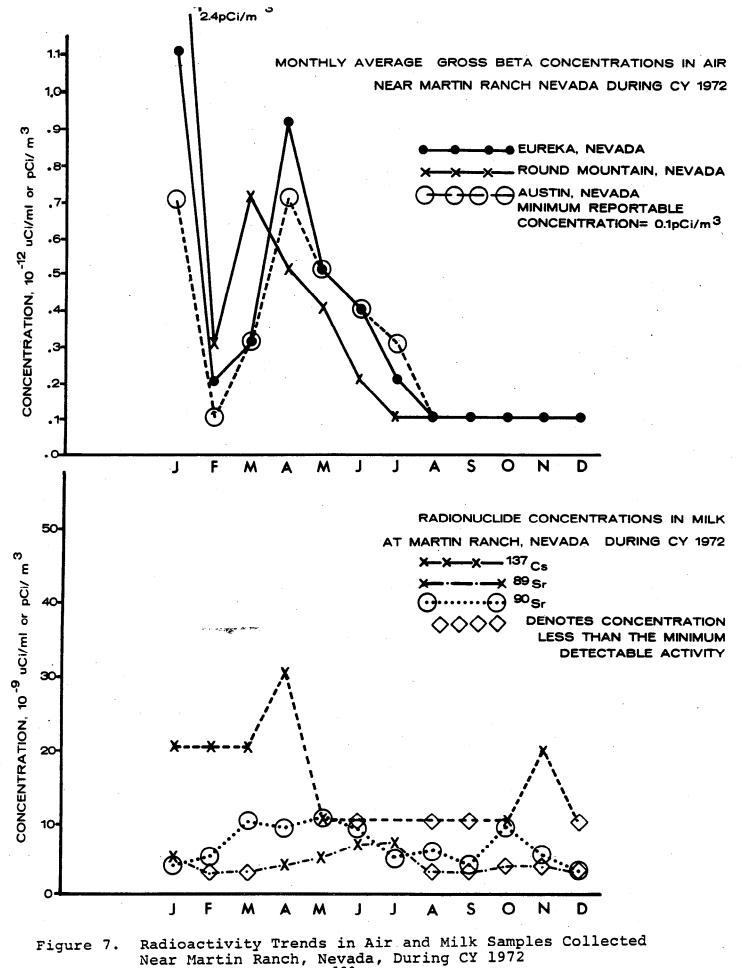



Figure 4 Population Distribution by Azimuth/Distance



Figure 5. General Land Use, Nevada Test Site Vicinity 130



Sec. also date

.

Figure 6. Air Surveillance Network





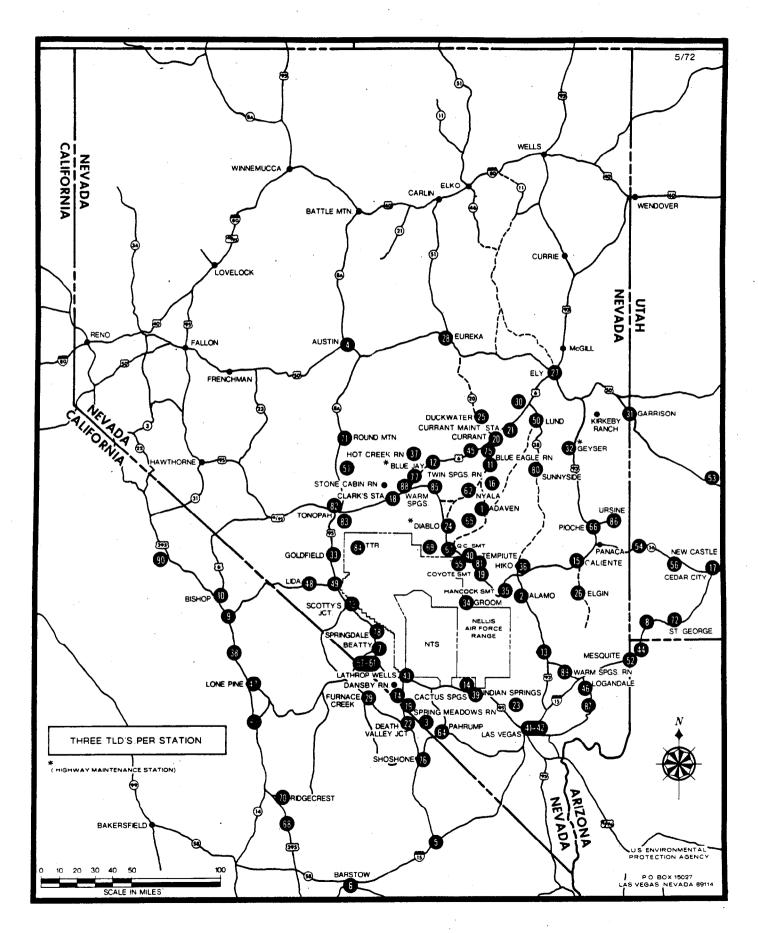



Figure 8. Dosimetry Network

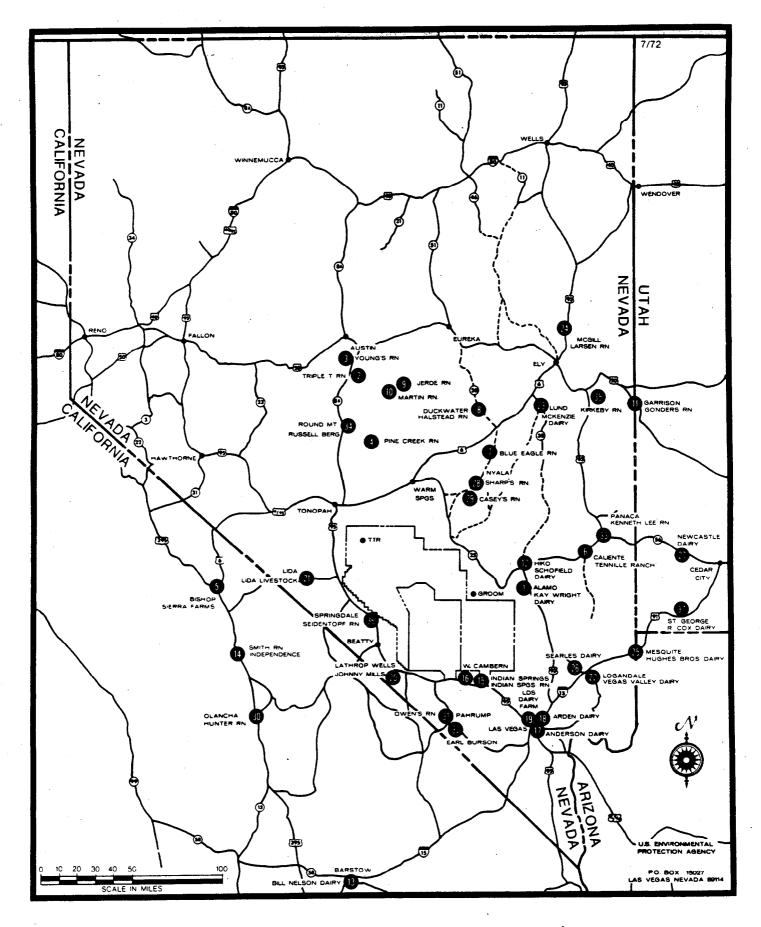
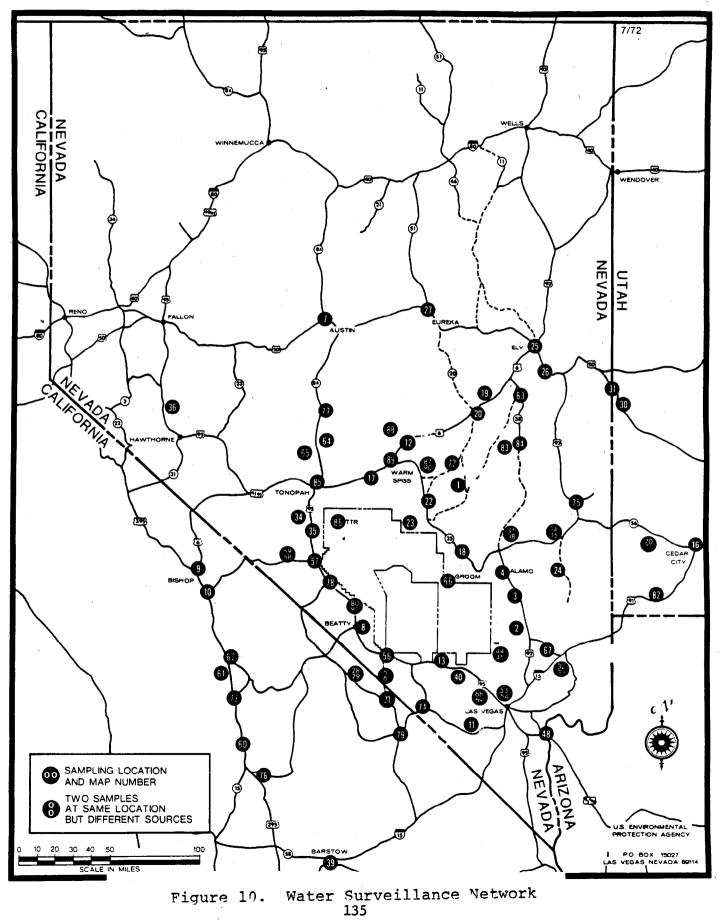




Figure 9. Milk Surveillance Network 134



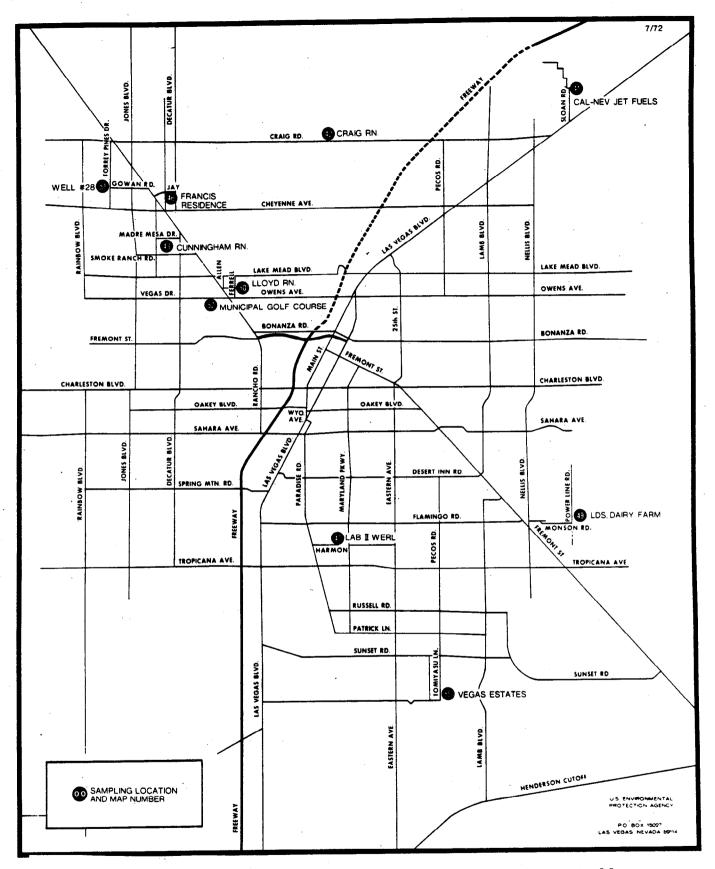



Figure 11. Water Surveillance Network, Las Vegas Valley

1.07

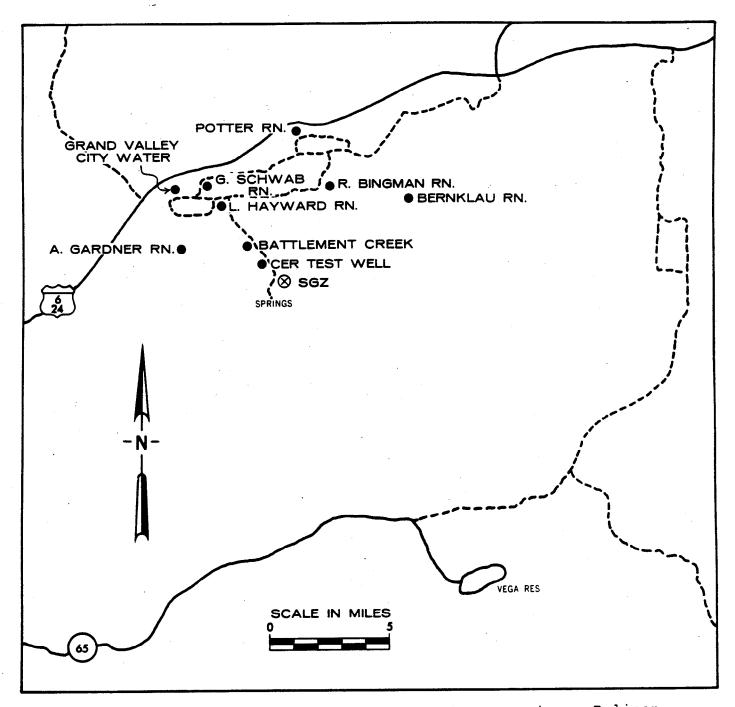



Figure 12. Long-Term Hydrologic Monitoring Locations, Rulison, Colorado, Project Rulison

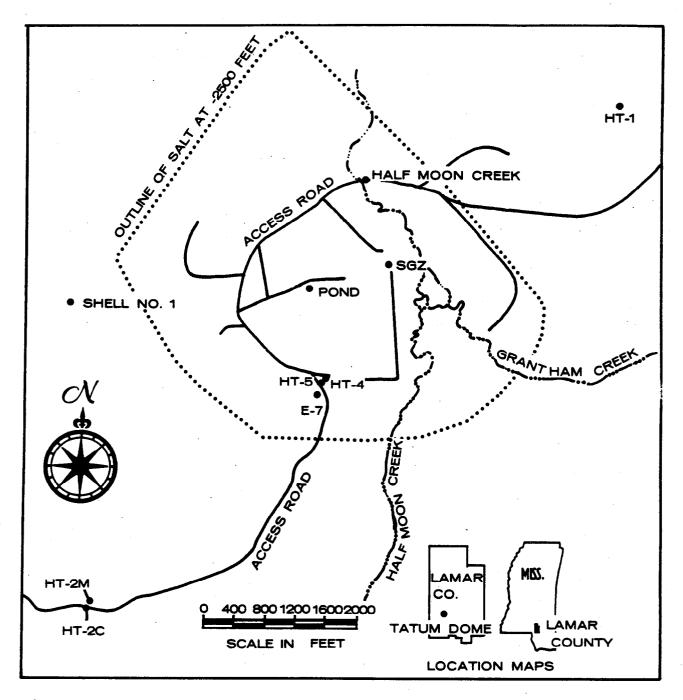



Figure 13. Long-Term Hydrologic Monitoring Locations, Tatum Dome, Mississippi, Project Gnome/Miracle Play



Figure 14. Long-Term Hydrologic Monitoring Locations, Tatum Dome, Mississippi, Project Gnome/Miracle Play

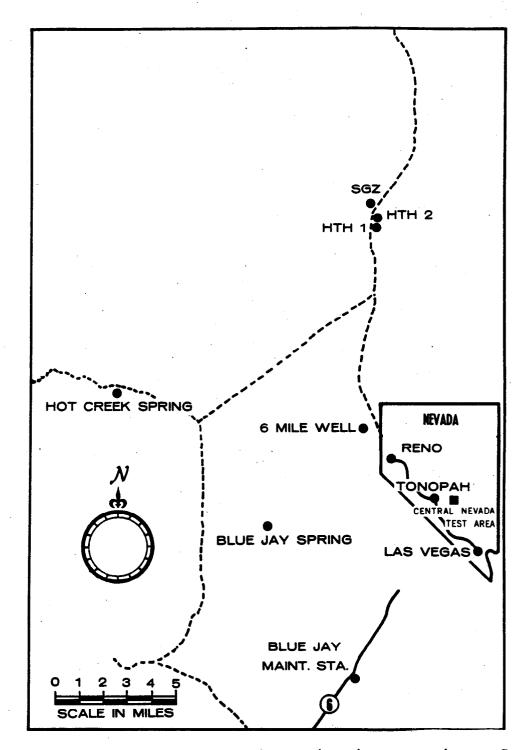



Figure 15. Long-Term Hydrologic Monitoring Locations, Central Nevada Test Area, Faultless Event

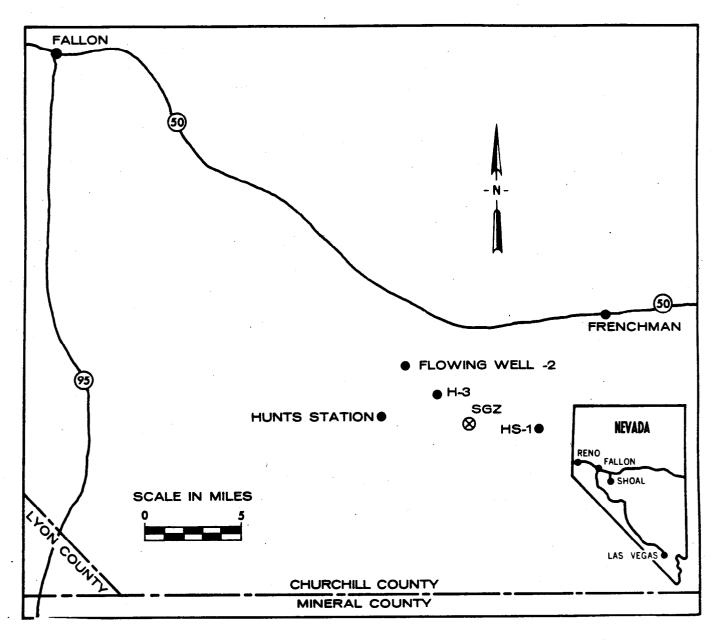



Figure 16. Long-Term Hydrologic Monitoring Locations, Fallon, Nevada, Project Shoal

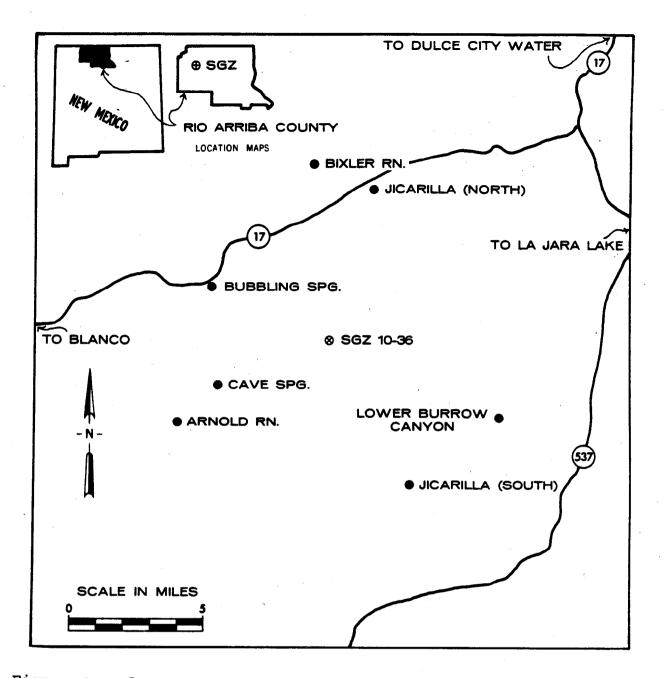



Figure 17. Long-Term Hydrologic Monitoring Locations, Rio Arriba County, New Mexico, Project Gasbuggy

******

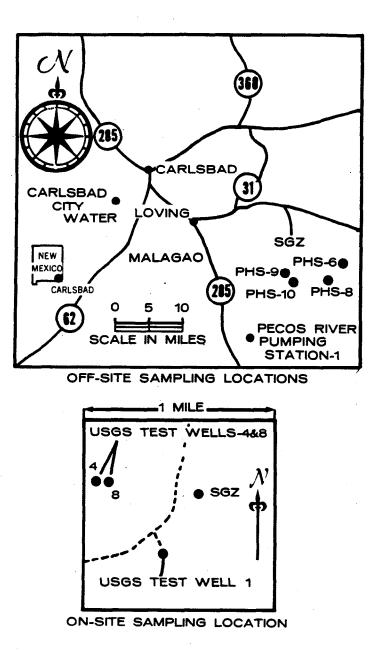



Figure 18. Long-Term Hydrologic Monitoring Locations, Carlsbad, New Mexico, Project Gnome/Coach

#### DISTRIBUTION

1	-	15	National Environmental Research Center, Las Vegas, NV
		16	Mahlon E. Gates, Manager, NVOO/AEC, Las Vegas, NV
		17	Robert H. Thalgott, NVOO/AEC, Las Vegas, NV
		18	Henry G. Vermillion, NVOO/AEC, Las Vegas, NV
		19	Chief, NOB/DNA, NVOO/AEC, Las Vegas, NV
		20	Robert R. Loux, NVOO/AEC, Las Vegas, NV
		21	Arthur J. Whitman, NVOO/AEC, Las Vegas, NV
		22	Elwood M. Douthett, NVOO/AEC, Las Vegas, NV
		23	William J. Larkin, NVOO/AEC, Las Vegas, NV
		24	Technical Library, NVOO/AEC, Las Vegas, NV
		25	Mail & Records, NVOO/AEC, Las Vegas, NV
		26	Martin B. Biles, DOS, USAEC, Washington, D.C.
		27	Major General Frank A. Camm, AGMMA, USAEC, Washington, D.C.
		28	Gerald W. Johnson, DAT, USAEC, Washington, D.C.
		2 <del>9</del>	Harold F. Mueller, ARL/NOAA, NVOO/AEC, Las Vegas, NV
		30	Gilbert J. Ferber, ARL/NOAA, Silver Spring, MD
		31	Stanley M. Greenfield, Assistant Administrator for Research &
			Monitoring, EPA, Washington, D.C.
		32	William D. Rowe, Deputy Assistant Administrator for Radiation
			Programs, EPA, Washington, D.C.
		33	Dr. William A. Mills, Director, Division of Criteria & Standards,
			ORP, EPA, Washington, D.C.
		34	Ernest D. Harward, Acting Director, Division of Technology
			Assessment, ORP, EPA, Washington, D.C.
		35	Bernd Kahn, Chief, Radiochemistry & Nuclear Engineering, NERC,
			EPA, Cincinnati, OH
36	-	37	Charles L. Weaver, Director, Field Operations Division, ORP, EPA,
			Washington, D.C.
		38	Dr. Gordon Everett, Director, Office of Technical Analysis, EPA,
			Washington, D.C.
		39	Kurt L. Feldmann, Managing Editor, Radiation Data & Reports, ORP,
			Washington, D.C.

40 Regional Administrator, EPA, Region IV, Atlanta, GA

- 41 Regional Radiation Representative, EPA, Region IV, Atlanta, GA
- 42 Regional Administrator, EPA, Region VI, Dallas, TX
- 43 Regional Radiation Representative, EPA, Region VI, Dallas, TX
- 44 Regional Administrator, EPA, Region VIII, Denver, CO
- 45 Regional Radiation Representative, EPA, Region VIII, Denver, CO
- 46 Regional Administrator, EPA, Region IX, San Francisco, CA
- 47 Regional Radiation Representative, EPA, Region IX, San Francisco, CA
- 48 Eastern Environmental Radiation Facility, EPA, Montgomery, AL
- 49 Library, EPA, Washington, D.C.
- 50 Kenneth M. Oswald, LLL, Mercury, NV
- 51 Roger E. Batzel, LLL, Livermore, CA
- 52 James E. Carothers, LLL, Livermore, CA
- 53 Charles I. Browne, LASL, Los Alamos, NM
- 54 Gerome E. Dummer, LASL, Los Alamos, NM
- 55 Arden E. Bicker, REECo, Mercury, NV
- 56 Savino W. Cavender, REECo, Mercury, NV
- 57 Carter D. Broyles, Sandia Laboratories, Albuquerque, NM
- 58 George Tucker, Sandia Laboratories, Albuquerque, NM
- 59 Albert E. Doles, Eberline Instrument Company, Santa Fe, NM
- 60 Robert H. Wilson, University of Rochester, Rochester, NY
- 61 Richard S. Davidson, Battelle Memorial Institute, Columbus, OH
- 62 J. P. Corley, Battelle Memorial Institute, Richland, WA
- 63 Frank E. Abbott, USAEC, Golden, CO
- 64 John M. Ward, President, Desert Research Institute, University of Nevada, Reno
- 65 Gordon Facer, MA(weapons facilities only), USAEC, Washington, D.C.
- 66 Andrew J. Pressesky, RDT, USAEC, Washington, D. C.
- 67 James Miller, BER, USAEC, Washington, D. C.
- 68 AEC/HQ Library, Attn: Charles Sherman, USAEC, Washington, D. C.

69 - 70 Technical Information Center, Oak Ridge, Tennessee (for public availability)