NERC-LV-539-1

and 4791

ENVIRONMENTAL MONITORING REPORT FOR THE NEVADA TEST SITE January-December 1971

S7, by the ional Environmental Research Cente -----U.S. ENVIRONMENTAL PROTECTION AGENCY Las Vegas, Nevada-This we U U U U U blished September 19 This work performed under a Memorandum of Understanding No. AT(26-1)-539 for the U. S. ATOMIC ENERGY COMMISSION

ENVIRONMENTAL MONITORING REPORT FOR THE NEVADA TEST SITE January-December 1971

by the National Environmental Research Center*

U.S. ENVIRONMENTAL PROTECTION AGENCY Las Vegas, Nevada

Published September 1972

This work performed under a Memorandum of Understanding No. AT(26-1)-539 for the U. S. ATOMIC ENERGY COMMISSION

*At the time this work was performed, the Center was named the Western Environmental Research Laboratory.

TABLE OF CONTENTS

m -

LIST OF TABLES	ii
LIST OF FIGURES	ii
INTRODUCTION	1
SUMMARY	2
MONITORING DATA COLLECTION, ANALYSIS, AND EVALUATION	4
Air Sampling	6
Dosimetry	8
Milk Sampling	9
Water Sampling	14
REFERENCES	17
DISTRIBUTION	

i

LIST OF TABLES

Table		Page
1.	1971 Summary of Analytical Results for the Air Surveil- lance Network	26
2.	1971 Summary of Background Radiation Doses for the Dosim- etry Network	61
3.	Anomalous TLD Readings in 1971	64
4.	Analytical Procedures for Milk and Water	65
5.	1971 Summary of Analytical Results for the Milk Surveil- lance Network	67
6.	1971 Summary of Analytical Results for the Water Surveil- lance Network	74
7.	Results of Special Water Analysis	87

LIST OF FIGURES

Figure

1.	Air Surveillance Network	19
2.	Radioactivity Trends in Air and Milk Samples Collected at Duckwater, Nevada, During 1971	20
3.	Dosimetry Network	21
4.	Milk Surveillance Network	22
5.	Standby Milk Surveillance Network	23
6.	Water Surveillance Network	24
7.	Water Surveillance Network - Las Vegas Valley	25

11 ·

INTRODUCTION

In accordance with a Memorandum of Understanding between the U. S. Atomic Energy Commission (AEC) and the Environmental Protection Agency (EPA) the National Environmental Research Center-Las Vegas (NERC-LV) conducts an offsite radiological safety program in support of nuclear testing sponsored by the AEC at the Nevada Test Site (NTS), by the Space Nuclear Systems Office at the Nuclear Rocket Development Station (which lies within the NTS), and by the AEC at other designated testing sites.

This report summarizes the surveillance data of the program conducted during Calendar Year 1971 around the NTS. The analytical results of radiological monitoring and environmental sampling performed in support of off-NTS tests, such as the Cannikin Event on Amchitka Island, Alaska, and Project Rulison, near Grand Junction, Colorado, are summarized separately(1,2).

For the NTS, the off-site area is defined as that area beyond the site boundary and adjacent restricted areas such as the Tonopah Test Range and the Nellis Air Force Range. For simplicity, these combined areas are referred to in this report as the Test Range Complex.

Note: At the time this work was accomplished, the Center was named the Western Environmental Research Laboratory. On July 17, 1972, it was designated as a National Environmental Research Center.

Walat itomrailianti (c.)

SUMMARY

and the states of the states

Surveillance of the Nevada Test Site environs during 1971 showed that the concentrations of radioactivity and levels of radiation in the environment were within the Radiation Protection Standards of the Atomic Energy Commission. The surveillance data show that most of the environmental radio-activity in the NTS environs was due to naturally occurring radionuclides and world-wide fallout.

Following one test at the Nevada Test Site during this report period, radioactivity was detected beyond the Test Range Complex. The Diagonal Line Event, an underground nuclear detonation conducted at 1215 hours PST on November 24, 1971, began to seep gaseous radioactivity from the ground at H+4 hours, after the NERC-LV ground monitors and aircraft had been released from their missions. The ground monitors were again deployed offsite downwind of surface ground zero at H+19.5 hours, but no radioactivity was detected by them or by the surveillance networks. However, EG&G aircraft detected the Diagonal Line effluent over the Amargosa Desert southwest of the NTS on November 25, 1971. According to an EG&G summary report of the event ⁽³⁾, the radioactivity in the cloud was identified at ¹³⁵Xe, ⁸⁸Kr and ⁸⁸Rb. The highest gamma exposure rate measured between H+18.8 to H+21.7 hours by aircraft during a survey of the cloud periphery and one in-cloud pass was 0.1 mR/h. This reading was observed at an elevation of 500 feet over the NTS terrain, 2.0 nautical miles south of the event area.

Although the routine monitoring and sampling networks of NERC-LV did not detect radioactivity from nuclear tests conducted during 1971, radioiodine released from the Baneberry Event, an underground nuclear detonation on December 18, 1970, was detected in milk samples collected at the McCurdy Ranch, Springdale, Nevada, in January and February 1971 as part of the special surveillance program for this event. The radiation dose to the thyroid of the youngest individual drinking the McCurdy milk was estimated to be 85 mrem during 1971 (total potential dose including exposure during

December 1970 was 130 mrem). This was 17% of the Radiation Protection Standard of the AEC Manual, Chapter 0524 (500 mrem/a) for a representative sample of the exposed population. From the measurements of radioiodine in snow samples collected in December 1970 immediately following Baneberry, sheepherders working north of the NTS and using snow for cooking and drinking purposes were estimated to have received a total radiation dose to the thyroid of 500 mrem plus or minus a factor of three. Since the use of snow by sheepherders was not discovered until February 1971 and the contaminated snow was diluted with snowfall subsequent to Baneberry, the portion of the total dose which occurred in 1971, if any, could not be estimated.

Increases in gross beta concentrations in air and increases in 89 Sr, 90 Sr, and 137 Cs in milk during the late spring and early summer were attributed to the seasonal trend of world-wide fallout. Increases in the gross beta concentrations and measurements of fresh fission products in the air during November at many of the Air Surveillance Network Stations were attributed to the nuclear detonation on November 18, 1971, by the People's Republic of China.

3

ras

e 3)

MONITORING DATA COLLECTION, ANALYSIS, AND EVALUATION

The off-site radiological safety program for the NTS consists of continuously operated dosimetry and air sampling networks and scheduled collections of milk and water samples at locations surrounding the NTS. To supplement these networks, before each nuclear test mobile monitors were positioned in the off-site areas most likely to be affected by a possible release of radioactive material. These monitors, equipped with radiation survey instruments, gamma-rate recorders, thermoluminescent dosimeters, portable air samplers, and supplies for collecting environmental samples, were prepared to conduct a monitoring program directed from the NTS Control Point by two-way radio communications. In addition, for each event at the NTS, a U. S. Air Force aircraft with two NERC-LV monitors equipped with portable radiation survey instruments was airborne over surface ground zero to detect and track any radioactive effluent. Two NERC-LV cloud sampling and tracking aircraft were also available to obtain in-cloud samples, assess total cloud volume, and provide long-range tracking in the event of a radioactive release.

To assess the plutonium content of soil in areas surrounding the NTS, a special soil study was begun. The results of this study will be reported separately.

No radioactivity from nuclear testing conducted during this report period at the NTS was detected beyond the Test Range Complex by NERC-LV surveillance networks, monitors or aircraft. However, radioactivity released by the Diagonal Line Event of November 24, 1971, was detected by EG&G aircraft, and radioactivity released by the Baneberry Event of December 18, 1970, was observed in milk samples collected in January and February 1972. The analytical results of the surveillance networks and of the milk samples collected during this report period for the Baneberry Event are summarized in the following sections of this report. The Diagonal Line Event, an underground nuclear detonation at 1215 PST on November 24, 1971, began to seep gaseous radioactivity from the ground at H+4 hours, after the NERC-LV ground monitors and aircraft had been released from their missions. The ground monitors were again deployed offsite downwind of the event at H+19.5 hours, but no radioactivity was detected by them or by NERC-LV surveillance networks. EG&G aircraft detected the Diagonal Line effluent over the Amargosa Desert southwest of the NTS on November 25, 1971, between H+18.8 and H+21.7 hours. According to an EG&G summary report of the event $^{(3)}$, the radioactivity in the cloud was identified as ^{135}Xe , ^{88}Kr , and ^{88}Rb . The highest gamma exposure rate measured during a survey of the cloud periphery and one in-cloud pass was 0.1 mR/h. This reading was observed at an elevation of 500 feet over the NTS terrain, 2.0 nautical miles south of the event area.

Radioiodine released from the Baneberry Event, an underground nuclear detonation on December 18, 1970, was detected in milk samples collected at the McCurdy Ranch, Springdale, Nevada, in January and February 1971 as part of the special surveillance program for this event. The radiation dose to the thyroid of the youngest individual drinking the McCurdy milk was estimated to be 85 mrem during 1971 (total potential dose including exposure during December 1970 was 130 mrem). This was 17% of the Radiation Protection Standard of the AEC Manual, Chapter 0524 (500 mrem/a) for a representative sample of the exposed population. From the measurements of radioiodine in snow samples collected in December 1970 immediately following Baneberry, sheepherders working north of the NTS and using snow for cooking and drinking purposes were estimated to have received a total radiation dose to the thyroid of 500 mrem plus or minus a factor of three. Since the use of snow by sheepherders was not discovered until February 1971 and the contaminated snow was diluted with snowfall subsequent to Baneberry, the portion of the total dose which occurred in 1971, if any, could not be estimated.

Increases in gross beta concentrations in air and increases in 89 Sr, 90 Sr, and 137 Cs in milk during the late spring and early summer were attributed to the seasonal trend of world-wide fallout. Increases in the gross beta concentrations and measurements of fresh fission products in the air during November at many of the Air Surveillance Network Stations were attributed to the nuclear detonation on November 18, 1971, by the People's Republic of China.

Air Sampling

The Air Surveillance Network, operated by the NERC-LV, consists of 104 active and 18 standby sampling stations located in 21 western states (Figure 1). Samples of airborne particulates are collected continuously at each active station on 4-inch-diameter, glass-fiber filters at a flow rate of about 350 m³ of air per day. Samples are normally collected for 24 hours. However, at several stations operated by state health department and other government agency personnel, they may not be collected on weekends and holidays, resulting in 48- or 72-hour samples. Activated charcoal cartridges directly behind the filters are used regularly for the collection of gaseous radionuclides at 22 stations near the NTS. Charcoal cartridges can be added to all other stations by telephone request. The stations are operated by state health department personnel and by private individuals through contract agreements. All air samples are mailed to the NERC-LV unless special retrieval is arranged at selected locations in case of a known release of radioactivity from the NTS.

The particulate filters are counted 5 minutes for gross beta radioactivity as soon as they are received and again at 5 and 12 days after collection. Samples are counted on gas flow proportional counters calibrated over a range of beta energies from 0.1 to 1.8 MeV. A conservative efficiency value of 45% (corresponding to an average maximum beta energy of 0.5 MeV) is used for data conversion. The 5- and 12-day counts are used to extrapolate gross beta concentrations to mid-collection time for reporting. Extrapolation is accomplished by computer programs and is routinely based on a T^{-1.2} decay. For known releases of radioactivity the decay rate is determined experimentally and is used in the extrapolations.

Those filters with total gross beta radioactivity of 500 cpm or greater are gamma scanned on a 4- by 4-inch sodium iodide (T1-activated) crystal connected to a 400-channel gamma spectrometer. Individual radionuclides are quantitated from spectrometer data by use of a computer matrix technique. If fresh fission products related to a NTS event are detected, radiochemical analyses, such as strontium and plutonium, are made on selected filters. All charcoal cartridges are counted 10 minutes with a gamma spectrometer. Data from those cartridges having a net gross gamma count rate greater than 300 cpm are analyzed by a computer matrix technique to quantitate individual radionuclides.

Table 1 presents the maximum, minimum detected and average concentrations of gross beta radioactivity and individual radionuclides identified by gamma spectroscopy for each location within the network during 1971. The gross beta averages were determined for each station by averaging the station monthly averages. Each annual average for a radionuclide detected at a given station was derived by dividing the sum of its time-integrated concentrations (pCi-day/m³) by 365 days. This was done assuming that radionuclides were not present on those filters which did not exceed the screening level of 500 cpm, or 1.4 pCi/m³ for a 0.45 counting efficiency and normal sample volume of 350 m^3 . This is consistent with the AEC Manual, Chapter 0524, which allows one to consider radionuclides to be absent in a mixture, "if (a) the ratio of the concentration of that radionuclide in the mixture. . . to the concentration guide for that radionuclide. . . does not exceed 1/10, and (b) the sum of such ratios for all the radionuclides considered as not present in the mixture does not ex-

As shown by Table 1, the fission products 95 Zr, 106 Ru, 131 I, 132 Te, 140 Ba, 141 Ce, and 144 Ce were detected in varying combinations at each sampling location. The presence of these radionuclides occurred throughout the network following the seasonal trend expected for world-wide fallout and a nuclear detonation by the People's Republic of China on November 18, 1971, thus they were not considered to be associated with nuclear tests at the

NTS. Figure 2 shows the variation in gross beta concentrations in air at Duckwater, Nevada, during the year 1971. Data from all other stations within the network indicated a similar pattern.

Dosimetry

The Dosimetry Network during 1971 consisted of 97 locations surrounding the Nevada Test Site which were monitored continuously with thermoluminescent dosimeters (TLD's). The locations, shown in Figure 3, are all within a 300-mile radius of the center of the NTS and include both inhabited and uninhabited locations. Each Dosimetry Network station was equipped with three EG&G Model TL-12 dosimeters which were exchanged monthly. Within the general area covered by the dosimetry stations, 60 off-site residents also wore one TLD each. These dosimeters were exchanged at the same time as the station dosimeters.

The TL-12 dosimeter has an internal or self-background exposure rate equivalent to 0.7 mR/day, which limits its minimum detection to about 5 mR for a 30-day measurement period. All TLD readings were corrected to ¹³⁷Cs gamma roentgen equivalent values according to individual TLD calibration factors. For purposes of this report, these units of exposure were considered to be equivalent to whole-body gamma doses in rems.

After appropriate corrections were made for the background exposure accumulated during shipment between the laboratory and the monitoring locations, the three TLD readings were averaged. The average exposure value for each month and station was statistically compared to values from the past twelve months to determine whether the new value was within the range of environmental background, or significantly greater than background. Those which were greater lead to calculations of net exposures, whereas those which were not were pooled with the background data bank, and the oldest value in the data bank was deleted. Values which were statistically lower than the background range were also deleted and considered invalid measurements. Each of the 60 personnel dosimeter readints was compared to the background value of the nearest station.

Table 2 lists the maximum, minimum, and average monthly dose rates measured at each station in the network during 1971. The average dose rate is the average of the twelve monthly rates. The annual background dose is the product of the average dose rate and 365 days. No doses related to nuclear testing were detected by the dosimetry network during 1971. Station background doses ranged from 102 to 303 mrem with a network average of 163 mrem/a. Among the 60 off-site residents who wore dosimeters continuously, no personnel doses greater than background were detected.

Several TLD's showed unexplained high readings during 1971. These values, listed in Table 3, are considered to be anomalous readings, not true gamma exposures. Surveys of the locations and interviews with the individuals involved identified no sources of radiation which would produce the exposures. Also, in the case of the Nuclear Engineering Company and Tonopah stations where three TLD's were issued each month, only one or two dosimeters read high each time. It is believed that the anomalies were due to phenomena associated with the TLD's rather than some external radiation source.

A network of 32 stationary Eberline RM-11 exposure rate recorders placed at selected air sampling locations was used to document gamma exposure rates at fixed locations (Figure 1). These recorders used a GM tube detector with a 0.01 to 100 mR/h range and were calibrated to $\pm 20\%$ with a 137Cs source. The gamma exposure rates were recorded on a 30-hour strip chart, which is exchanged and mailed to the laboratory each day. No gamma exposure rates attributable to Nevada Test Site operations were detected by the network of gamma rate recorders.

Milk Sampling

∶ed

in

Milk is only one of the sources of dietary intake of environmental radieactivity; however, it is a very convenient indicator of the general population's intake of biologically significant radionuclide contaminants. For this reason it is monitored on a routine basis. Few of the fission product radionuclides become incorporated into the milk of the cow due to

its selective metabolism. However, the ones that are incorporated are very important from a radiological health standpoint, and since they are preferentially transferred to the cow's milk, it is a very sensitive measure of their concentrations in the environment. The five fission product radionuclides which commonly occur in milk are 89 Sr and 90 Sr, 131 I, 137 Cs, and 140 Ba. A sixth radionuclide, 40 K, also occurs in milk at a reasonably constant concentration of about $1200 \times 10^{-9} \mu$ Ci/ml. Since this is a naturally occurring radionuclide, it was not included in the analytical results summarized in this section.

NUMA P

The milk surveillance networks operated by the NERC-LV are the routine Milk Surveillance Network (MSN) and the Standby Milk Surveillance Network (SMSN). The MSN during 1971 (Figure 4) consisted of 41 different locations at which NERC-LV personnel collected one-gallon milk samples from family cows, commercial pasteurized milk producers, Grade A raw milk intended for pasteurization, and Grade A raw milk for local consumption. In the event of a release of activity from the NTS, intensive sampling would have been conducted in the affected area within 300 miles of the NTS to assess radionuclide concentrations in milk, radiation doses that could result from the ingestion of the milk, and the need for protective action. Milk supplies and producers beyond 300 miles are sampled with the SMSN.

The SMSN (Figure 5) consisted of about 185 Grade A milk processing plants which could be requested by telephone to collect raw milk samples representing milk sheds supplying milk to the plants. Although not required during this report period, samples from the network could have been collected and mailed to the NERC-LV through the cooperation of Federal, state, and local government agencies in the event of a release of radioactivity at NTS or other test locations. Periodically, one sample may be collected from each station in a given area to maintain network readiness and to check the network's reliability. No analytical results are reported here for the SMSN, since only one sample was received from each of several selected locations.

During 1971, 356 milk samples were collected from the MSN. Five out of 41 sampling locations were discontinued in February when the Zone 5 Route along U. S. 40 and U. S. 93 north of McGill was terminated. One location in California was discontinued the same month when the cow was sold. Of the remaining 35 locations, five were alternates where milk was sometimes obtained in the event the primary sampling point did not have milk available. Although the routine locations were scheduled for monthly collection, milk could not usually be obtained at all locations in any one month. Cows not lactating, no one home, or no milk on the day the route monitors arrived at the ranch, were some of the reasons why some of the samples were not collected each month. During the year, milk sampling points also changed as cows were sold, or were otherwise unavailable for regular milkings.

s--

۲

s,

Ly

Ly

100

2

1-

All milk samples were analyzed for gamma emitters, ⁸⁹Sr and ⁹⁰Sr. Samples collected at five locations were routinely analyzed for ³H. Table 4 lists the general analytical procedures and detection limits for these analyses as described by Johns⁽⁵⁾ and Lem and Snelling⁽⁶⁾. For gamma spectroscopy analyses, the milk was placed in Marinelli beakers (3.5 liters) which position the samples around the crystal detector for high counting efficiency. All routine milk samples were counted for 40 minutes. Special samples collected following known releases of activity were counted 20 minutes. Actual counting time of the milk samples varied from 10 to 40 minutes depending on radionuclide concentrations. A computer was used to calculate the activity concentration of each of the detected nuclides at the time of count and extrapolated the results to time of milking.

The analytical results of samples collected during 1971 are summarized in Table 5. The maximum, minimum, and average concentrations of the ^{137}Cs , ^{89}Sr , ^{90}Sr , and ^{3}H analyses performed on samples collected during the year are shown for each sampling location at which these analyses were scheduled. In the computation of the average concentrations, sample concentrations of less than the minimum detectable concentration were assumed to be equal to the minimum detectable concentration. If any of the values used in

computing the averages were "less than" values, the average was expressed as a "less than" value. The same method was used for water samples. No radionuclides attributed to Nevada Test Site operations were detected in any of the samples except for 131 I in samples collected during January and February from the McCurdy Ranch at Springdale, Nevada. These samples were collected as part of the surveillance program for the Baneberry Event of December 18, 1970, which is described in detail in another report ⁽⁷⁾. During the year, there were a few samples which did not have enough volume to provide the usual minimum sensitivity for gamma spectrum analysis for 137 Cs ($10 \times 10^{-9} \mu$ Ci/ml). In these cases, the minimum sensitivity was < $100 \times 10^{-9} \mu$ Ci/ml. Thus, since these would bias the sample average for 137 Cs, they were omitted.

At the McCurdy Ranch, ¹³¹I and ¹³³I were detected in the first milk samples collected two days after the Baneberry Event. The ¹³¹I concentration peaked in the milk at $810 \times 10^{-9} \mu \text{Ci/ml}$ on December 26 and 27, 1970, and slow-ly decreased until the concentration was below the minimum detectable concentration of $10 \times 10^{-9} \mu \text{Ci/ml}$ on February 3, 1971. The maximum concentration during this report period was $730 \times 10^{-9} \mu \text{Ci/ml}$ on January 1. The highest concentration of ^{133}I , $1800 \times 10^{-9} \mu \text{Ci/ml}$, was detected in the first milk sample collected on December 20, 1970. The concentrations rapidly decreased until they were below the minimum detectable concentration on December 25, 1970.

The annual average concentration of ¹³¹I in milk samples collected at the McCurdy Ranch (Table 5) was calculated from the monthly averages for January and February and the results for the subsequent monthly samples. The method used for calculating the January average assumed that the days when milk was not collected had the same ¹³¹I concentration as the last previous sample. The January average concentrations of ¹³¹I and ¹³⁷Cs were calculated from 19 samples. Of the 19 samples, 11 were analyzed for ⁸⁹Sr and ⁹⁰Sr. In February, four samples were collected and averaged for ¹³⁷Cs and ¹³¹I. Only one sample (collected on February 1) showed a positive ¹³¹I concentration ($10 \times 10^{-9} \mu \text{Ci/mI}$).

12

The total radiation dose equivalent to the thyroid of the youngest person drinking the McCurdy milk (a three-year-old child at Beatty, Nevada) was estimated from the radioiodine concentrations to be 130 mrem⁽⁷⁾. The portion of the total dose occurring during this report period was estimated to be 85 mrem. These dose equivalents were below the Radiation Protection Standards of the AEC Manual, Chapter $0524^{(4)}$, which is 1500 mrem to an individual thyroid (500 mrem to a suitable sample of the exposed population). Since all of the milk producers in the Springdale area were sampled following Baneberry and all of the individuals consuming the contaminated milk were evaluated, the standard for the individual is probably more appropriate.

At the other locations, no radioiodine was detected, and no significant increases were observed in the 137Cs, 89-90Sr, and 3 H concentrations other than is normally observed due to variations in world-wide fallout. Figure 2 shows the gross beta concentration in air at the Halstead Ranch at Duckwater, Nevada, with the concentrations of ¹³⁷Cs, ⁹⁰Sr and ⁸⁹Sr in milk samples collected at the same location. The Halstead Ranch was chosen for this comparison because an air sampler is installed there and because the feeding practices were such that a good correlation between the activity in air and milk was seen. A number of other milk sampling locations also showed peak concentrations during the months of May and June also but the correlations of activity in milk with activity in air were not as evident. The cows at the Halstead Ranch were placed on green feed in May and stayed on green feed through October. During November they went back on hay and grain. The effect of both increased fallout and eating green feed was evident in the May sample results for ¹³⁷Cs and ⁸⁹Sr. During March and April when the gross beta concentration in air was increasing sharply, the ⁸⁹Sr and ¹³⁷Cs concentrations in the milk showed no increase, probably because the cows were on dry feed. The increase in the gross beta concentration in air during November was attributed to the nuclear detonation on November 18, 1971, by the People's Republic of China. The milk sample for November was collected before this event, and the increase in ¹³⁷Cs during thi time was probably caused by analytical, feeding, and fallout variances.

Water Sampling

The Water Surveillance Network operated in off-site areas around the NTS during 1971, consisted of 99 locations (Figures 6 and 7) where NERC-LV personnel collected one-gallon water samples either monthly or quarterly. The samples were collected from community water supplies, wells, open and closed springs, streams, lakes and ponds. If a release of radioactivity from NTS had occurred, special sampling within the affected area would have been conducted to determine radionuclide concentrations and the possible need to take protective action.

During 1971, 1040 water samples were collected from these 99 locations. Eight of the sampling locations along U.S. 40 and U.S. 93 north of McGill, Nevada, were discontinued in February 1971 when activities at the Central Nevada Supplemental Test Site were terminated. One location in the Las Vegas Valley was discontinued when the well dried up. This location was replaced by another well in the same area.

All of the samples were scheduled to be collected monthly, except those from Walker Lake and Pruess Reservoir. These two locations were sampled quarterly. In some cases operational priorities, frozen sources, etc., prevented the sampling of each location every month.

All water samples were analyzed by gamma spectroscopy and counted for gross alpha and gross beta radioactivity. Network samples from approximately 25 locations west, south and southeast of NTS were also routinely analyzed for ³H. Analyses for ⁸⁹Sr and ⁹⁰Sr, ²³⁸Pu and ²³⁹Pu, U and ³H would have been done in the event activity related to the NTS had been detected by gamma spectroscopy, or special requirements of the sampling program had required additional analyses. Table 4 lists the general analytical procedures and detection limits as described by Johns⁽⁵⁾, Lem and Snelling⁽⁶⁾, and Talvitie^(8,9).

The analytical results of all water samples collected during 1971 are summarized in Table 6. The maximum, minimum, and average concentrations of gross alpha, gross beta, and ³H radioactivity are shown for each sampling

location, except for ³H analyses which were performed on samples collected at 25 of the locations. No gamma-emitting fission products were detected in any of the samples by gamma spectroscopy analyses. No significant trends were observed in the gross alpha, gross beta, or ³H results, although surface waters generally contained higher concentrations than ground waters. The higher concentrations were apparently due to world-wide fallout and naturally occurring radionuclides.

The average concentrations for the gross alpha, gross beta, and ${}^{3}\text{H}$ radioactivity were compared to the following Concentration Guides specified in AEC Manual, Chapter 0524⁽⁴⁾ for exposure of individuals:

Type of Radioactivity	Concentration Guide µCi/ml
Gross alpha	3 x10⁻⁸
Gross beta	3x10 -8
3 _H	1x10 ⁻³

Those locations which had average concentrations greater than these Guides are Pahranagat Lake (gross beta C_{avg} =3.5x10⁻⁸µCi/ml), Comins Lake (gross beta C_{avg} =4.5x10⁻⁸µCi/ml), Walker Lake (gross beta C_{avg} =2.8x10⁻⁷µCi/ml), Seyler Reservoir (gross beta C_{avg} =3.4x10⁻⁸µCi/ml) and Fallini's Pond (gross beta C_{avg} =3.3x10⁻⁸µCi/ml). Although special analyses on samples from these locations were not made during the report period to identify the source of the gross radioactivity, such analyses for some of the locations during other years were made as shown in Table 7. This table shows that the source of the gross alpha and beta radioactivity was primarily due to various combinations of ⁴⁰K, natural uranium, and uranium daughters, including ²²⁶Ra.

Since the water sampled at 70 of the 99 network sampling locations was used for drinking water (identified by the superscript 'd' next to the sample type numbers in Table 6), the gross radioactivity concentration averages for these locations were also compared to the PHS Drinking Water Standards⁽¹⁰⁾. These standards require that the gross alpha and gross beta radioactivity in drinking water be limited to $3x10^{-9}\mu$ Ci/ml and $1x10^{-8}\mu$ Ci/ml, respectively, if ²²⁶Ra and ⁹⁰Sr are not known to be absent. If 90 Sr and alpha emitters are known to be absent, a gross beta radioactivity of 1x10 ${}^{-6}\mu$ Ci/ml is allowed. Analyses for 226 Ra and 90 Sr were not made on any of the drinking water samples during the report period; however, analyses were made on samples from some of the locations in previous years. In general, the results showed that the source of the majority of the gross alpha and gross beta radioactivity was naturally occurring uranium and 226 Ra. Strontium-90 and 226 Ra concentrations detected were below the PHS Standards except for 226 Ra concentrations in samples collected at the Service Station and Cafe at Warm Springs, Nevada. Samples have been analyzed for 226 Ra at this location during the time period November 1967 through August 1970. Twelve samples collected and analyzed during the 13-month period of August 1969 through August 1970 showed that the 226 Ra concentration ranged from 11 to 17x10 ${}^{-9}\mu$ Ci/ml with an average of 15x10 ${}^{-9}\mu$ Ci/ml.

For the purpose of identifying the source of the gross radioactivity in all network samples and comparing sample concentrations with both the AEC Concentration Guides and the PHS Drinking Water Standards, samples during 1972 will be given special analyses at least once a year. For surface water samples, the special analyses will include 89-90 Sr, 238-239 Pu, U, and 226 Ra. For drinking water samples, the analyses will include 89-90 Sr, U, and 226 Ra.

REFERENCES

"Off-Site Radiological Safety for the Cannikin Event, November 6,
 1971," NERC-LV-539-2. National Environmental Research Center, Environmental Protection Agency, Las Vegas, Nevada. September 1972.

2. Boysen, G. A. "Off-Site Radiological Safety Program for Project Rulison, Flaring Phase III," NERC-LV-539-15. National Environmental Research Center, Environmental Protection Agency, Las Vegas, Nevada. (To be published)

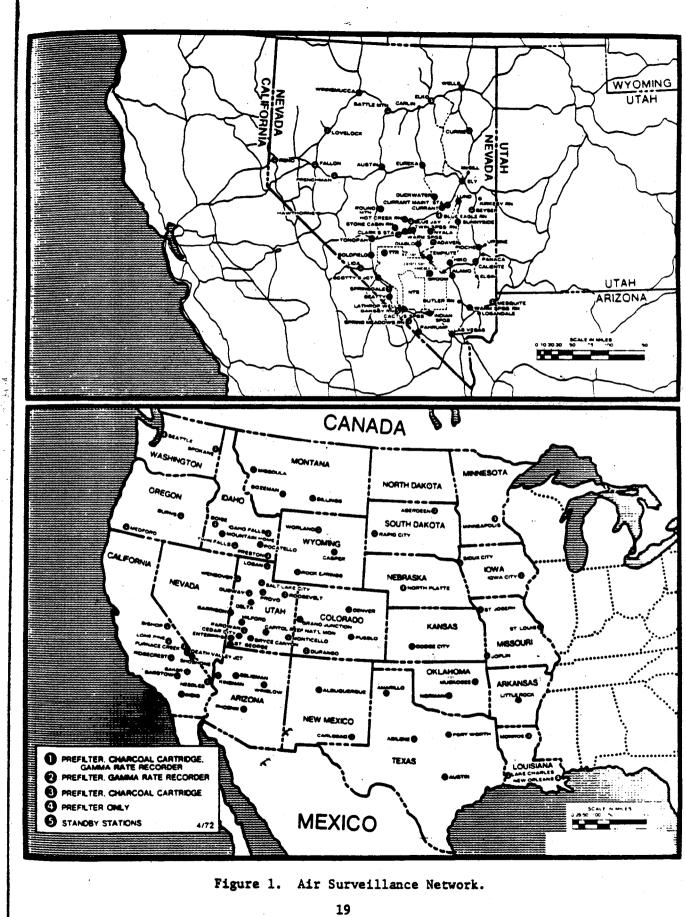
3. Letter from Mr. E. Jack Story, Assistant NVOO Program Manager, EG&G, P.O. Box 1912, Las Vegas, NV 89101, to Mr. Robert Thalgott, Test Manager, Nevada Operations Office, U. S. Atomic Energy Commission, (Nov. 26, 1971)

4. "Standards for Radiation Protection," U. S. Atomic Energy Commission Manual, Chapter 0524. U. S. Atomic Energy Commission, Washington, D. C.

5. Johns, F. B. "Southwestern Radiological Health Laboratory Handbook of Radiochemical Analytical Methods," SWRHL-11. Southwestern Radiological Health Laboratory, U. S. Department of Health, Education and Welfare, Las Vegas, Nevada. March 1970.

6. Lem, P. N. and Snelling, R. N. "Southwestern Radiological Health Laboratory Data Analysis and Procedures Manual," SWRHL-21. Southwestern Radiological Health Laboratory, Environmental Protection Agency, Las Vegas, Nevada. March 1971.

æ

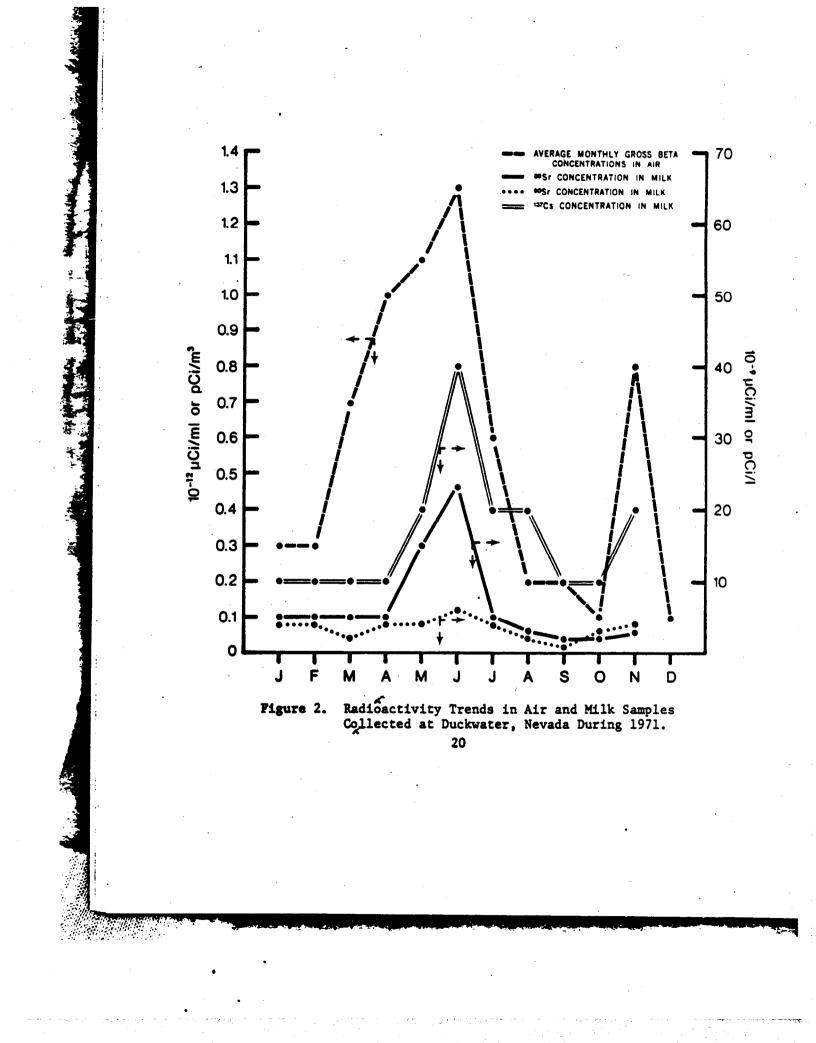

7. "Final Report of Off-Site Surveillance for the Baneberry Event, December 18, 1970," SWRHL-107r. Western Environmental Research Laboratory, Environmental Protection Agency, Las Vegas, Nevada. February 1972.

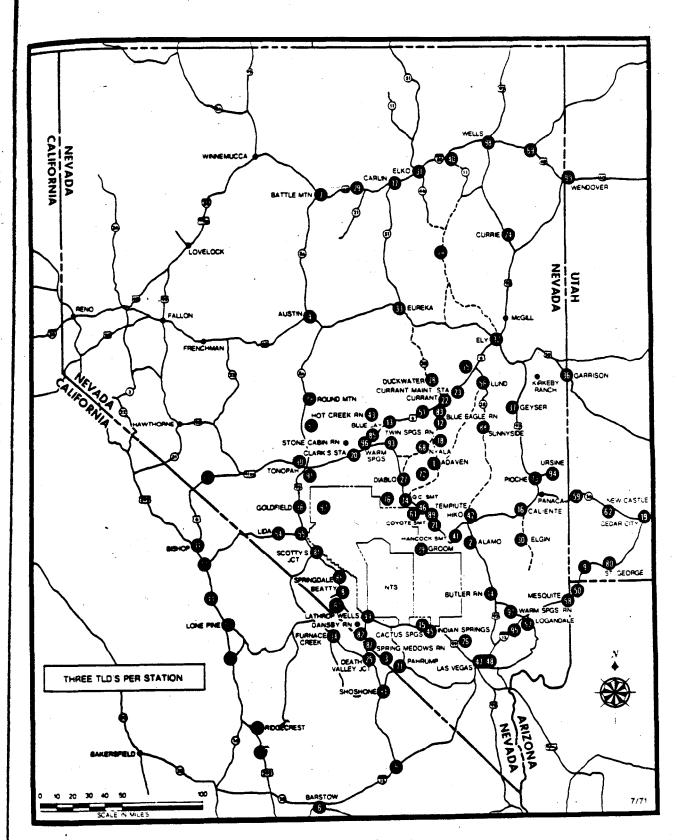
8. Talvitie, N. A. "Electrodeposition of Actinides for Alpha Spectrometric Determination," <u>Analytical Chemistry</u>, February 1972, Vol. 44, p. 280.

9. Talvitie, N. A. "Radiochemical Determination of Plutonium of Environmental and Biological Samples by Ion Exchange," <u>Analytical Chemistry</u>, November 1971, Vol. 43, p. 1827.

 10. "Public Health Service Drinking Water Standards," PHS Publication
 No. 956, reprinted June 1963. U. S. Government Printing Office, Washington, D. C.

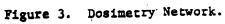
18



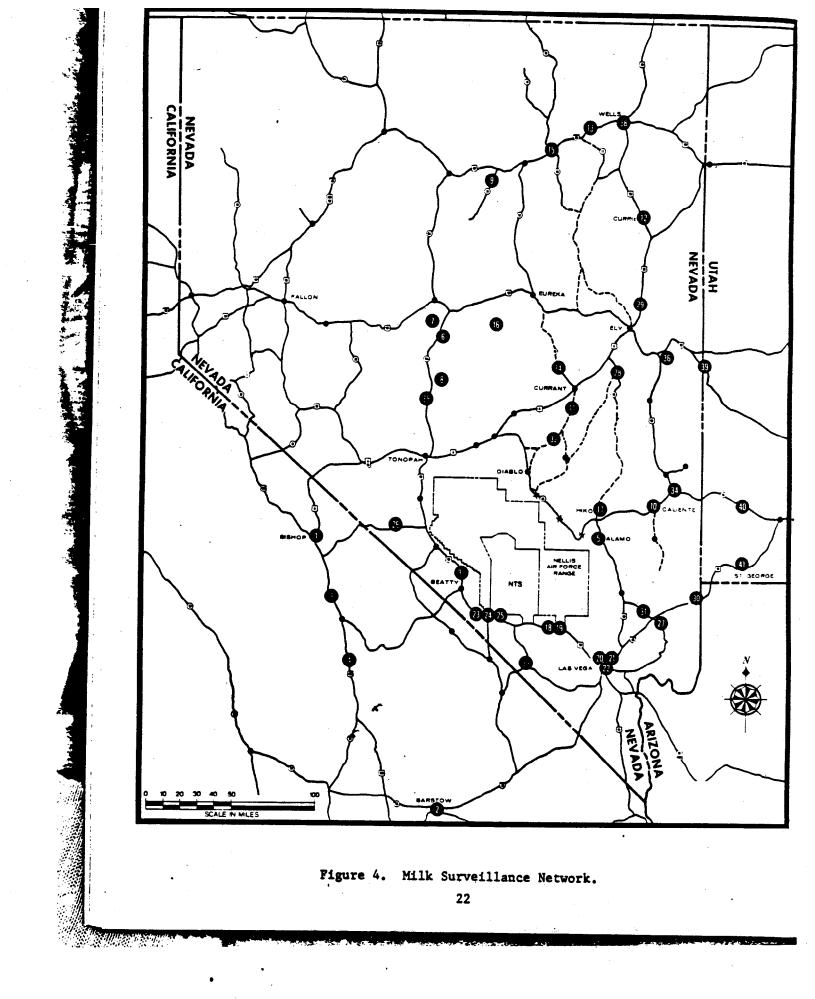

. . .

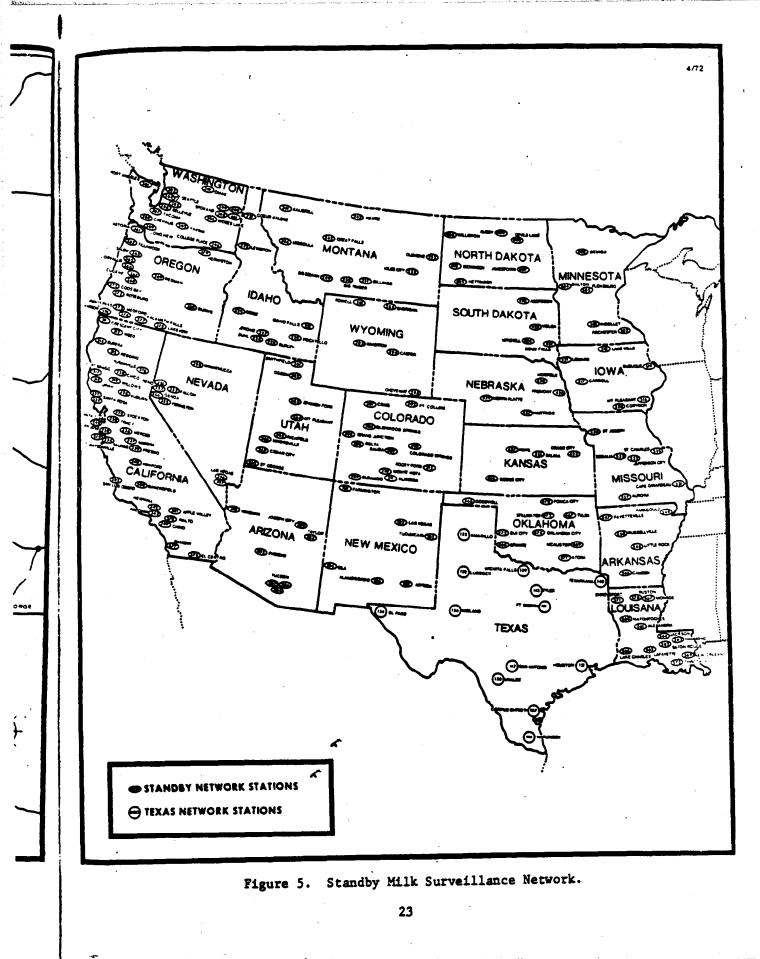
as see it.

- 27 -


Corner

sto

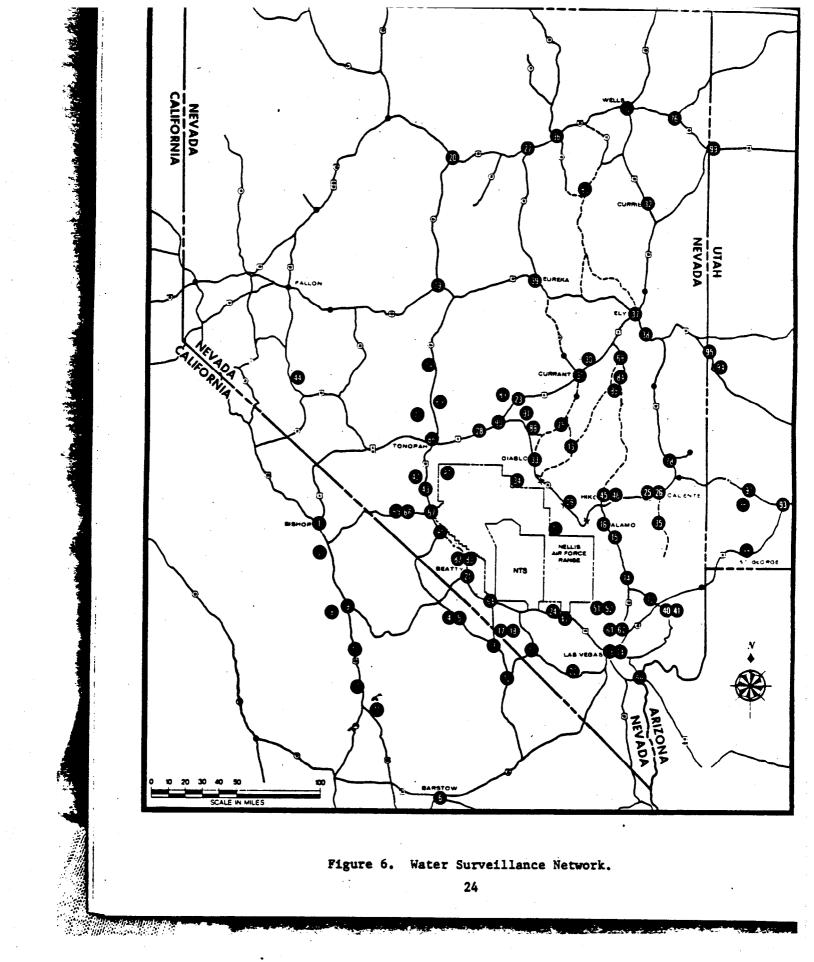

Ş

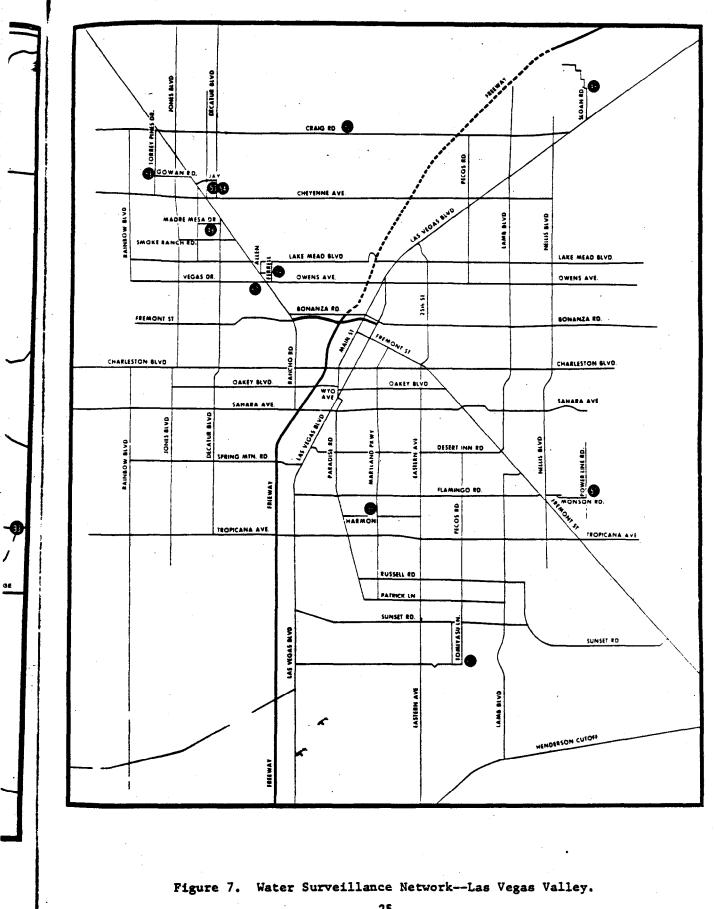


21

e. *

- Concentration




Canton Mars William Mars

. ...

1. C. C. C.

مر ومی در این از در این از در این ا

25

· in the

for the Air Surveillance Network

Sampling	No. Days	Type of	Radioactivity Concentrat 10 ⁻¹² uCi/ml or pCi/m ³			
Location	Sampled	Radioactivity	Cmax	C _{min}	Cavg	
Kingman, AZ	362	gross β	18	<0.1	0.6	
	37	⁹⁵ Zr	1.3	0.2	0.06	
	16	los Ru	2.6	0.9	0.07	
	3	^{1 31} I	1.2	0.3	0.00	
•	3	¹³² Te	0.7	0.1	0.00	
	3	140 Ba	1.2	0.3	0.00	
	3	141Ce	0.6	0.1	0.00	
•	13	¹⁴⁴ Ce	1.6	0.7	0.04	
Phoenix, AZ	359	gross β	3.0	<0.1	0.6	
	49	95 Zr	1.2	0.5	0.11	
	34	los Ru	2.8	0.8	0.15	
	3	131 I	0.2	0.1	0.00	
	2	^{1 32} Te	0.2	0.1	0.00	
	3	140 Ba	0.3	0.1	0.00	
	2	¹⁴¹ Ce	0.1	0.1	0.001	
	26	¹⁴⁴ Ce	1.8	0.4	0.08	
eligman, AZ	362	gross β	14	<0.1	0.6	
	47	96 _{Zr}	1.3	0.4	0.1	
	28	108 Ru	2.7	0.7	0.12	
	3	131 I	0.9	0.3	0.004	
	3	^{1 32} Te	0.8	0.1	0.003	
	3 <-	140 Ba	1.3	0.3	0.006	
	3	^{14 1} Ce	0.4	0.2	0.003	
	25	144 Ce	1.8	0.5	0.07	
	•					

26

Sampling	No. Dous	Type of	Radioacti 10 ¹² u	Ci/ml or	centrati pCi/m ³
Location	No. Days Sampled	Radioactivity	C _{max}	C _{min}	Cavg
Winslow, AZ	364	gross β	7.8	<0.1	0.5
	19	⁹⁸ Zr	1.1	0.4	0.04
	10	105 Ru	1.8	1.0	0.04
	3	¹³¹ I	0.5	0.2	0.002
	3	¹³² Te	0.3	0.1	0.001
	3	140 Ba	0.7	0.2	0.003
	2	¹⁴¹ Ce	0.2	0.1	0.001
	9	144 Ce	1.5	0.5	0.02
·			·,		
Little Rock, AR	164	gross B	2.0	<0.1	0.4
	6	95Zr	0.8	0.4	0.01
	4	los Ru	1.5	1.0	0.01
	0	131 _I	ND	ND	ND
	0	¹³² Te	ND	ND	ND
	0	¹⁴⁰ Ba	ND	ND	ND
·	0	^{14 1} Ce	ND	ND	ND
•	2	¹⁴⁴ Ce	0.4	.0.4	0.001
	-		•••		
aker, CA	355	gross B	15	<0.1	0.6
	41	95 _{Zr}	0.8	0.1	0.06
	11	108 Ru	2.2	0.8	0.04
	3	¹³¹ I	1.0	0.2	0.005
	2	^{1 32} Te	0.7	0.4	0.003
• .	3	140 Ba	1.3	0.3	0.006
	3 ,	141Ce	0.6	0.1	0.002
	~	144 Ce	1.2	0.6	0.01
	5		1.4	0.0	0.01

for the Air Surveillance Network

ion

for the Air Surveillance Network

	Sampling	No. Days	Type of	Radioact 10 ¹²	ivity Con uCi/ml or	centra pCi/m
	Location	Sampled ²	Radioactivity	Cmax	Cmin	Cav
а •	Barstow, CA	354	gross β	32	<0.1	0.6
		27	9ĔZr	1.1	0.2	0.04
		9	los Ru	1.5	1.1	0.03
•		2	^{1 31} I	2.3	0.4	0.00
		2	^{1 32} Te	1.5	0.3	0.00
	, - · ·	2	¹⁴⁰ Ba	2.9	0.8	0.01
• .		2	¹⁴¹ Ce	1.3	0.3	0.00
		6	144 Ce	1.3	0 , 9 .	0.02
	Bishop, CA	361	gross β	31	<0.1	
:	••	34	95 _{Zr}	1.1		0.8
1	·	19	106 Ru	2.4	0.3	0.07
х	•	3	131 I	1.8	1.0	0.08
		3	^{1 32} Te	1.1	0.4	0.00
		3	140 Ba		0.3	0.00
		3	¹⁴¹ Ce	2.5	0.7	0.01
		13	¹⁴⁴ Ce	1.0 1.2	0.3 0.6	0.00 0.04
	Death Valley	250				
	Junction, CA	356	gross β ⁹⁵ zr	6.4	<0.1	0.6
	Junetion, CA	35	106 Ru	1.2	0.2	0.05
		14	131 I	2.4	0.6	0.05
		2	¹³² Te	0.4	0.1	0.00
		1	140 Ba	0.2	0.2	0.00
		2	14 1 Ce	0.5	0.1	0.00
		1	144 -	0.2	0.2	0.00
		13 🐔	Ce	1.3	0.5	0.03
			28			
	,					
			na na sana sana na sana sana sana sana sana sana sana sana san T			

Sampling	No. Days Type of		10 ⁻¹² u	Ci/ml or	Concentratio or pCi/m ³	
Location	Sampled	Radioactivity	C _{max}	C _{min}	Cavg	
Furnace Creek,	355	gross β	2.5	<0.1	0.6	
CA	35	⁹⁵ Zr	1.3	0.4	0.07	
	20	^{los} Ru	2.5	0.9	0.09	
	0	131 I	ND	ND	ND	
•	0	¹³² Te	ND	ND	ND	
	0	140 Ba	ND	ND	ND	
	0	¹⁴¹ Ce	ND .	ND	ND	
	12	¹⁴⁴ Ce	1.4	0.5	0.03	
Indio, CA	362	gross ß	4.9	<0.1	0.4	
	15	⁹⁵ Zr	0.8	0.1	0.02	
	6	106 Ru	1.7	1.0	0.02	
	3	131 _I	0.3	0.1	0.002	
	3	^{1 32} Te	0.1	0.1	0.001	
	3	140 Ba	0.4	0.2	0.002	
	3	141Ce	0.2	0.1	0.001	
	3	¹⁴⁴ Ce	1.3	0.9	0.01	
one Pine, CA	339	gross β	16	<0.1	0.6	
	32	95 _{2r}	1.0	0.2	0.07	
	20	106 Ru	1.9	0.4	0.1	
	2	¹³¹ I	0.8	0.8	0.004	
	2	^{1 32} Te	0.5	0.5	0.003	
	2	140 Ba	1.3	1.3	0.007	
	2	14 1 Ce	0.6	0.6	0.003	
	12	144 Ce	1.4	0.3	0.04	

for the Air Surveillance Network

3

ALC PHILL

for the Air Surveillance Network

Days apled 346 55 29 3 3 3 3 3 18 63 5 1 2 2 2 2	Type of Radioactivity gross β 95_{Zr} 106 Ru 131 I 132 Te 140 Ba 141 Ce 144 Ce gross β 95_{Zr} 106 Ru 131 I 132 Te 106 Ru 132 Te 106 Ru 106 Ru 106	C _{max} 11 1.3 2.3 0.7 0.5 1.2 0.5 1.7 7.1 0.5 1.1 0.8 0.6	<pre>C1/ml or Cmin <0.1 0.2 0.8 0.2 0.1 0.2 0.1 0.2 0.1 0.5 <0.1 0.2 1.1 0.2</pre>	C _{avg} 0.6 0.11 0.14 0.003 0.002 0.004 0.002 0.06 0.4 0.006 0.003 0.003
55 29 3 3 3 3 18 63 5 1 2 2	95Zr 106 Ru 131 I 132Te 140 Ba 141Ce 144 Ce $gross \beta$ 95Zr 106 Ru 131 I 132Te	1.3 2.3 0.7 0.5 1.2 0.5 1.7 7.1 0.5 1.1 0.8	<0.1 0.2 0.8 0.2 0.1 0.2 0.1 0.5 <0.1 0.2 1.1 0.4	0.6 0.11 0.14 0.003 0.002 0.004 0.002 0.06 0.4 0.006 0.003 0.003
55 29 3 3 3 3 18 63 5 1 2 2	95Zr 106 Ru 131 I 132Te 140 Ba 141Ce 144 Ce $gross \beta$ 95Zr 106 Ru 131 I 132Te	1.3 2.3 0.7 0.5 1.2 0.5 1.7 7.1 0.5 1.1 0.8	$0.2 \\ 0.8 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.5 \\ < 0.1 \\ 0.2 \\ 1.1 \\ 0.4 \\ 0.4$	0.11 0.14 0.003 0.002 0.004 0.002 0.06 0.4 0.006 0.003 0.003
29 3 3 3 3 18 63 5 1 2 2	106 Ru 131 I 132 Te 140 Ba 141 Ce 144 Ce $gross \beta$ 85 Zr 106 Ru 131 I 132 Te	2.3 0.7 0.5 1.2 0.5 1.7 7.1 0.5 1.1 0.8	0.8 0.2 0.1 0.2 0.1 0.5 <0.1 0.2 1.1 0.4	0.14 0.003 0.004 0.002 0.06 0.4 0.006 0.003 0.003
3 3 3 18 63 5 1 2 2	<pre>131 I 132Te 140Ba 141Ce 144Ce gross β *5Zr 106Ru 131 I 132Te</pre>	0.7 0.5 1.2 0.5 1.7 7.1 0.5 1.1 0.8	$0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.5 \\ < 0.1 \\ 0.2 \\ 1.1 \\ 0.4 \\ $	0.003 0.002 0.004 0.002 0.06 0.4 0.006 0.003 0.003
3 3 18 63 5 1 2 2	13^{2}Te 14^{0}Ba 14^{1}Ce 14^{4}Ce $gross \beta$ $^{9}{}^{6} \text{Zr}$ 106Ru 131I 13^{2}Te	0.5 1.2 0.5 1.7 7.1 0.5 1.1 0.8	0.1 0.2 0.1 0.5 <0.1 0.2 1.1 0.4	0.002 0.004 0.002 0.06 0.4 0.006 0.003 0.003
3 3 18 63 5 1 2 2	<pre>140 Ba 141 Ce 144 Ce gross β ⁹⁵Zr 106 Ru 131 I 13²Te</pre>	1.2 0.5 1.7 7.1 0.5 1.1 0.8	0.2 0.1 0.5 <0.1 0.2 1.1 0.4	0.004 0.002 0.06 0.4 0.006 0.003 0.003
3 18 63 5 1 2 2	<pre>141 Ce 144 Ce gross β ⁹⁶Zr 106 Ru 131 I 13²Te</pre>	0.5 1.7 7.1 0.5 1.1 0.8	0.1 0.5 <0.1 0.2 1.1 0.4	0.002 0.06 0.4 0.006 0.003 0.003
18 63 5 1 2 2	¹⁴⁴ Ce gross β ⁹⁶ Zr ¹⁰⁶ Ru ¹³¹ Ι ¹³² Te	1.7 7.1 0.5 1.1 0.8	0.5 <0.1 0.2 1.1 0.4	0.06 0.4 0.006 0.003 0.003
63 5 1 2 2	gross β ⁹⁶ Zr ¹⁰⁶ Ru ¹³¹ Ι ¹³² Te	7.1 0.5 1.1 0.8	<0.1 0.2 1.1 0.4	0.4 0.006 0.003 0.003
5 1 2 2	⁹⁶ Zr ¹⁰⁶ Ru ¹³¹ I ¹³² Te	0.5 1.1 0.8	0.2 1.1 0.4	0.006 0.003 0.003
5 1 2 2	⁹⁶ Zr ¹⁰⁶ Ru ¹³¹ I ¹³² Te	0.5 1.1 0.8	0.2 1.1 0.4	0.006 0.003 0.003
1 2 2	¹⁰⁶ Ru ¹³¹ I ¹³² Te	1.1 0.8	1.1 0.4	0.003
2	¹³¹ I ¹³² Te	0.8	0.4	0.003
2	^{1 32} Te			
		0.6		
4			0.3	0.002
	¹⁴¹ Ce	1.2	0.4	0.004
2	144 Ce	0.4	0.1	0.002
0	Ce	ND	ND	ND
57	gross ß	8.1	<0.1	0.5
27		1.0	0.3	0.05
12		2.5	1.0	0.05
3	¹³¹ I			0.004
2	¹³² Te			0.001
	140 Ba			0.003
3	¹⁴¹ Ce			0.001
A 1				0.03
	27 12 3 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

30

Sampling	No. Dave	Turc of	Radioactivity Concentrati 10 ¹³ uCi/ml or pCi/m ³		
Location	No. Days Sampled	Type of Radioactivity	C max	C _{min}	Cavg
Denver, CO	352	gross ß	2.4	<0.1	0.5
	67	⁹⁵ Zr	1.0	0.2	0.08
	56	^{ios} Ru	2.1	0.4	0.12
	5	¹³¹ I	0.07	0.04	0.001
	5	¹³² Te	0.07	0.03	0.001
•	5	¹⁴⁰ Ba	0.09	0.08	0.001
	5	¹⁴¹ Ce	0.05	0.04	0.001
•	57	144 Ce	1.3	0.3	0.08
		,			
Durango, CO	365	gross B	3.9	<0.1	0.6
	26	⁹⁵ Zr	1.8	0.5	0.06
	21	106 Ru	3.3	1.1	0.09
	2	1311	0.3	0.1	0.001
	2	^{1 32} Te	0.1	0.1	0.001
	.2	140 Ba	0.4	0.2	0.002
	2	¹⁴¹ Ce	0.2	0.1	0.001
	16	144 Ce	2.1	0.5	0.05
				•	
oise, ID	364	gross ß	3.3	<0.1	0.5
	30	95 _{Zr}	1.2	0.2	0.05
	17	los Ru	2.4	0.8	0.07
	1	131 I	0.2	0.2	<0.001
	1	13 ² Te	0.1	0.1	<0.001
	1	✓ ¹⁴⁰ Ba	0.3	0.3	<0.001
	0 6	141 Ce	ND	ND	ND
	12	144 Ce	1.6	0.7	0.03

for the Air Surveillance Network

ı۵

for the Air Surveillance Network

Sampling	No. Days	Type of	10 1	tivity Concentrati ² uCi/ml or pCi/m ³		
Location	Sampled a	Radioactivity	C _{max}	Cmin	Cavg	
Idaho Falls, ID	355	gross β	2.9	<0.1	0.5	
	61	95 _{Zr}	1.8	0.3	0.07	
	52	106 Ru	1.8	0.5	0.12	
	4	¹³¹ I	0.2	0.1	0.002	
	2	¹³² Te	0.2	0.2	0.001	
	4	140 Ba	0.3	0.1	0.002	
	2	^{14 1} Ce	0.1	0.1	0.001	
•	42	¹⁴⁴ Ce	1.1	0.3	0.08	
reston, ID	358	gross β	4.7	<0.1	0.5	
•	25	⁹⁵ Zr	1.3	0.4	0.05	
	16	108 Ru	2.4	1.1	0.07	
	2	131 I	0.3	0.07	0.001	
	1	¹³² Te	0.1	0.1	<0.001	
	2	140 Ba	0.3	0.1	0.001	
	2	141 Ce	0.1	0.07	<0.001	
	12	¹⁴⁴ Ce	1.4	0.8	0.03	
			* • T	0.8	0.03	
win Falls, ID	362	gross ß	3.7	<0.1	0.5	
	36	96 ₂ r	1.9	0.1	0.06	
	20	106 Ru	3.7	1.0	0.09	
	1	131 I	0.1	0.1	<0.001	
	. 1	13 ² Te	0.1	0.1	<0.001	
	1	140 Ba	0.3	0.3	0.001	
	1	^{14 1} Ce	0.1	0.1	<0.001	
	11	144 Ce	2.2	0.7	0.03	
	•					
		32				

Sampling Location	No. Days		Radioactivity Concentrat 10 ¹² uCi/ml or pCi/m ³			
	Sampled a	Type of Radioactivity	C _{max}	C _{min}	Cavg	
	227	gross B				
Iowa City, IA	337	95Zr	2.5	<0.1	0.4	
	50	¹⁰⁶ Ru	0.7	0.2	0.05	
	33	131 I	1.2	0.4	0.06	
	0	1 132 Te	ND	ND	ND	
	0	140 Ba	ND	ND	ND	
	0	¹⁴¹ Ce	ND ·	ND	ND	
	0	¹⁴⁴ Ce	ND	ND	ND	
	32	Ce	0.8	0.3	0.04	
Sioux City, IA	363	gross β	1.8	<0.1	0.4	
	26	⁹⁵ Zr	0.9	0.3	0.03	
	16	108 Ru	1.2	0.6	0.04	
	0	131 I	ND	ND	ND	
	0	^{1 32} Te	ND	ND	ND	
	0	,140 Ba	ND	ND	ND	
	0	¹⁴¹ Ce	ND	ND	ND	
	11	¹⁴⁴ Ce	0.8	0.4	0.02	
odge City, KS	359	gross β	1.4	<0.1	0.3	
	1	95 _{Zr} ·	0.1	0.1	<0.001	
	0	106 Ru	ND	ND	ND	
	0	¹³¹ I	ND	ND	ND	
	0	¹³² Te	ND	ND	ND	
	0	¹⁴⁰ Ba	ND	ND	ND	
	0 <		ND	ND	ND	
	v	¹⁴⁴ Ce	110	10	иD	

Table 1 1971 Summary of Analytical Results for the Air Surveillance Network

33

ion

for the Air Surveillance Network

Location Sampled adioactivity C _{max} C _{min} C _s Lake Charles, LA 345 gross β 2.0 <0.1 0. 34 ⁹⁶ Zr 0.7 0.1 0. 33 ¹³¹ I 0.066 0.06 0.06 3 ¹³² Te 0.055 0.05 <0.1 3 ¹⁴⁰ Ba 0.1 0.1 0.1 3 ¹⁴⁴ Ce 0.055 0.05 <0.5 33 ¹⁴⁴ Ce 0.7 0.3 0. 33 ¹⁴⁴ Ce 0.07 0.2 0. 33 ¹⁴⁴ Ce 0.05 0.05 <0.5 33 ¹⁶⁴ Ce 0.7 0.2 0. 38 ¹⁰⁶ Ru 1.2 0.3 0. 0 ¹³² Te ND ND ND 0 ¹⁴⁰ Ba ND ND ND 0 ¹⁴⁴ Ce 1.1 0.3 0. 34 ¹⁰⁶ Ru <t< th=""><th>pling '</th><th colspan="2">No. Days . Type of</th><th colspan="3">Radioactivity Concentrat 10¹² uCi/ml or pCi/m³</th></t<>	pling '	No. Days . Type of		Radioactivity Concentrat 10 ¹² uCi/ml or pCi/m ³		
Lake Charles, LA 345 gross β 2.0 <0.1 0. 34 ${}^{96}Z_{T}$ 0.7 0.1 0. 33 ${}^{106}R_{H}$ 0.7 0.2 0. 3 ${}^{131}I$ 0.06 0.06 <0. 3 ${}^{132}T_{E}$ 0.05 0.05 <0. 3 ${}^{140}B_{B}$ 0.1 0.1 0. 3 ${}^{141}C_{E}$ 0.05 0.05 <0. 3 ${}^{144}C_{E}$ 0.7 0.3 0. 30 ${}^{144}C_{E}$ 0.7 0.2 0. 38 ${}^{95}Z_{T}$ 0.7 0.2 0. 38 ${}^{106}R_{H}$ 1.2 0.3 0. 0 ${}^{132}T_{E}$ ND ND ND ND 0 ${}^{132}T_{E}$ ND ND ND ND 0 ${}^{140}B_{B}$ ND ND ND ND 0 ${}^{144}C_{E}$ 1.1 0.3 0. 44 ${}^{95}Z_{T}$ 0.7 0.1 0. 30 ${}^{144}C_{E}$ 1.1 0.3 0. 44 ${}^{95}Z_{T}$ 0.7 0.1 0. 30 ${}^{144}C_{E}$ ND ND ND ND 0 ${}^{144}C_{E}$ ND ND ND ND 30 ${}^{144}C_{E}$ ND ND ND ND		Sampled a		Cmax	Cmin	Cavg
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
34 ${}^{95}Zr$ 0.7 0.1 0. 33 ${}^{106}Ru$ 0.7 0.2 0. 3 ${}^{131}I$ 0.066 0.066 <0.	harles, LA	345	,	2.0	<0.1	0.3
33 105 Ru 0.7 0.2 0. 3 131 I 0.066 0.066 <0.		34		0.7		0.03
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		33		0.7		0.05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3	—	0.06		<0.001
3 14° Ba 0.1 0.1 0.1 3 141 Ce 0.055 0.05 <0.		3		0.05		<0.001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3		0.1		0.001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3		0.05		<0.001
Monroe, LA 318 gross β 1.7 <0.1 0. 38 ${}^{95}Z_{T}$ 0.7 0.2 0. 38 ${}^{106}Ru$ 1.2 0.3 0. 0 ${}^{131}I$ ND ND ND ND 0 ${}^{132}Te$ ND ND ND ND 0 ${}^{140}Ba$ ND ND ND ND 0 ${}^{141}Ce$ ND ND ND 30 ${}^{144}Ce$ 1.1 0.3 0. 30 ${}^{144}Ce$ 1.1 0.3 0. 34 ${}^{105}Ru$ 1.0 0.5 0. 3 ${}^{132}Te$ ND ND ND 34 ${}^{105}Ru$ 1.0 0.5 0. 3 ${}^{131}I$ 0.03 0.03 <0.0 3 ${}^{132}Te$ ND ND ND 3 ${}^{131}I$ 0.03 0.03 <0.0 3 ${}^{132}Te$ ND ND ND ND 3 ${}^{141}Ce$ 0.04 0.04 <0.0		['] 33	144 Ce	0.7		0.04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. ·		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, LA	318		1.7	<0.1	0.3
38 108 Ru 1.2 0.3 0. 0 131 I ND ND ND 0 132 Te ND ND ND 0 140 Ba ND ND ND ND 0 141 Ce ND ND ND ND 0 141 Ce ND ND ND ND 30 144 Ce 1.1 0.3 0. 30 144 Ce 1.1 0.3 0. 31 106 Ru 1.0 0.5 0. 34 106 Ru 1.0 0.5 0. 3 131 I 0.03 0.03 0.03 3 132 Te ND ND ND 3 140 Ba 0.08 0.08 0.08 3 140 Ba 0.04 0.04 0.04		38		0.7		0.04
0 131 I ND ND ND ND 0 140 Ba ND ND ND ND 0 140 Ba ND ND ND ND 0 141 Ce ND ND ND ND 0 141 Ce ND ND ND ND 30 144 Ce 1.1 0.3 0. 30 144 Ce 1.1 0.3 0. 34 106 Ru 1.0 0.5 0. 34 106 Ru 1.0 0.5 0. 3 131 I 0.03 0.03 <0.0		38		1.2		0.07
0 132 Te ND ND ND 0 140 Ba ND ND ND ND 0 141 Ce ND ND ND ND 0 144 Ce ND ND ND ND 30 144 Ce 1.1 0.3 0.1 30 144 Ce 1.1 0.3 0.1 44 **Zr 0.7 0.1 0.1 34 105 Ru 1.0 0.5 0.1 3 131 I 0.03 0.03 <0.1		. 0		ND		
0 14° Ba ND		0				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0				
New Orleans, LA 358 gross β 1.8 <0.1 0. 44 ${}^{96}Zr$ 0.7 0.1 0.4 34 ${}^{106}Ru$ 1.0 0.5 0.4 3 ${}^{131}I$ 0.03 0.03 <0.4 0 ${}^{132}Te$ ND ND ND 3 ${}^{140}Ba$ 0.08 0.08 0.0 3 ${}^{141}Ce$ 0.04 0.04 <0.6	•	•	¹⁴⁴ Ce			0.04
New Orleans, LA 358 gross β 1.8 <0.1 0. 44 ⁹⁶ Zr 0.7 0.1 0.7 34 ¹⁰⁶ Ru 1.0 0.5 0.7 3 ¹³¹ I 0.03 0.03 <0.7						0.04
44 **Zr 0.7 0.1 0.7 34 105 Ru 1.0 0.5 0.7 3 131 I 0.03 0.03 <0.7	leans, LA	358	gross B	1.8		0.4
34 106 Ru 1.0 0.5 0.0 3 131 I 0.03 0.03 <0.0 0 132 Te ND ND ND ND 3 140 Ba 0.08 0.08 0.08 0.00 3 141 Ce 0.04 0.04 <0.05		44		0.7		0.05
3 131 I 0.03 0.03 <0.0	• · · ·	34		1.0		0.07
0 ¹³³ Te ND ND ND 3 140Ba 0.08 0.08 0.08 3 141Ce 0.04 0.04 <0.04 3 144Ce		3	-	0.03		<0.001
3 ¹⁴⁰ Ba 0.08 0.08 0.0 3 ¹⁴¹ Ce 0.04 0.04 <0.0		0				
3c ¹⁴¹ Ce 0.04 0.04 <0.0		3 <				0.001
144 00		34				<0.001
		34	144 Ce	0.8	0.3	0.05

34

ne in creis de l'étaire de la companya de la compan

•

			Radioactivity Concentration 10 ¹³ uCi/ml or pCi/m ³			
Sampling Location	No. Days Sampled	Type of Radioactivity	Cmax	C _{min}	Cavg	
(inneapolis, MN	348	gross β	1.2	<0.1	0.4	
•	40	⁹⁵ Zr	0.5	0.2	0.04	
	31	105 Ru	1.0	0.4	0.05	
	0	¹³¹ I	ND	ND	ND	
	0	¹³² Te	ND	ND	ND	
	0	14º Ba	ND	ND	ND	
	0	¹⁴¹ Ce	ND	ND	ND	
	30	¹⁴⁴ Ce	0.6	0.3	0.04	
oplin,MO	362	gross β	2.5	<0.1	0.4	
	10	⁹⁵ Zr	0. 9	0.3	0.02	
	7	los Ru	1.8	0.6	0.02	
	0	131 _I	ND	ND	ND	
	0	^{1 32} Te	ND	ND	ND	
	0	¹⁴⁰ Ba	ND	ND	ND	
	0	¹⁴¹ Ce	ND	ND	ND	
•	5	¹⁴⁴ Ce	1.2	0.4	0.01	
t. Joseph, MO	363	gross β	1.9	<0.1	0.4	
	9	9 ⁶ Zr '	0.9	0.4	0.01	
	7	106 Ru	1.5	1.1	0.02	
	1	¹³¹ I	0.04	0.04	<0.00	
	1	13 ² Te	0.07	0.07	<0.00	
	1 .	140 Ba	0.2	0.2	0.00	
	1	¹⁴¹ Ce	0.07	0.07	<0.00	
	4	144 Ce	1.3	0.4	0.01	

for the Air Surveillance Network

for the Air Surveillance Network

Sampling	No. Days Type of		Radioactivity Concentrat 10 ⁻¹² uCi/ml or pCi/m ³		
Location	Sampled a	Radioactivity	Cmax	C _{min}	Cavg
St. Louis, MO	362	gross β	1.5	<0.1	0.4
	4	⁹⁵ Zr	0.6	0.4	0.004
	3	108 Ru	0.7	0.7	0.006
	0	¹³¹ I	ND	ND	ND
	0	^{1 32} Te	ND	ND	ND
	0	¹⁴⁰ Ba	ND	ND	ND
	0	¹⁴¹ Ce	ND	ND	ND
	3	144 Ce	0.4	0.4	0.003
orth Platte, NE	345	gross β	2.5	<0.1	0.5
	37	9 ⁶ Zr	1.1	0.1	0.06
	28	los Ru	1.7	0.6	0.07
	1	131 I	0.1	0.1	<0.001
	0	132 _{Te}	ND	ND	ND
	0	¹⁴⁰ Ba	ND	ND	ND
	0	¹⁴¹ Ce	0.6	0.6	0.002
	28	¹⁴⁴ Ce	1.5	0.8	0.002
lamo, NV	363	gross β	3.1	<0.1	0.6
	60	98 ₂ r	1.1	0.2	0.1
·	19	106 Ru	3.0	0.8	0.07
	2	¹³¹ I	0.2	0.1	0.001
	2	¹³³ Te	0.1	0.1	.0.001
	2 <	140 Ba	0.4	0.2	0.002
	2	141Ce	0.8	0.1	0.002
	- ~	144 Ce			0.002

36

10 A 2 10 A 2014

Sampling	No. Days	Radioact	Radioactivity Concentration 10 ⁻¹² uCi/ml or pCi/m ³		
Location	Sampled ^a	Type of Radioactivity	C	C _{min}	C . avg
		· · · · · ·			avg
Austin, NV	349	gross ß	30	<0.1	0.7
	49	⁹⁶ Zr	1.5	0.2	0.08
	26	los Ru	2.1	0.7	
	2	131 I	1.5		0.09
	2	¹³² Te	. –	1.0	0.007
	2	¹⁴⁰ Ba	1.3	0.7	0.005
	2	141Ce	1.7	1.3	0.008
	17	144 Ce	0.8	0.7	0.004
·	17		1.8	0.5	0.05
Battle Mountain,	359	gross β	31	<0.1	0.6
rv .	54	⁹⁵ Zr	1.3	0.1	0.1
	30	los Ru	3.4	0.5	0.11
	2	¹³¹ I	1.6	0.5	0.006
	2	^{1 32} Te	1.3	0.3	
	2	140 Ba	1.9		0.004
	2	¹⁴¹ Ce		0.6	0.007
	16	¹⁴⁴ Ce	1.0	0.2	0.003
			2.0	0.5	0.04
eatty, NV	365	gross ß	23	<0.1	0.7
	33	96 _{2r} .	1.2	0.5	0.06
	12	105 Ru	1.9	1.1	0.05
	3	¹³¹ I	1.3	0.2	0.003
	3	^{1 32} Te	0.8	0.1	0.005
	3	140 Ba	2.3	0.2	0.013
	3	14 1 Ce	1.0	0.1	0.005
	8 🔨	144 Ce	1.0	0.9	0.005

Table 1 1971 Summary of Analytical Results for the Air Surveillance Network

37

-77

for the Air Surveillance Network

Sampling	No. Days Type of		Radioactivity Concentrat 10 ¹² uCi/ml or pCi/m ³			
Location	Sampled	Radioactivity	C max	C _{min}	Cavg	
		,				
Blue Jay, NV	364	gross β	13	<0.1	0.6	
	50	95 ₂ r	1.0	0.2	0.08	
	16	108 Ru	1.9	0.8	0.05	
	2	131 I	0.6	0.5	0.003	
	2	¹³² Te	0.5	0.3	0.002	
	2	140 Ba	1.1	1.0	0.006	
	2	141Ce	0.5	0.4	0.002	
	11	144 Ce	1.2	0.7	0.03	
Caliente, NV	364	gross B		· .		
Sallence, NV		95Zr	6.9	<0.1	0.6	
	68	. 106 Ru	1.2	0.2	0.1	
	32	131 ₁	2.4	0.7	0.12	
	2	1 32 Te	0.4	0.3	0.002	
	2	140 Ba	0.3	0.2	0.001	
	2		0.7	0.4	0.003	
	2	141Ce	0.3	0.2	0.001	
	22	144 Ce	1.7	0.6	0.06	
tone Cabin Ranch,	361	gross ß	15	<0.1	0.6	
v	32	96 _{Zr}	1.0	0.2	0.06	
	14	los Ru	1.8	0.9	0.05	
	2	¹³¹ I	0.8	0.8	0.004	
	2	¹³² Te	0.7	0.6	0.004	
	2 <	140 Ba	1.3	1.1	0.004	
	2	¹⁴¹ Ce	0.5	0.5	0.003	
	- -	144 Ce	1.2	0.8	0.003	

38

for the Air Surveillance Network

Sampling	No. Dovo	No. Days Type of			centration pCi/m ³	
Location	Sampled	Radioactivity	C _{max}	C _{min}	Cavg	
Currant, NV	335	gross β	6.7	<0.1	0.5	
:	23	⁹⁵ Zr	0.6	0.2	0.03	
	12	105 Ru	2.0	0.7	0.04	
	2	¹³¹ I	0.7	0.2	0.002	
	3	^{1 32} Te	0.5	0.1	0.002	
2 N	2	140 Ba	1.1	0.2	0.004	
	3	¹⁴¹ Ce	0.5	0.1	0.002	
	9	¹⁴⁴ Ce	1.1	0.4	0.02	
Blue Eagle Ranch,	355	gross β	11	<0.1	0.6	
(Currant) NV	26	⁹⁶ Zr	1.1	0.4	0.05	
	14	los Ru	2.0	1.0	0.06	
	0	131 I	ND	ND	ND	
	0	^{1 32} Te	ND	ND	ND	
	0	140 Ba	ND	ND	ND	
	0	141 Cé	ND	ND	ND	
	11	¹⁴⁴ Ce	1.5	0.7	0.03	
Currie, NV	361	gross β	14	<0.1	0.6	
	39	95 _{Zr} ·	1.5	0.2	0.07	
	18	¹⁰⁶ Ru	2.8	0.7	0.07	
		¹³¹ I	0.8	0.1	0.005	
	3	¹³² Te	0.6	0.1	0.003	
	3	140 Ba	0.9	0.1	0.005	
	3	14 1 Ce	0.5	0.1	0.003	
	-	¹⁴⁴ Ce	1.7	0.5	0.03	
	11 🖍		1.1	0.5	0.03	

39

ion

for the Air Surveillance Network

Sampling	No. Days	Type of	Radioactivity Concentrat 10 ¹² uCi/ml or pCi/m ³		
Location	Sampled a	Radioactivity	Cmax	C _{min}	Cavg
				· .	
Diablo, NV	365	gross ß	14	<0.1	0.6
	34	⁹⁵ Zr	1.1	0.2	0.06
	20	106 Ru	1.6	0.7	0.07
	2	¹³¹ I	0.8	0.4	0.003
	2	¹³² Te	0.5	0.3	0.00
~	2	140 Ba	1.4	0.7	0.006
	2	¹⁴¹ Ce	0.6	0.2	0.002
	11	144 Ce	1.5	0.5	0.03
Duckwater, NV	327	gross ß	15	<0.1	0.6
	40	⁹⁶ Zr	1.1	0.2	0.06
	29	los Ru	2.9	0.6	0.08
	1	1 31 I	1.0	1.0	0.003
	· 1	^{1 32} Te	0.8	0.8	0.002
	1	¹⁴⁰ Ba	1.4	1.4	0.004
•	1	141Ce	0.5	0.5	0.001
	19	144 Ce	2.3	0.5	0.04
lko, NV	363	gross ß	20	<0.1	0.5
	22	95 _{Zr}	1.1	0.3	0.05
	11	106 Ru	3.2	0.7	0.04
	2	¹³¹ I	0.9	0.3	0.003
	2	^{1 32} Te	0.8	0.4	0.003
	2 <	140 Ba	1.5	0.3	0.005
	1	^{14 1} Ce	0.6	0.6	0.002
	7	144 Ce	1.3	0.4	0.02
		:			
		40		•	

***5** 20 21

anna chuann

Sampling	No. Dour	Type of	Radioactivity Concentrati 10 ⁻¹² uCi/ml or pCi/m ³			
Location	No. Days Sampled	Radioactivity	Cmax	C _{min}	Cavg	
					avg	
Ely, NV	360	gross β	18	<0.1	0.6	
	38	⁹⁵ Zr	1.3	0.3	0.06	
	28	los Ru	2.6	0.6	0.1	
•	2	¹³¹ I	1.1	0.2	0.00	
	2	^{1 32} Te	0.7	0.2	0.002	
	2	¹⁴⁰ Ba	1.2	0.5	0.00	
·	2	¹⁴¹ Ce	0.6	0.2	0.00	
	21	144 Ce	1.5	0.3	0.04	
Eureka, NV	362	gross β	.22	<0.1	0.7	
•	37	⁹⁵ Zr	1.2	0.4	0.08	
	25	los Ru	2.0	0.9	0.09	
	3	¹³¹ I	0.9	0.2	0.00	
	3	^{1 32} Te	0.8	0.1	0.004	
	3	140 Ba	1.4	0.2	0.008	
,	3	¹⁴¹ Ce	0.7	0.1	0.00	
	15	¹⁴⁴ Ce	1.4	0.8	0.04	
allon, NV	364	gross β	51	<0.1	0.7	
	51	ss _{Zr}	1.0	0.2	0.07	
	20	106 Ru	1.7	0.9	0.07	
	3	131 I	2.0	0.2	0.008	
	3	^{1 32} Te	1.6	0.2	0.007	
	3	140 Ba	2.6	0.4	0.01	
	3	¹⁴¹ Ce	0.9	0.2	0.00	
	13	144 Ce	1.4	0.5	0.03	

for the Air Surveillance Network

41

tion 3

3

2 5 ?

ž l

REAL PROPERTY.

Ĩ,

for the Air Surveillance Network

No. Days Sampled a 358 43 6 3	Type of <u>Radioactivity</u> gross β ⁹⁵ Zr ¹⁰⁸ Ru	С _{тах} 37	<0.1	Cavg
43 6	⁹⁵ Zr	37		
43 6	⁹⁵ Zr		<0.1	
6				0.7
	106 p.	0.9	0.2	0.06
3		1.4	0.9	0.02
	¹³¹ I	1.9	0.2	0.009
3	^{1 32} Te			0.003
3			•	0.00
3	¹⁴¹ Ce			0.005
4	144 Ce			0.01
	• • • •			
315	gross β	14	<0.1	0.6
39		1.1		0.07
21		2.3		0.08
3		0.7		0.003
3				0.002
3				0.002
3	¹⁴¹ Ce			0.002
10	144 Ce	1.1	0.8	0.03
363	groes S			
·		34	<0.1	0.7
		1.3	0.2	0.07
	131.	2.2	0.9	0.07
		1.6	1.0	0.007
· .	140 _n	1.2	0.8	0.005
	58 141 o	2.4	1.8	0.01
<i>K</i>	Ce 144 _	1.1	0.8	0.005
6	Ce	1.3	0.9	0.02
	3 3 4 315 39 21 3 3 3 3 3 3 10 363 46 19 2 2 2 2 2 2 2 2 2 2	3 140 Ba 3 141 Ce 3 141 Ce 4 144 Ce 315 gross β 39 $952r$ 21 106 Ru 3 131 I 3 132 Te 3 140 Ba 3 140 Ba 3 141 Ce 363 gross β 46 $952r$ 19 106 Ru 2 131 I 2 132 Te 10 144 Ce	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} & 14^{\circ}Ba \\ 3 \\ 14^{\circ}Ce \\ 1.1 \\ 0.4 \\ \end{array}$ $\begin{array}{c} 315 \\ 39 \\ 14^{\circ}Ce \\ 1.1 \\ 0.4 \\ \end{array}$ $\begin{array}{c} 315 \\ 39 \\ 10^{\circ}Ru \\ 2.3 \\ 1.0 \\ 3 \\ 13^{\circ}Te \\ 0.4 \\ 0.1 \\ 3 \\ 13^{\circ}Te \\ 1.1 \\ 0.3 \\ 13^{\circ}Te \\ 0.4 \\ 0.1 \\ 3 \\ 14^{\circ}Ba \\ 0.7 \\ 0.2 \\ 3 \\ 14^{\circ}Ba \\ 0.7 \\ 0.3 \\ 14^{\circ}Ce \\ 1.1 \\ 0.8 \\ \end{array}$ $\begin{array}{c} 363 \\ 363 \\ 363 \\ 363 \\ 363 \\ 363 \\ 363 \\ 365 \\ 365 \\ 363 \\ 364 \\ 364 \\ 364 \\ 1.1 \\ 364 \\ 364 \\ 364 \\ 1.1 \\ 364 \\ 364 \\ 1.1 \\ 364 \\ 364 \\ 1.1 \\ 364 \\ 364 \\ 1.1 \\ 1.1 $

Sampling	No. Dovo	Radioactivity Concentrati 10 ⁻¹² uCi/ml or pCi/m ³			
Location	No. Days Sampled	Type of Radioactivity	C max	Cmin	Cavg
		•			<u>_</u>
room Lake, NV	302	gross ß	13	<0.1	0.6
	87	⁹⁵ Zr	0.9	0.2	0.1
	69	103 Ru	1.6	0.4	0.15
	2	¹³¹ I	0.8	0.8	0.004
	2	¹³² Te	0.5	0.5	0.003
	2	140 Ba	1.2	1.2	0.007
	2	¹⁴¹ Ce	0.5	0.5	0.003
	- 64	144 Ce	1.1	0.3	0.09
			***	0.5	0.09
iko, NV	365	gross B	2.5	<0.1	0.6
	61	⁹⁵ Zr	1.0	0.2	0.1
	25	106 Ru	2.4	0.8	0.1
	1	131 I	0.1	0.1	<0.001
	0	¹³² Te	ND	ND	ND
	1	¹⁴⁰ Ba	0.2	0.2	0.001
		¹⁴¹ Ce	0.1	0.1	<0.001
	1	¹⁴⁴ Ce			
	17		1.3	0.7	0.05
ndian Springs, NV	365	gross β	4.5	<0.1	0.6
	34	95 _{Zr} .	1.1	0.3	0.06
	16	106 Ru	2.9	0.6	0.07
	2	¹³¹ I	0.3	0.2	0.001
		^{1 32} Te	0.2	0.1	0.001
	2	140 Ba			
	2	141 Ce	0.4	0.4	0.002
	2	144 Ce	0.2	0.1	0.001
	12	U C C C C C C C C C C C C C C C C C C C	1.5	0.5	0.03

for the Air Surveillance Network

for the Air Surveillance Network

Sampling '	No. Days	Radioactivity Concentrat: 10 ⁻¹² uCi/ml or pCi/m ³			
Location	Sampled ^a	Type of Radioactivity	C max	C _{min}	Cavg
•					
Las Vegas, NV	362	gross β	2.3	<0.1	0.6
,	117	95 ₂ r	1.0	0.05	0.15
	64	¹⁰⁶ Ru	2.0	0.5	0.18
	3	¹³¹ I	0.1	0.1	0.001
	3	¹³² Te	0.1	0.1	0.001
	3	140 Ba	0.2	0.2	0.002
	0	¹⁴¹ Ce	ND	ND	ND
	57	144 Ce	1.2	0.3	0.1
Lathrop Wells, NV	362	gross b	9.9	<0.1	0.6
	59	⁹⁵ Zr	1.7	0.2	0.11
	34	los Ru	4.0	0.9	0.15
	3	¹³¹ I	0.7	0.2	0.003
	2	^{1 32} Te	0.4	0.1	0.001
•	3	140 Ba	1.0	0.2	0.004
	2	¹⁴¹ Ce	0.5	0.1	0.002
	24	¹⁴⁴ Ce	1.8	0.5	0.06
lida, NV	333	gross ß	32	<0.1	
•	24	96 _{Zr}			0.7
		108 Ru	1.1	0.5	0.04
	12	131 I	1.6	1.1	0.04
	3	1 1 3 ³ Te	1.1	0.4	0.007
	3	140 Ba	1.0	0.2	0.005
	0	141 Ce	1.4	0.4	0.008
	3,		0.7	0.2	0.004
	11	144 Ce	1.1	0.5	0.03

44

for the Air Surveillance Network

: **n**

Sampling	No. Days	Type of	Radioactivity Concentr f 10 ¹² uCi/ml or pCi/		
Location	Sampled a	Radioactivity	C _{max}	C _{min}	Cavg
Lovelock, NV	365	gross β	14	<0.1	0.5
	48	⁹⁵ Zr	1.0	0.1	0.08
	22	los Ru	1.8	0.8	0.08
	3	131 I	1.0	0.2	0.004
	3	¹³² Te	0.8	0.1	0.003
	3	140 Ba	1.5	0.3	0.006
	3	¹⁴¹ Ce	0.5	0.2	0.002
•	14	¹⁴⁴ Ce	1.5	0.7	0.04
Lund, NV	348	gross β	18	<0.1	0.6
	45	⁹⁵ Zr	1.3	0.2	0.08
	24	los Ru	2.9	0.7	0.08
	2	¹³¹ I	0.8	0.6	0.004
	2	^{1 32} Te	0.6	0.5	0.003
•	2	¹⁴⁰ Ba	1.1	1.1	0.006
	2	^{14 1} Ce	0.7	0.6	0.004
•	19	144 Ce	1.6	0.7	0.05
Mesquite, NV	365	gross β	2.7	<0.1	0.6
• • • • •	1 1	95 _{Zr} .	1.4	0.2	0.11
	64	106 Ru	2.3	0.2	
	30	¹³¹ I	2.3 0.1		0.13
	2	¹³² Te		0.1	0.001
	2	140 Ba	0.1	0.1	0.001
	2	⁴¹ Ce	0.2	0.1	0.001
	2	¹⁴⁴ Ce	0.1	0.1	0.001
	15 *		1.5	0.8	0.04

45

for the Air Surveillance Network

Sampling	No. Days Type of	10 ¹² uCi/ml or pCi/m			
Location	Sampled	Radioactivity	Cmax	C _{min}	C _{avg}
Nyala, NV	365	gross β	12	<0.1	0.6
	34	⁹⁵ Zr	1.1	0.5	0.07
	23	106 Ru	2.4	0.8	0.09
	2	131 I	0.6	0.3	0.09
	2	¹³² Te	0.4	0.3	0.00
	2	140 Ba	1.0	0.6	0.00
	2	¹⁴¹ Ce	0.4	0.2	0.00
	16	144 Ce	1.6		0.00
	.		1.0	0.8	0.05
Pahrump, NV	332	gross β	3.1	<0.1	0.6
	55	95Zr	1.1	0.1	0.09
·	27	los Ru	1.8	0.6	0.09
	3	¹³¹ I	0.3	0.3	0.00
	3	132 Te	0.1	0.1	0.00
•	3	140 Ba	0.3	0.3	0.00
	3	¹⁴¹ Ce	0.1	0.1	0.00
•	21	¹⁴⁴ Ce	1.9	0.5	0.06
Pioche, NV	361	gross β	10	<0.1	0.5
,	23	95 _{Zr}	0.9	0.4	0.04
	11	106 Ru	1.7	0.6	0.04
	2	131 _I	0.6	0.8	0.04
	2	^{1 32} Te	0.5	0.3	0.00
	2 🖈	140 Ba	0.5	0.5	0.00
		¹⁴¹ Ce	0.4		
	2 5	144 Ce		0.3	0.00
	5	Çe	1.2	0.6	0.01
		• • •			
		46			
4					

and the second sec

1 4-2	No. Days	Radioactivity Concentrati 10 ⁻¹² uCi/ml or pCi/m ³			
Sampling Location	Sampled	Type of Radioactivity	Cmax	C _{min}	Cavg
				- <u> </u>	<u>-</u>
Reno, NV	338	gross β	46	<0.1	0.7
····	25	95 _{Zr}	1.0	0.4	0.05
	15	los Ru	2.0	0.5	0.06
	2	131 I	2.4	0.7	0.008
	2	^{1 32} Te	1.9	0.5	0.007
	2	¹⁴⁰ Ba	3.3	0.9	0.01
	2	^{14 1} Ce	1.4	0.4	0.005
	9	144 Ce	1.2	0.8	0.02
Round Mountain,	361	gross β	27	<0.1	0.7
r v	49	95Zr	1.1	0.3	0.08
	25	105 Ru	2.1	0.7	0.08
	3	¹³¹ I	1.5	0.4	0.006
	3	^{1 32} Te	1.2	0.2	0.005
	3	140 Ba	1.6	0.5	0.008
	3	^{14 1} Ce	0.7	0.3	0.004
	20	¹⁴⁴ Ce	1.5	0.5	0.05
Scotty's Junction,	363	gross β	18	<0.1	0.7
rv.	40	95Zr	1.4	0.4	0.08
	25	108 Ru	2.2	1.1	0.11
	4	¹³¹ I	1.4	0.2	0.01
	2	¹³² Te	0.8	0.2	0.003
	2	140 Ba	2.0	0.2	0.006
	2	¹⁴¹ Ce	0.8	0.1	0.002
	17 🐔	144 Ce	2.0	0.5	0.05

Table 1 1971 Summary of Analytical Results for the Air Surveillance Network

•

. 47

Selen Aller P

for the Air Surveillance Network

Sampling	No. Days	Radioactivity Concentrati 10 ⁻¹² uCi/ml or pCi/m ³			
Location	Sampled	Type of Radioactivity	Cmax	C _{min}	Cavg
Sunnyside, NV	320	gross ß	15	<0.1	0.7
	31	⁹⁵ Zr	1.0	0.3	0.05
	22	106 Ru	1.9	0.5	
•	3	131 I	0.8	0.3	0.08
	. 3	133 _{Te}	0.3	0.3	0.004 0.002
	3	140 Ba	1.0	0.4	
•	3	141 Ce	0,5	0.4	0.005
	. 18	144 Ce			0.003
			1.1	0.5	0.04
Tonopah, NV	364	gross B	34	<0.1	0.8
	40	9 ⁶ Zr	1.1	0.4	0.08
	22	¹⁰⁶ Ru	2.4	0.9	0.09
	3	131 I	1.4	0.6	0.008
	3	^{1 32} Te	0.8	0.2	0.005
	3	140 Ba	2.1	0.7	0.01
	3	¹⁴¹ Ce	1.1	0.3	0.005
	13	144 Ce	1.3	0.6	0.04
fonopah Test	339	gross B	15	<0.1	0.7
Range, NV	52	95 _{Zr}	1.1	0.2	0.08
	27	106 Ru	1.8	0.5	0.08
	5	131 I	1.1	0.3	0.008
•	5	¹³² Te	0.8	0.2	0.006
	5	140 Ba	1.6	0.4	0.01
	5	141Ce	0.6	0.2	0.005
	21	144 Ce	1.4	0.6	0.04

10.0

Sampling	No. Days Type of		Radioactivity Concentration 10 ¹² uCi/ml or pCi/m ³			
Location	Sampled	Radioactivity	Cmax	C _{min}	Cavg	
Fallini's Ranch	361	gross β	11	<0.1	0.6	
(Twin Springs), NV	51	⁹⁶ Zr	1.0	0.2	0.09	
(Iwin Opiings), hv	21	108 Ru				
		¹³¹ I	2.5	0.8	0.08	
	2	¹³² Te	0.4	0.4	0.002	
	2	140 Ba	0.4	0.3	0.002	
· ·	2	141 Ce	1.2	0.6	0.005	
	2		0.3	0.3	0.002	
	16	¹⁴⁴ Ce	1.4	0.8	0.04	
Warm Springs, NV	126	gross B	1.9	0.2	0.7	
OF8-,	13	95 ₂ r			0.06 ^b	
		106 Ru	1.0	0.3	-	
	8	131 I	2.3	0.5	0.09 ^b	
	0	¹³² Te	ND	ND	ND	
	0	¹⁴⁰ Ba	ND	ND	ND	
	0		ND	ND	ND	
	0	141 Ce	ND	ND	ND	
•	6	144 Ce	1.6	0.8	0.06	
Warm Springs	364	gross ß	2.5	<0.1	0.5	
Ranch, NV	45	95 _{Zr}				
1748 14 0 14 9 17 4 .		106 Ru	1.1	0.3	0.08	
	26	131 I	2.3	0.6	0.09	
	0	¹ 3 ² Te	ND	ND	ND	
	0	140 Ba	ND	ND	ND	
	· • •		ND	' ND	ND	
	0	14 1 Ce	ND .	ND	ND	
	18	144 Ce	1.3	0.7	0.05	

Table 1 1971 Summary of Analytical Results for the Air Surveillance Network

for the Air Surveillance Network

Sampling	No. Days	Type of	Radioactivity Concentrati 10 ⁻¹² uCi/ml or pCi/m ³		
Location	Sampled a	Radioactivity	Cmax	Cmin	Cavg
					•
Wells, NV	365	gross β	21	<0.1	0.6
	30	⁹⁵ Zr	1.3	0.4	0.06
	17	^{los} Ru	2.8	0.9	0.08
	2	¹³¹ I	1.2	0.3	0.004
	2	¹³² Te	1.0	0.2	0.003
	2	14º Ba	1.8	0.3	0.006
	2	¹⁴¹ Ce	0.7	0.2	0.002
	12	¹⁴⁴ Ce	1.5	0.5	0.03
Vinnemucca, NV	350	gross ß	28	<0.1	
	26	⁹⁵ Zr	1.0		0.6
•	16	los Ru	1.9	0.3	0.04
	4	131 ₁	2.1	0.8	0.06
		13 ² Te		0.2	0.005
	4	140 Ba	2.0	0.2	0.004
	4	141 Ce	2.1	0.4	0.006
	4	144 Ce	0.8	0.1	0.003
	8	Ce	1.3	0.6	0.02
lbuquerque, NM	348	gross β	2.5	<0.1	0.5
	43	95 ₂ r	1.4	0.2	0.07
	31	¹⁰⁶ Ru	2.1	0.5	0.10
	5	131 I	0.1	0.1	0.001
	5	¹³² Te	0.1	0.1	0.001
	5	140 Ba	0.2	0.2	0.003
	* 5	^{14 1} Ce	0.7	0.7	0.01
	27	¹⁴⁴ Ce	1.6	0.4	0.06

50

Sampling	No. Days Type of		Radioactivity Concentration 10 ¹² uCi/ml or pCi/m ³			
Location	Sampled	Radioactivity	C max	C _{min}	Cavg	
			•	•		
Carlsbad, NM	360	gross β	3.2	<0.1	0.5	
	24	95 _{Zr}	1.3	0.2	0.04	
	15	106 Ru	2.5	1.1	0.06	
	3	131 I	0.2	0.1	0.001	
	2	^{1 32} Te	0.1	0.1	0.001	
	3	¹⁴⁰ Ba	0.3	0.2	0.002	
	0	¹⁴¹ Ce	ND	ND	ND	
	15	144 Ce	1.2	0.5	0.04	
Muskogee, OK	360	gross β	5.3	<0.1	0.4	
	3	95 _Z r	2.1	0.7	0.01	
	3	108 Ru	3.9	0.9	0.02	
	0	131 _I	ND	ND	ND	
	0	^{1 32} Te	ND	ND	ND :	
	0	140 Ba	ND	ND	ND	
	0	141 Ce	ND	ND	ND	
	2	144 Ce	2.9	1.1	0.01	
Medford, OR	342	gross ß	2.3	<0.1	0.4	
•	6	95 ₂ r	0.9	0.4	0.01	
	3	¹⁰⁶ Ru	1.7	0.8	0.01	
	0	131 I	ND	ND	ND	
-	· 0	^{1 32} Te	ND	ND	ND	
		140 Ba	ND	ND	ND	
	0 ~	¹⁴¹ Ce	ND .	ND	ND	
	0 1	144 Ce	0.9	0.9	0.00	

for the Air Surveillance Network

51

570

At Ast

on

Sampling	No. Days Type of		Radioactivity Concentrat 10 ¹² uCi/ml or pCi/m ³		
Location	Sampled a	Radioactivity	Cmax	Cmin	Cavg
Duran					
Burns, OR	364	gross β	2.1	<0.1	0.5
	20	⁹⁵ Zr	0.9	0.4	0.04
	14	106 Ru	2.0	0.9	0.06
	0	¹³¹ I	ND	ND	ND
	0	¹³² Te	ND	ND	ND
<i></i>	0	140 Ba	ND	ND	ND
•	0	¹⁴¹ Ce	ND	ND	ND
	13	¹⁴⁴ Ce	1.2	0.7	0.03
		•••		0.11	0.03
Aberdeen, SD	360	gross B	2.8	<0.1	0.4
	6	⁹⁵ Zr	0.7	0.5	0.01
	3	106 Ru	1.5	0.8	
	0	131 I	ND		0.00
	0	^{1 32} Te		ND	ND
	0	140 Ba	ND	ND	ND
	0	141Ce	ND	ND	ND
	2	¹⁴⁴ Ce	ND	ND	ND
•	4	Ce .	0.7	0.7	0.002
apid City, SD	365	gross B	1.9	<0.1	0 5
	14	95 _{Zr}	1.2		0.5
	8	106 Ru		0.5	0.02
	0	131 I	2.0	1.1	0.03
		¹³³ Te	ND	ND	ND
	0 ~	140 Ba	ND	ND	ND
	0 K	¹⁴¹ Ce	ND	ND	ND
			ND	ND	ND
•	2	144 Ce	1.2	1.2	0.007

for the Air Surveillance Network

52

in California California

	. No. Days Type of		Radioactivity Concentration 10 ⁻¹² uCi/ml or pCi/m ³		
Sampling Location	No. Days Sampled ^a	Radioactivity	C _{max}	Cmin	Cavg
Abilene, TX	360	gross β	9.2	<0.1	0.5
	10	9 ⁶ Zr	1.1	0.3	0.02
	8	108 Ru	2.1	0.6	0.03
	2	¹³¹ I	0.5	0.2	0.002
	2	¹³² Te	0.4	0.2	0.002
	2	140 Ba	0.9	0.3	0.003
	2	¹⁴¹ Ce	0.5	0.1	0.002
	4	144 Ce	1.1	0.5	0.01
Amarillo, TX	365	gross ß	2.9	<0.1	0.5
······	17	9 ⁶ Zr	1.1	0.2	0.03
	9	106 Ru	1.5	0.9	0.03
	2	¹³¹ I	0.2	0.2	0.00
	- 2	¹³² Te	0.1	0.1	0.00
	2	140 Ba	0.3	0.3	0.00
	2	¹⁴¹ Ce	0.1	0.1	0.00
	7	144 Ce	1.3	0.9	0.02
Austin, TX	154	gross ß	6.7	<0.1	0.3
·	4	95 ₂ r	0.1	0.1	0.00
	0	¹⁰⁶ Ru	ND	ND	ND
	0	¹³¹ I	ND	ND	ND
· ·	0	¹³³ Te	ND	ND	ND
	0 ~	140 Ba	ND	ND	ND
		¹⁴¹ Ce	ND .	ND	ND
	٥ <u>ـ</u>	144 Ce	ND	ND	ND

for the Air Surveillance Network

tion

for the Air Surveillance Network

Sampling	No. Days Type of		Radioactivity Concentrat 10 ¹² uCi/ml or pCi/m ³		
Location	Sampled a	Type of Radioactivity	C _{max}	Cmin	C avg
	· ·				
Fort Worth, TX	341	gross B	8.0	<0.1	0.5
	22	⁹⁵ Zr	1.0	0.2	0.04
	17	los Ru	1.7	0.7	0.07
	2	^{1 31} I	0.4	0.1	0.00
	2	¹³² Te	0.2	0.1	0.00
· ·	2	140 Ba	0.5	0.3	0.00
	2	¹⁴¹ Ce	0.2	0.1	0.00
	14	144 Ce	1.2	0.6	0.02
Bryce Canyon, UT	338	gross β	4.2	<0.1	0.5
	40	⁹⁵ Zr	1.2	0.2	0.06
	33	los Ru	2.1	0.6	0.09
	4	131 _I	0.2	0.1	0.00
	. 4	^{1 32} Te	0.1	0.1	0.00
	4	140 Ba	0.4	0.1	0.00
	4	141 Ce	0.1	0.1	0.00
•	18	144 Ce	1.6	0.4	0.04
Cedar City, UT	361	gross B	8.0	<0.1	0.6
	44	• ⁵ Zr	1.3	0.4	0.08
	33	106 Ru	2.3	0.6	0.12
	3	131 /	0.4	0.1	0.00
	3	13 ² Te	0.2	0.1	0.00
	£	140 Ba	0.7	0.1	0.00
	<u>د ا</u>	¹⁴¹ Ce	. 0,2	0.2	0.00
	27	144 Ce	1.8	0.3	0.06
·					
		54			

ALL DE LA CAL

÷.,

	No Dovo	Type of	Radioactivity Concentration 10 ¹² uCi/ml or pCi/m ³		
Sampling Location	No. Days Sampled	Radioactivity	C _{max}	C _{min}	Cavg
Delta, UT	326	gross β	8.7	<0.1	0.5
Derta, Or	23	⁹⁵ Zr	2.6	0.4	0.05
		105 Ru	2.5	0.6	0.07
	19	1 31 I	0.5	0.3	0.002
	2	132 _{Te}	0.3	0.2	0.001
	2	140 Ba	0.6	0.4	0.00
	2	^{14 1} Ce	0.3	0.3	0.00
	2	144 Ce	2.2	0.6	0.05
	17			0.0	0100
Dugway, UT	363	gross B	6.1	<0.1	0.6
Dugwey, or	34	⁹⁵ Zr	1.2	0.4	0.07
		106 Ru	2.9	0.8	0.11
	27	131 I	0.3	0.3	0.00
	2	^{1 32} Te	0.3	0.2	0.00
>	2	140 Ba	0.4	0.4	0.00
	2	141 Ce	0.2	0.2	0.00
	2 17	144 Ce	1.6	0.6	0.05
Enterprise, UT	364	gross β	9.0	<0.1	0.6
	34	96 ₂ r	1.2	0.5	0.07
	24	108 Ru	2.8	0.9	0.09
	2	131 I	0.7	0.2	0.00
	2	133 _{Te}	0.4	0.2	0.00
	2 ~	¹⁴⁰ Ba	0.8	0.3	0.0
		^{14 1} Ce	0.4	0.2	0.0
	2× 17	144 Ce	1.4	0.8	0.04

Table 1 1971 Summary of Analytical Results for the Air Surveillance Network

ration 'm³

vg

5 04 -07 **þ**01

001 102 01

2

2 t

H.

to a cut contributes

			Radioactivity Concentrat: 10 ⁻¹² uCi/ml or pCi/m ³			
Sampling Location	No. Days Sampled ^a	Type of	C 10 10	C1/ml or	pC1/m ^w	
Detetion	Sampied	Radioactivity	Cmax	C _{min}	Cavg	
Garrison, UT	364	gross ß	8.8	<0.1	0.6	
	32	⁹⁵ Zr	1.1	0.2	0.06	
	22	¹⁰⁶ Ru	2.2	0.9	0.09	
	2	¹³¹ I	.0.6	0.5	0.003	
	2	¹³² Te	0.4	0.4	0.002	
	2	140 Ba	0.6	0.5	0.003	
	2	¹⁴¹ Ce	0.4	0.3	0.002	
	15	144 Ce	1.8	0.6	0.04	
Logan, UT	362	gross ß	2.7	<0.1	0.5	
•	32 .	⁹⁶ Zr	1.2	0.1	0.06	
	19	106 Ru	2.7	0.7	0.07	
	1	¹³¹ I	0.1	0.1	<0.001	
	0	^{1 32} Te	ND	ND	ND	
	1	140 Ba	0.2	0.2	0.001	
	1	¹⁴¹ Ce	.07	.07	<0.001	
	17	144 Ce	1.2	0.6	0.04	
ilford, UT	358	gross ß	8.9	<0.1	0.5	
	17	9ªZr	1.3	0.5	0.03	
	9	108 Ru	1.8	0.9	0.03	
:	2	131 _I	0.6	0.4	0.003	
	2	13 ² Te	0.5	0.2	0.002	
	2	140 Ba	0.9	0.7	0.004	
272	5	141Ce	0.3	0.3	0.002	
	8	144 Ce	1.5	0.5	0.02	

for the Air Surveillance Network

No. Con Strate

	Sampling No. Days		Radioactiv 10 ⁻¹² u	Ci/ml or	centration pCi/m ³ Cavg	
Sampling Location	Sampled a	Type of Radioactivity	C _{max}	Cmin	Cavg	
· · ·						
Monticello, UT	278	gross B	2.6	<0.1	0.4	
•	7	⁹⁵ Zr	1.4	0.5	0.01	
	5	105 Ru	1.9	1.0	0.02	
	0	^{1 31} I	ND	ND	ND	
	0	¹³² Te	ND	ND	ND	
	0	¹⁴⁰ Ba	ND	ND	ND	
	0	141 Ce	ND	ND	ND	
• .	4	144 Ce	1.4	0.6	0.01	
Parowan, UT	334	gross β	4.3	<0.1	0.5	
,	22	95 _{Zr}	2.2	0.3	0.06	
	13	los Ru	3.3	0.8	0.07	
	0	131 _I	ND	ND	ND	
	0	^{1 32} Te	ND	ND	ND	
	0	140 Ba	ND	ND	ND	
	0	141 Ce	ND	ND	ND	
. *	11	¹⁴⁴ Ce	2.3	0.9	0.04	
Provo, UT	348	gross β	6.7	<0.1	0.6	
•	29	98 ₂ r	1.8	0.4	0.06	
	16	108 Ru	2.4	0.9	0.06	
	2	¹³¹ I	0.2	0.2	0.00	
	2	¹³² Te	0.2	0.2	0.00	
-	2 🖍	140 Ba	0.5	0.4	0.00	
	2~	141 Ce	0.2	0.1	0.00	
	/ 12	144 Ce	1.6	0.7	0.04	

for the Air Surveillance Network

ion

- いっぱいゆう

4

-

. -. . I •

Alund Sules and St

for the Air Surveillance Network

8amp14	No Dava		Radioact:	ivity Con JCi/ml on	ncentrat
Sampling Location	No. Days Sampled ⁸	Type of Radioactivity	Cmax	C min	
loosevelt, UT	364	gross β	7.6	<0.1	0.5
	35	⁹⁵ Zr	1.8	0.3	0.07
	24	105 Ru	2.8	0.9	0.11
	2	131 I	0.4	0.2	0.00
•	2	¹³² Te	0.3	0.1	0.00
	2	140 Ba	0.7	0.5	0.00
	2	¹⁴¹ Ce	0.3	0.2	0.00
	19	144 Ce	1.7	0.7	0.06
st. George, UT	365	gross β	3.2	<0.1	0.5
	28	96 ₂ r	1.0	0.3	0.05
	15	¹⁰⁶ Ru	2.3	1.0	0.06
	1	¹³¹ I	0.2	0.2	0.00
	1	^{1 32} Te	0.1	0.1	<0.00
	1	140 Ba	0.2	0.2	0.00
	1	¹⁴¹ Ce	0.1	0.1	<0.001
	11	¹⁴⁴ Ce	1.1	0.6	0.03
lt Lake City, UT	363	gross ß	5.3	<0.1	0.6
	43	* ⁵ Zr	1.6	0.4	0.09
а	34	106 Ru	4.2	0.8	0.15
:	2	131 I	0.4	0.2	0.002
	-2	13 ² Te	0.3	0.1	0.001
	2	140 Ba	0.4	0.4	0.002
1	~2	^{I41} Ce	0.2	0.1	0.001
	27	144 Ce	1.8	0.5	0.08

58

Sampling	No. Days	Type of	Radioacti 10 ¹² u	Ci/ml or	pCi/m ³
Location	Sampled a	Radioactivity	Cmax	Cmin	Cavg
Wendover, UT	365	gross ß	3.5	<0.1	0.5
•	31	95 _{Zr}	1.1	0.5	0.06
	21	106 Ru	2.9	0.9	0.08
	2	1 31 I	0.2	0.1	0.00
	1	¹³² Te	0.1	0.1	<0.00
	1	140 Ba	0.2	0.2	0.00
	1	¹⁴¹ Ce	0.2	0.2	0.00
•	12	144 Ce	2.0	0.7	0.04
Seattle, WA	360	gross β	1.6	<0.1	0,2
	19	95 ₂ r	0.5	0.1	0.01
	11	106 Ru	1.2	0.4	0.02
	0	131 I	ND	ND	ND
	0	^{1 32} Te	ND	ND	ND
	0	140 Ba	ND	ND	ND
	0	^{14 1} Ce	ND	ND	ND
•	10	144 Ce	0.3	0.3	0.00
Spokane, WA	328	gross ß	1.9	<0.1	0.4
•	48	• ⁵ Zr	1.2	0.2	0.06
	42	106 Ru	2.1	0.3	0.08
· .	0	131 _I	ND	ND	ND
	0	^{1 32} Te	ND	ND	ND
	0 ~	140 Ba	ND	ND	ND
	0 ~	141 Ce	ND	. ND	ND
	42	144 Ce	1.6	0.2	0.04

Table 1 1971 Summary of Analytical Results for the Air Surveillance Network

ion

59

ware in a de

3.4

1.7

Sampling	No. Days	Type of	10 ⁻¹² u	Ci/ml or	oncentratio or pCi/m ³	
Location	Sampled a	Radioactivity	Cmax	C _{min}	, C avg	
Rock Springs, WY	362	gross ß	4.4	<0.1	0.5	
	22	⁹⁵ Zr	1.4	0.4	0.05	
	15	108 Ru	2.2	1.1	0.07	
	2	131 I	0.2	0.2	0.001	
	2	¹³² Te	0.2	0.2	0.001	
	1	140 Ba	0.3	0.3	0.002	
-	1	¹⁴¹ Ce	0.2	0.2	0.001	
	10	¹⁴⁴ Ce	. 1.7	1.0	0.04	
Vorland, WY	363	gross β	2.3	<0.1	0.5	
	34	⁹⁵ Zr	1.1	0.2	0.05	
	16	106 Ru	1.8	0.7	0.05	
	1	131 _I	0.2	0.2	0.001	
	1	^{1 32} Te	0.1	0.1	<0.001	
	1	140 Ba	0.3	0.3	0.001	
	0	¹⁴¹ Ce	ND	ND	ND	
· ·	11	144 Ce	1.2	0.8	0.03	

for the Air Surveillance Network

For gross beta, this number represents the number of days of the year that the sampler was operated. For radionuclides, this number represents the number of sampling days of the year during which the radionuclide was detected.

^b Since station operated only during the first 4½ months of the year the average was computed over 126 days instead of 365 days.

^c Since station didn't operate during months of March, April, May and most of June, the average was computed over 154 days instead of 365 days.

Table 2 1971 Summary of Background Radiation Doses for the Dosimetry Network

)n

Station	Мар	Measurement		ground	Dose (mrem/d)	Annual Background
Location	No.	Period	Max.	Min.	Avg.	Dose (mrem/a)
Adaven, NV	1	12/29/70 - 1/10/72	0.7	0.3	0.55	200
Alamo, NV	2	12/29/70 - 1/10/72	0.5	0.2	0.38	140
Ash Meadows, NV	3	12/30/70 - 1/5/72	0.5	0.3	0.38	140
Austin, NV	4	12/29/70 - 1/12/72	0.8	0.5	0.64	2 30
Baker, CA	5	12/28/70 - 1/5/72	0.5	0.3	0.37	140
Barstow, CA	6	12/28/70 - 1/5/72	0.5	0.3	0.45	160
Battle Mountain, NV	7	12/30/70 - 2/2/71	-	-	0.54 ^a	200
Beatty, NV	· 8	12/29/70 - 1/6/72	0.6	0.4	0.53	190
Beaver Dam Summit, UT	9	12/29/70 - 1/10/72	0.5	0.2	0.33	120
Big Pine, CA	10	12/29/70 - 1/6/72	0.5	0.3	0.41	150
Bishop, CA	11	12/29/70 - 1/6/72	0.5	0.3	0.42	150
Blue Eagle Ranch, NV	12	12/30/70 - 1/13/72	0.4	0.2	0.30	110
Blue Jay, NV	13	12/29/70 - 1/11/72	0.7	0.4	0.50	180
Butler Ranch, NV	14	12/29/70 - 1/10/72	0.4	0.2	0.28	100
Cactus Springs, NV	15	12/29/70 - 1/6/72	0.4	0.2	0.34	120
Caliente, NV	16	12/29/70 - 1/11/72	0.6	0.3	0.46	170
Carlin, NV	17	12/31/70 - 2/2/71	-	-	0.54 ^ª	200
Casey's Ranch, NV	18	12/30/70 - 1/11/72	0.4	0.2	0.34	120
Cedar City, UT	19	12/30/70 - 1/11/72	0.6	0.2	0.39	140
Clark Station, NV	20	12/29/70 - 1/11/72	0.6	0.3	0.51	190
Coyote Summit, NV	21	12/29/70 - 1/10/72	0.7	0.4	0.52	190
Currant, NV	22	12/30/70 - 1/13/72	0.5	0.3	0.41	150
Currant Maint. Sta., NV	23	12/30/70 - 1/13/72	0.5	0.3	0.41	150
Currie, NV	24	1/2/71 - 2/5/71	-	.	0.56 ^a	200
Death Valley Junct., NV	25	12/30/71 - 1/5/72	0.5	0.3	0.42	150
Desert Game Range, NV	26	12/29/70 - 1/6/72	0.4	0.2	0.33	120
Diablo Maint. Sta., NV	27	12729/70 - 1/10/72	0.7	0.4	0.54	200
Duckwater, NV	28	~1 2/30/70 - 1/13/72	0.5	0.3	0.39	140
Dunphy, NV	29	12/31/70 - 2/2/71	-	—	0.55 ^a	200
Elgin, NV	30	12/30/71 - 1/12/72	0.6	0.4	0.48	180
Elko, NV	31	12/31/70 - 2/2/71	-	-	0.49 ^a	180
Ely, NV	32	12/29/70 - 1/11/72	1.0	0.2	0.75	270 ^b
Eureka Maint. Sta., NV	33	12/29/70 - 1/12/72	0.6	0.3	0.41	150

 Table 2
 1971 Summary of Background Radiation Doses for the Dosimetry Network (Continued)

The second second second second

متشققتها أ

		(Continued)	•			4
Station Location	Map No.	Measurement Period		ground nt Rate Min.	Dose (mrem/d) Avg.	Annual Backgroun Dose (mrem/a)
Furnace Creek, CA	34	12/30/70 - 1/6/72	0.4	0.3	0.34	120.
Gardner Ranch, NV	35	12/30/70 - 1/13/72	0.6	0.4	0.52	190
Garrison, UT	36	12/29/70 - 1/12/72	0.5	0.3	0.37	140
Geyser Maint. Sta., NV	37	12/29/70 - 1/10/72	0.5	0.3	0.41	150
Goldfield, NV	38	12/30/70 - 1/11/72	0.7	0.4	0.54	200
Groom Lake, NV	39	12/30/70 - 1/10/72	0.4	0.2	0.33	120
Halleck, NV	40	12/31/70 - 2/3/71	-	-	0.53 ^a	190
Hancock Summit, NV	41	12/29/70 - 1/10/72	0.7	0.4	0.56	200
Hiko, NV	42	12/29/70 - 1/10/72	0.6	0.2	0.39	140
Hot Creek Ranch, NV	43	12/29/70 - 1/11/72	0.6	0.3	0.44	160
Independence, CA	44	12/29/70 - 1/6/72	0.5	0.3	0.42	150
Indian Springs, NV	45	12/29/70 - 1/6/72	0.8	0.3	0.60	220
Koynes, NV	46	12/29/70 - 1/10/72	0.6	0.3	0.41	150
Las Vegas (Placak), NV	47	12/31/70 - 1/12/72	0.4	0.2	0.30	110
Las Vegas (USDI), NV	48	12/31/70 - 1/7/72	0.4	0.2	0.29	110
Lathrop Wells, NV	49	12/29/70 - 1/5/72	0.6	0.4	0.49	180
Littlefield, AZ	50	12/29/70 - 1/10/72	0.5	0.2	0.41	150
Lockes Ranch, NV	51	12/30/70 - 1/13/72	0.5	0.3	0.41	150
Logandale, NV	52	12/29/70 - 1/10/72	0.5	0.1	0.36	130
Lone Pine, CA	53	12/29/70 - 1/6-72	0.5	0.4	0.48	180
Lida, NV	54	12/30/70 - 1/10/72	0.6	0.4	0.48	170
Lida Junction, NV	55	12/30/70 - 1/10/72	0.6	0.4	0.52	190
Lund, NV	56	12/29/70 - 1/11/72	0.5	0.3	0.36	130
Manhattan, NV	57	12/29/70 - 1/12/72	0.8	0.4	0.64	230
Mesquite, NV	58	12/29/70 - 1/10/72	0.5	0.2	0.37	140
Modena, UT	59	1 2/30/70 - 1/11/72	0.7	0.4	0.54	200
Montgomery Pass, NV	60 ~	12/30/70 - 1/6/72	0.7	0.3	0.52	190
Nevada Farms, NV	61	12/29/70 - 1/10/72	0.7	0.4	0.51	190
New Castle, UT	62	12/30/70 - 1/11/72	0.6	0.4	0.46	170
Nuclear Eng. Co., NV	67	12/30/70 - 1/6/72	0.7	0.4	0.58	210
Nyala, NV	68	12/30/70 - 1/11/72	0.6	0.2	0.39	140
Oasis, NV	69	12/31/70 - 2/1/71	-	-	0.53 ^a	190

Table 2

1971 Summary of Background Radiation Doses for the Dosimetry Network (Continued)

		· · · · · · · · · · · · · · · · · · ·		Background Dose			
Station Location	Map No.	Measurement Period	Equivale Max.	nt Rate Min:	(mrem/d) Avg.	Dose (mrem/a)	
ncha, CA	70	12/29/70 - 1/6/72	0.5	0.3	0.38	140	
.:rump, NV	71	12/31/70 - 1/4/72	0.5	0.2	0.36	130	
Creek Ranch, NV	72	12/29/70 - 1/10/72	0.6	0.4	0.52	190	
.:che, NV	73	12/30/70 - 1/11/72	0.5	0.2	0.37	140	
sen City Summit, NV	74	12/29/70 - 1/10/72	0.8	0.4	0.57	210	
undsburg, CA	75	12/29/70 - 1/6/72	0.4	0.2	0.37	140	
sed Ranch, NV	76	12/29/70 - 1/10/72	0.7	0.3	0.48	180	
ligecrest, CA	77	12/29/70 - 1/6/72	0.5	0.3	0.40	150	
und Mountain, NV	78	12/29/70 - 1/12/72	0.8	0.5	0.68	250	
y Valley, NV	79	1/1/71 - 2/4/71	-	-	0.41 ^a	150	
:.George, UT	80	12/29/70 - 1/11/72	0.4	0.2	0.33	120	
otty's Junction, NV	81	12/30/70 - 1/10/72	0.6	0.3	0.52	190	
elbach Ranch, NV	82	12/29/70 - 1/5/72	0.7	0.4	0.53	190	
hell Oil Site, NV	83	12/30/70 - 1/13/72	0.4	0.2	0.32	120	
hoshone, CA	84	12/31/70 - 1/4/72	0.5	0.3	0.42	150	
ite C, NV	85	12/29/70 - 1/11/72	0.7	0.4	0.51	190	
pringdale, NV	86	12/30/70 - 1/5/72	0.6	0.4	0.52	190	
pring Meadows, NV	87	12/30/70 - 1/5/72	0.4	0.3	0.35	130	
unnyside, NV	88	12/29/70 - 1/11/72	0.5	0.3	0.38	140	
mpiute, NV	89	12/29/70 - 1/10/72	0.7	0.3	0.46	170	
onopah, NV	90	12/29/70 - 1/11/72	0.8	0.4	0.66	240	
mopah Airport, NV	91	12/29/70 - 1/11/72	1.0	0.4	0.56	200	
mopah Test Range, NV	92	3/2/71 - 1/11/72	0.6	0.4	0.49	180	
in Springs Ranch, NV	93	12/29/70 - 1/10/72	0.7	0.4	0.49	180	
Sine, NV	94	12/30/70 - 1/11/72	0.6	0.3	0.50	180	
lley of Fire, W	95	12/29/70 - 1/10/72	0.5	0.3	0.39	140	
Irm Springs, NV	96	12/29/70 - 1/11/72	1.4	0.5	0.83	300 [°]	
rm Springs Ranch, NV	97	12/29/70 - 1/10/72	0.4	0.2	0.30	110	
lls, NV	98	1/1/71 - 2/2/71	· –	-	0.57 ^a	210	
ndover, UT	99	12/31/70 - 2/1/71	-	-	0.36 ^a	130	

Average is only for one monthly measurement period; station was terminated in February.

b = Elevated value is due to 137Cs check source near TLD station. The 1970 value was 150mrem/ C = Elevated value due to nearby stream containing ²²⁶Ra and daughters.

Personnel TLD's

Personnel Location	Map No.	Measurem Issue Date	ent Period Collection Date	TLD Readings (mrem)
Blue Jay, NV	13	02/03/71 -	03/03/71	52
		06/09/71 -	07/15/71	190
		08/10/71 -	09/09/71	150
		10/05/71 -	11/16/71	250
Beatty, NV	8	03/11/71 -	04/14/71	30,000

Station TLD's

Station	Map	Measu	rem	ent Period	TLD	Readi	.ngs
Location	No	Issue Dat	e	Collection Date	(mrem)		_
Nuclear Eng.		•					
Co., NV	67	12/30/70	-	02/03/71	20	23	490 ^a
•		02/03/71	-	03/09/71	20	12	2 3 0 0 ^a
	÷	04/15/71	-	05/11/71	11	73 ^a	90 ^a
		05/11/71	-	06/09/71	17	$\frac{1}{17}$	44a
		10/05/71	· 🕳	11/18/71	23	1200 ^a	$\frac{90^{a}}{44^{a}}$ 1200 ^a
		12/02/71	-	01/06/72	7200 ^a	140 ^a	16
Tonopah, NV	90	09/08/71	-	10/04/71	<u>34</u>	17	19

a = Anomalous values

ë

สามารายกันเรา

Type of Analysis	(Analytical Equipment	Counting Period (min)	Analytical Procedures	Sample Size (liter)	Detection Limit (10 ⁻⁹ uCi/ml or pCi/l) ^c
Gamma Spectroscopy	Gamma spec- trometer with 4-inch-thick by 4-inch diameter NaI (Tl-activated) crystal with input to 200 channels (O-2 MeV) of 400-channel, pulse-height analyzer.	10-40	Radionuclide concentra- tions quan- titated from gamma spec- trometer data by com- puter using the matrix technique.	3.5	Generally 10 for most com- mon fallout radionuclides in a simple spectrum.
⁸⁹ Sr- ⁹⁰ Sr	Low-background- thin-window, gas-flow pro- portional counter with a 2.25" diameter window (80 µg/cm).	50	Chemical separation by ion ex- change. Separated sample counted successively; activity cal- culated by simultaneous equations.	1.0	⁸⁹ Sr ≈ 5 ^a ⁹⁰ Sr ≈ 2 ^a
зн	Automatic liquid scintillation counter with output printer.	100	Sample pre- pared by distillation.	0.005	≈ 400 ^{ab}
238-239 Pu, 234 ;235,238 U	Alpha spectrometer with 45 mm ² , 300 u depletion depth silicon surface ba rier detectors ope ated in vacuum cha bers.	m 1400 ar-	Sample is digested with acid, separated by ion exchange electroplated on stainless steel planchet and counted by alpha spectro- metry.		2x10 ⁻¹¹

Table 4 Analytical Procedures for Milk and Water

- Table 4 Analytical Procedures for Milk and Water (cont'd)

Type of Analysis	Analytical Equipment	Counting Period (min)	Analytical Procedures	Sample Size (liter)	Detection Limit (10 ⁻⁹ µCi/m1 or pCi/1) ^c
gross U	Turner fluoro- meter		Sample is fused into a pellet with Na-K flux and the fluor- escence is de- termined under ultraviolet light.	2.5x10 ⁻⁴	≈ 0.001µg/ml
gross alpha gross beta	Low-level end window, gas flow proportional counter with a 2 ¹ / ₄ " diameter window (80µg/cm ²)	` 50	Sample eva- porated; residue count- ed.	0.2	$\begin{array}{c} \alpha \approx 2^{a} \\ \beta \approx 2^{a} \end{array}$

^aThe detection limit for a given sample is defined as the 2-sigma counting error when the measured concentration is < the 2 sigma counting error.

^bThe detection limit for samples analyzed during July and thereafter was s320pCi/1.

^CExcept gross U which is given as μ g/ml.

Table 5

Salo

n,

/m1 12____

3/ml

1971 Summary of Analytical Results for the Milk Surveillance Network

	• •		•				
			No.	Type of		activity (
Sampling	Мар	Sample	of	Radio-	10-9µC	i/ml or po	Ci/1
Location	No.	Type ^a	Samples	activity	Cmax	Cmin	Cavy
Bishop, CA Sierra Farms	1	11	12	137 _{Cs}	20	<10	<10
	-			⁸⁹ Sr	9	<2	<5
				905r	4	<1	<2
				3 _H	NA	NA	NA
Hinkley, CA Bill Nelson Dairy	2	12	12	137 _{Cs}	<10	<10	<10
DIII MEISUM Dally	-			⁸⁹ Sr	4	<1	<4
				⁹⁰ Sr	3	<1	<2
				3 _H	NA	NA.	NA
				· ·			
Independence, CA Smith Ranch	3	13	7	137 _{Cs}	10	<10	<10
	5		•	89Sr	5	<2	<4
•.				90Sr	3	<2	<2
				з _Н	NA	NA	NA
Dlancha, CA ^b							
Hunter Ranch	4	13	2	¹³⁷ Cs	<10	<10	<10
			· ·	⁸⁹ Sr	<5	<2	<2
				. ^{.90} Sr	3	<1	<2
•				3 _H	NA	NA	NA
Alamo, NV Vright Dairy	5	12	12	137 Cs	20	<10	<1(
aligne Datiy				⁸⁹ Sr	10	<2	</td
				90Sr	5	<2	<
				з _Н	NA	NA	NA
		~					
Austin, NV Friple T Ranch	6	~ 13	11	137 _{Cs}	40	10	<20
				⁸⁹ Sr	7	<2	</td
				90Sr	7	<1	. <
				эн	1300	410	760

Table 5 1971 Summary of Analytical Results for the Milk Surveillance Network

SAL BORNES

:2

Sampling Location	Map No.	Sample Type ^a	No. of Samples	Type of Radio- activity	Radioactivity Conc. 10 ⁻⁹ uCi/ml or pCi/1 C _{max} C _{min} C _{ave}		
ustin, NV				137 _{Cs}			
Young's Ranch	7	13	1		10	-	-
				⁸⁹ Sr	NA	-	-
				90 Sr	NA	· –	-
				зн	NA	-	-
Belmont, NV Pine Creek Ranch	8	13	10	137 _{Cs}	70	. 30	50
	•			89Sr	9	<4	<5
				90Sr	10	<1	<7
	•			3 _H	NA	NA	NA
eowawe, NV ^b							
Friesen Ranch	9	13	1	137 _{C8}	20	-	-
		•	· .	⁸⁹ Sr	<5	-	-
				⁹⁰ Sr	6	· • ·	-
				³ H	NA	-	-
Caliente, NV Young Ranch	10	13	8	137 _{Cs}	10	<10	<10
			-	⁸⁹ Sr	<5	<2	<4
				⁹⁰ Sr	3	<1	<2
				3 _H	NA	NA	NA
urrant, NV			•	137 Ca			
Blue Eagle Ranch	11	13	8		40	<10	<20
				⁸⁹ Sr	<5	<3	<5
				90Sr -	7	2	<4
				3H	NA	NA	NA
Currie, NY ^D Bill Leer Rench	24	13	2	137 _{Cs}	20	10	20
				⁸⁹ Sr	<5	<5	<5
				⁹⁰ Sr	8	7	<8
				3 _H	NA	NA	NA

and the second second

Table 5 1971 Summary of Analytical Results for the Milk Surveillance Network

			No.	Type of	Radioactivity Conc. 10 ⁻⁹ µCi/ml or pCi/l			
Sampling ,	Мар	Sample	of.	Radio-	10 ⁹ μC:	i/ml or p	Ci/l	
Location	No.	Type ^a	Samples	activity	Cmax	Cmin	Cavg	
Deeth, NV ^D Lotspeich Ranch	13	13	2	137 _{Cs}	20	20	20	
•				⁸⁹ Sr	<5	<5	<5	
				90Sr	6	4	5	
			•	³ H	NA	NA	NA	
Duckwater, NV Halstead Ranch	14	13	11	137Cs	40	<10	<20	
Halscead Kanch	14	13	77	⁸⁹ Sr	23	<2	<7	
				⁹⁰ Sr	6	<1	<3	
				³ Н	NA	NA	NA	
Elko, NV ^b		•		100				
Anchor S Ranch	15	13	1	137 _{Cs}	<10	-	-	
				⁸⁹ Sr	<5	-	-	
				90Sr	3	-	-	
				зн	NA	-	-	
Eureka, NV Martin Ranch	16	13	11	137 Cs	40	20	30	
				⁸⁹ Sr	26	<3	<8	
•				⁹⁰ Sr	16	4	9	
				³ H	NA	NA	NA	
Hiko, NV		10	. 12	137 _{Cs}	10	<10	<10	
Schofield Dairy	17	12	14	⁸⁹ Sr	12	<2	<4	
·				⁹⁰ Sr	4	<2	<3	
				305г 3н			<420	
		~		-8	1000	290	<420	
Indian Springs, NV Cambern Ranch	18 🗸	⁻ 13	2	137 _{C8}	<10	<10	<10	
		-		⁸⁹ Sr	4	<2	<3	
				90Sr	3	<1	<2	
		:		3 _H	NA	NA	NA	

. ...

Sampling	Мар	Sample	No. of	Type of Radio-	Radio 10- ⁹ uC	activity i i/ml or p	Ci/1
Location	No.	Type ^a	Samples	activity	Cmax	Cmin	Cav
Indian Springs, NV Indian Springs Ranch	19	13	7	137 _{Cs}	<10	<10 '	. <10
THAT BU ON LINES WENCH		23	•	⁸⁹ Sr	<5	<10	<4
				. ⁹⁰ Sr	3		-
				3 _H		<1	<2
				-n	NA	NA	NA
Las Vegas, NV Anderson Dairy	20	11	12	137 _{Cs}	<10	<10	<10
MUELDUM DULLY	20			⁸⁹ Sr	5	<2	<4
				⁹⁰ Sr	3	<2	<2
				3 _H	NA	NA	NA
			x	••	AA A	1161	11A
Las Vegas, NV Arden Dairy	21	11	12	137 _{Cs}	<10	<10	<10
				⁸⁹ Sr	<5	<2	<5
•				⁹⁰ Sr	3	<1	<2
				³ H	NA	NA	NA
Las Vegas, NV							
LDS Dairy Farms	22	12	12	137 _{Cs}	<10	<10	<10
				⁸⁹ Sr	3	<1	<3
				⁹⁰ Sr	7	<1	<2
Χ.				3 _H	420	<290	<360
Lathrop Wells, NV							
Eastman Ranch	23	13	7	137 _{Cs}	<10	<10	<10
				⁸⁹ Sr	<5	<2	<5
				90Sr	<3	<2	<2
				З _Н	NA	NA	NA
Lathrep Wells, NV	~	•					
Ellis Ranch	24	13	1	137 _{Cs}	<10	-	-
	~		•	⁸⁹ Sr	3	-	
				⁹⁰ Sr	2	-	-
•				з _Н	NA	_	-

70

ne:

and the second

٢

1

5 1971 Summary of Analytical Results for the Milk Surveillance Network

Sampling	Мар	Sample	No. of	Type of Radio-	Radio	activity i/ml or p	Conc.
Location	No.	Type ^a		activity	C _{max}	C _{min}	Cavg
Lathrop Wells, NV Mills Ranch	25	13	2	137 _{Cs}	<10	<10	<10
MIIIS KANCH	23	T 3 .	4	⁸⁹ Sr	<10		
				90Sr		<1	<2
•					9	4	<7
				ЗН	NA	NA	NA
Lida, NV Lida Livestock	26	13	8	¹³⁷ Cs	20	<10	<10
			•	⁸⁹ Sr	<5	2	<4
				⁹⁰ Sr	7	2	4
	. .			3 _H	NA	NA ·	NA
Logandale, NV Vegas Valley Dairy	27	12	10	137 _{Cs}	<10	<10	<10
				⁸⁹ Sr	<5	<2	<4
. ,				90Sr	5	<1	<3
				3 _H	NA	NA	NA
Lund, NV			10	¹³⁷ Cs	20	.10	
McKenzie Dairy	28	12	12	89Sr	20	<10	<10
					<5	<2	<4
•				90Sr	6	3	<4
				³ H	1100	<290	<440
McGill, NV Larsen Ranch	29	13	4 °	¹³⁷ Cs	10	<10	<10
	27		•	⁸⁹ Sr	-5	2	<4
				90Sr	4	1	<2
				зн 3н	NA	NA	NA
		,		**	e tê û		0100
Mesquite, NV Hughes Bros. Dairy	30	~ 12	11	137Cs	20	<10	<10
		r		⁸⁹ Sr	<5	<2	<4
				⁹⁰ Sr	3	<1	<2
				3 _H	520	<320	<370

Sampling	Мар	Sample	No. of	Type of Radio-	Radio 10-9 _u C	activity i/ml or p	Ci/1
Location	No.	Type ^a	Samples	activity	C _{max}	Cmin	Cav
Moapa, NV Searles Dairy	31	12	12	137 _{Cs}	10	<10	<10
•				⁸⁹ Sr	<5	<2	<4
				90Sr	4	<2	<3
				³ Н	NA	NA	NA
Nyala, NV Sharp's Ranch	32	13	12	137 _{Cs}	20	<10	<10
•				⁸⁹ Sr	6	1	<4
	,			90 Sr	5	<2	<3
				з _Н	720	<310	- 400
Pahrump, NV							
Wens Ranch	33	13	12	137 CS	10	<10	<10
				⁸⁹ Sr	<5	<1	<3
				⁹⁰ Sr	2	<1	<1
-				ЭН	NA	NA	NA
Panaca, NV							
Lee Ranch	34	13	12	¹³⁷ Cs	40	<10	<20
				⁸⁹ Sr	27	<2	<7
				90Sr	12	<1	<4
				3н	NA	NA	NA
Round Mtn, NV							
Carl Berg Ranch	35	13	8	137 Cs	20	<2	<10
			•	⁸⁹ Sr	<5	4	<4
		-		⁹⁰ Sr	6	<2	<3
				ЗН	NA	NA	NA
Shoshone, NV			•	137 _{Cs}		.10	.10
Lirkeby Ranch	36	13	9	⁸⁹ Sr	20	<10	<10
					<5	<2	<4
· · ·		•		⁹⁰ Sr 3	4	2	<3
		•		3н	NA	· NA	NA

Sampling	Мар	Sample	No. of	Type of Radio-	10 ⁻⁹ µC:	activity (i/ml or p(Ci/l
Location	No.	Type ^a	Samples	activity	Cmax	Cmin	Cav
Springdale, NV McCurdy Ranch	37	13	12	¹³⁷ Cs	20	<10	<10
Accurdy Manch				89Sr	<5	<1	<4
				90Sr	4	<1	<2
·				з _Н	NA	NA	NA
				131 ₁	730	<10	<30
Wells, NV ^b Willow Creek Ranch	38	13	2	137 _{Cs}	10	<10	<10
IIIOW CIGER Namen	50		_	⁸⁹ Sr	<5	<5	< 5
				⁹⁰ Sr	5	4	5
•		·		зн	NA	NA	NA
Garrison, UT Gonders Ranch	39	13	8	¹³⁷ Cs	20	<10	<10
GUILLEIS NAMEN				89Sr	<5	<2	<4
				90Sr	3	<2	<2
			*	з _Н	NA	NA	NA
Newcastle, UT Newcastle Dairy	40	12	11	137 _{Cs}	20	<10	<1(
Newcastle Daily	40			⁸⁹ Sr	5	<2	</td
				⁹⁰ Sr	4	<1	<2
				3 _H	NA	NA	NA
St. George, UT	<i>,</i> •	••	11	137 _{Cs}	20	<10	<10
R. Cox Dairy	41	12	ŦŦ	⁸⁹ Sr	20 <5	<2	
				90.Sr	5	<1	<;
		-		3ч.5г 3н	S NA	NA NA	NA
				-11	NA	NA	

b = Discontinued

5

NA = Not Analyzed

	, ¹ ,				•			
0 1 +	Mar	6 1 -	No.	Type of		activity		
Sampling Location	Map No.	Sample Type ^a	of Samples	Radio-		Ci/ml or C _{min}	pCi/l C	% of
Bishop, CA	<u>NO.</u>		Janpies	activit	y max	-1111	Cavg	Guid
Fish & Game Office	1	24 ^d	12	gross a	4	<2	<2	<7
· ·				gross B	7	<2	<4	<13
		ı		³ Н	NA	NA	NA	-
Bishop, CA Owens River 3 mi E.	2	22	12	gross a	7	2	<4	<13
Wens River 5 mi E.	4	66	12	-				
				gross β ³ Η		.15	7	23
				Ч	NA	NA	NA	-
Death Valley Jct, CA Lila's Cafe	3	24 ^d	12	gross a	10	2	<7	<23
rite 2 Agré		· · ·	**	-		2	11	
				gross β ³ Η				37
				~H	<400	<300	<360	<]
Furnace Creek, CA		••						
Pond	4	21	12	gross a		3	<5	<17
				gross B	17	8	10	33
				³ Н	NA	NA	NA	-
Furnace Creek, CA		Ь						
Visitors Center	5	24 ^d	12	gross a	. 7	<2	<4	<11
				gross ß	13	8	10	33
			•	3Н	NA	NA	NA	-
Hinkley, CA								
Bill Nelson Dairy	6	23 ^d	12	gross a	14	<3	<9	<30
				gross ß	17	<2	<8	<27
				зН	NA	NA	NA	-
Little Lake, CA Little Lake Ranch	7	~ 21	9	gross a	25	3	11	37
	~	•		gross B	27.	6	17	51
				³ Н	NA	NA	NA	-
Lone Pine, CA	-		••		. .		. -	_
Diaz Lake	8	21	12	gross a		<2	<15	<50
				gross B		9	18	60
				³ H	NA	NA	NA	-

of ide

<7 د_:

13 .) -

23 1 <1

1

13 _3

<50 იე -

1971 Summary of Analytical Results for the Water Surveillance Network Table 6

		6.	No.	Type of		activity C		
Sampling	Мар		of	Radio-	10 ⁻⁹ μ(Ci/ml or p	C1/1	% of
Location	No.	Typeª	Samples	activity	y C _{max}	Cmin	Cavg	Guide
Lone Pine, CA Forest Ranger Station	9	24 ^d	12	gross a	5	<2	<2	<7
				gross B	9	<2	<4	<13
•				3 _H	NA	NA	NA	-
Olancha, CA		- 4						
Haiwee Reservoir	10	21	12	gross a	9	3	6	20
				gross β	10	4	7	23
				³ Н	NA	NA	NA	-
Ridgecrest, CA City Hall	11	24đ	12		8	<2	<3	<10
City Hall	** .	27-	**	gross a	. 6	<2	. <4	<13
				gross β ³ H	NA.	NA	NA	<12
				-H	NA	NA	NA	
Shoshone, CA Chevron Service Sta.	12	24 ^d	12	gross a	10	<2	<6	<20
Chevion Service Sta.	12	27		gross β	22	15	19	63
				gross ⊳ ³ H	NA	NA NA	NA	
				⁻ H	MA		in.	. –
Adaven, NV Simpson Ranch	13	22 ^d	12		9	3	6	20
Simpson Kanen	10	66	75	gross a	9	2	. <4	<13
				gross β ³ Η	9 NA	NA	NA	
			•	-8	na.		NA	-
Alamo, NV Butler Ranch	14	27 đ	12	gross a	8	2	<5	<17
				gross ß	10	<2	<5	
				з _Н	NA	NA	NA	
								·
Alamo, NV Pahranagat Lake	15	21	12	gross a	41	17	27	90
-		ĸ		gross β	90	23	35	117
		*		з _Н	NA	NA	NA	-
Alamo, NV								
Wright Dairy	16	24 ^d	12	gross a	9	<2	<5	<17
			•	gross β	21	10	13	43
				ЗН	NA	NA	NA	-
,								

6.1 A ...

Sampling	Мар	Sample	No. of	Type of Radio-	Radio	activity Ci/ml or	Conc.	% of
Location'	No.	Type ^a		activity	Cmax	C _{min}	Cavg	∕₀ or Guide
Ash Meadows, NV							<u> </u>	Curde
Ash Meadows Lodge	17	23 ^d	12	gross a	11	5	<7	<23
				gross ß	24	13	18	60
				3 _H	<400	<310	<360	<1
Ash Meadows, NV						,		
Ash Meadows Pond	18	21	10	gross a	18	3	10	33
				gross B	30	11	16	53
• •				3 _H	NA	NA	NA	-
Austin, NV	,							
Chevron Service Sta.	19	24 ^d	11	gross a	48	<3	<28	<93
				gross B	26	< 3	<17	<57
		·		³ Н	NA	NA	NA	-
ь								
Battle Mt, NV ^b Glen's Chevron Sta.	20	24 ^d	2	gross a	4	<2	<2	<7
				gross ß	6	5	5	17
				3 _H	NA	NA	NA	/⊥
Beatty, NV Richfield Ser. Sta.	21	24 ^d	12	gross a	20	3	<11	<33
Attnifeld beli bedi	. **	24		-				
· · · · · ·				gross β ³ Η	17	8	12	40
• •				-H	<400	<330	< 370	<1
Blue Diamond, NV		24 ^d			,	•		
Post Office	22	24	11	gross a	6	<2	<4	<13
				gross B	12	<2	< 4	<13
				³ H	<400	<290	< 330	<1
Blue Jay, NV								
lighway Maint. Sta.	23	<23 [₫]	12	gross a	4	<2	< 3	<10
	~			gross β	10	3	5	17
				³ Н	NA	NA	NA	÷
Cactus Springs, NV		•						
Aobile Ser. Sta.	24	24 ^d	12	gross a	6	<2	< 3	<10
				gross B	4	<2	< 3	<10
				Stoss b	•			

Table 6 1971 Summary of Analytical Results for the Water Surveillance Network

Sampling	Map	Sample Ture a	No. of	Type of Radio-		activity Ci/ml or C _{min}	pCi/l	% of
	No.	Туреа	Samples	activity	max	min	C _{avg}	Guide
Caliente, NV Agriculture Ext. Sta.	25	24 ^d	12	gross a	12	2	<7	<23
				gross B	10	<3	<5	<17
•				³ H	NA	NA	NA	-
Caliente, NV	76	22	12	gross a	18	4	<8	<27
Meadow Valley Wash	2 6		14	-				
·				gross β ³ Η	40	6	18	60
· · · ·				° H	NA	NA	NA	-
Carlin, NV ^b Carlin Conoco Sta.	27	24 ^d	2	gross a	5	4.	5	17
Carlin Conoco Sta.	21	24	2	gross β	7	6	7	23
				дгова р 3 _Н	NA	NA	NA	22
					MA	INA	112	-
Clark Sta., NV Five Mile Ranch	28	27 ^d	12	gross a	<4	<2	.<3	< 10
				gross ß	10	<3	<7	<23
				3 _H	NA	NA	NA	
				-				
Coyote Summit, NV Sand Springs Well	29	23	12	gross a	47	<3	<14	<47
F8-,				gross B	24	5	11	37
				алон – 3 _Н	NA	NA	NA	-
				-				
Currant, NV Currant Poné	30	21	12	gross a	22	. 6	12	40
				gross B	13	\$	<6	<20
				ароссо 2 3 _Н	NA	NA	NA	-
				••				
Currant, NV Currant Ranch Cafe	31	24 ^d	12	gross a	14	6	8	2
Currant Manen Care				gross ß	12	<3	<6	< 20
·		*		зн.	NA	NA	NA	
. 1				•				
Currie, NV ^b Kitt Lear Ranch	32	23 ^d	2	gross a	11	7	9	3
Kitt Dear Muitin			-	gross ß	13	8	11	3
				3 _H	NA	NA	NA	

Semal fac	Man	51-	No.	Type of	Radio	activity C	onc.	
Sampling	Map	Sample	of	Radio-	_10=°µ0	Ci/ml or p	Ci/l	% o;
Location	No.	Type ^a	Samples	activity	Cmax	Cmin	Cavg	Guid
Diablo, NV . Highway Maint. Sta.	33	23 ^d	11	gross a	6	<2		
itghway maine. Sea.	55	4 -	44	-			< 3	<1
		•		gross β	10	<3	<6	<2
				зĦ	NA	NA	NA	
Diablo, NV								
Reed Ranch	34	21	12	gross a	37	8	23	7
				gross B	85	8	30	10
				3 _H	NA	NA	NA	10
				-		••••••	****	
Elgin, NV Nater Tower	35	24 ^d	12		19	2	0	-
Ater lower	22	24	12	gross a	13	2	9	3
· .				gross β	15	6	10	. 3
				³ Н	NA	NA	NA	
Elko, NV ^b		-						
Phillips 66 Truck Stop	36	24 ^d	2	gross a	13	11	12	4
-				gross β	20	20	20	6
				³ Н	NA	NA	NA	U
				8	NA.	in a	AN	
Ely, NV		b, _	- •		_			
Thevron Ser. Sta.	37	24 ^d	12	gross a	7	2	4	1
				gross ß	6	<2	<4	<1
			•	³ Н	NA	NA	· NA	
lly, NV								
Comins Lake	38	21	7.	gross a	21	<6	<11	<3
	•••		•	gross β	64	- 19	45	15
				3H	NA			
				" ם	NA.	NA	NA	
Lureka, NV		b			_			
Chevron Ser. Sta.	39	24 ^d	11	gross a	8	<3	<4	<1
		c		gross β	13	<2	<6	<2
	_			з _Н	NA	NA	NA	
·····	* .							
lendale, NV hevron Ser. Sta.	40	24 ^d	12	gross a	11	4	<5	<1
deviou valt tiat	74	•		•				
		•		gross β	13 `	7	10	
				3 _H ·	NA	NA	NA	

78

R

SEL

-

Table 6 1971 Summary of Analytical Results for the Water Surveillance Network

Sampling	Мар	Sample	No.	Type of Radio-		ictivity Co i/ml or p(% of
Location	No.	Type ^a			C _{max.}	Cmin	Cavg	Guid
Glendale, NV Muddy River	41	22	12	gross a	14	<2	<8	<27
•				gross ß	33	11	18	60
		· .		³ Н	NA	NA	NA	
Goldfield, NV		- 1			1.0	.0	.f	<2(
Alkali Springs	42	21	11	gross a	12	<2	<6	
				gross β ³ Η	41	7	24	8
				°H	NA	NA	NA	
Goldfield, NV Chevron Ser. Sta.	43	24 ^đ	12	gross a	5	<2	<4	<1
				gross β	6	2	<4	<1
		,		3 _H	NA	NA	NA	
C								
Hawthorne, NV ^C Walker Lake	44	21	4	gross a	24	<2	<9	<3
				gross B	340	110	280	93
.				³ Н	NA	NA	NA	
liko, NV		د د						
Crystal Springs	45	27 ^d	12	gross a	11	5	8	2
				gross ß	16	5	8	2
			•	³ Н	NA	NA	NA	
liko, NV Schofield Dairy	46	24 ^d	12	ģross a	40	20	26	٤
cholleld Sully		•		gross ß	37	26	29	ç
				аносо р ³ н	NA	NA	NA	
Indian Springs		•						
Thevron Ser. Sta.	47	24 ^d	12	gross a	7	<3	<5	<]
		~		gross B	7	<2	<4	<]
				ЗН	<400	<290	<360	
as Vegas, NV	48	23 ^d	12	gross a	5	2	<4	<]
Cal-Nev Jet Fuels	40	23	14	gross α gross β	8	<3	<4	<]
·				gross p ³ H	0	~ >	~4	`.

79

وجمعتها الجرم

Sampling	Мар	Sample	No. of	Type of Radio-	10-	ioactivity ⁹ µCi/ml or	pCi/l	% of
Location '	No.	Type ^a	Samples	activit	y ^C max	Cmin	Cavg	Guide
Las Vegas, NV Cunningham Ranch	49	23 ^d	12	gross a	. 11	<2	. <4	<13
				gross ß	7	<2	< 3	<10
				³ H	<400	<280	< 360	<1
Las Vegas, NV Craig Ranch Golf Crse.	50	23 ^d	12	gross a	. 8	<2	<5	<17
				gross ß	7		<4	<13
•				³ Н	, <400	_	<360	<13
Las Vegas, NV		4						
Desert Game Range	51	23 ^d	12	gross a		_	<6	<20
				gross ß	. 8	3	5	<17
				з _Н	<400	<290	<370	<1
Las Vegas, NV Desert Game Rge. Pond	52	21	11	gross a	7	2	<4	<13
-				gross β	5		<3	<10
				3 _H	<400		<380	<1
Las Vegas, NV								
Francis Residence	53	23 ^d	4	gross a			<5	<17
			,	gross B	6	<3	<4	13
· · ·			•	³ Н	<340	<330	<340	<1
Las Vegas, NV ^D Frommer Residence	54	23 ^d	7.	gross a	10	2	4	13
				gross B	4	<2	<3	<10
				3 _H	<400		<390	<1
Las Vegas, NV		b, a						
Lab II WERL	55	~ 24 ^d	12	gross a		<4	<5	<17
	~			gross ß			<6	<20
				³ Н	1400	<400	<840	<1
Las Vegas, NV Lake Mead Vegas Wash	56	21	12	gross a	7	<2	<5	<17
-				gross β	11		9	30
				3 _H	1500		1100	<1

Table 6 1971 Summary of Analytical Results for the Water Surveillance Network

of	Sampling	Мар	Sample	No. of	Type of Radio-	Radioactivity Conc. 10 ⁻⁹ µCi/ml or pCi/1			% of
ide	Location	No.	Туреа	Samples	activity	Cmax	C _{min} .	Cavg	Guide
13	Las Vegas, NV LDS Dairy Farms	. 57	24 ^d	12	gross a	13	<2	<7	<23
5					gross ß	18	13	15	50
					³ H	<400	<310	<360	<1
,	Las Vegas, NV Lloyd Ranch	58	2 3 ^d	12	gross a	10	2	<6	.20
		50	<u> </u>		gross β				<20
					3H	11	2	6	20
					, ŭ	<400	<310	<370	< 1
	Las Vegas, NV LV Water Dist. Well 28	59	24 ^d	. 12	gross a	6	<2	< 3	< 10
					gross β	8	<2	<4	<13
			• .		а 2 3 _Н	<400	<290	< 360	.<1
							1250	100	. ~ ±
	Las Vegas, NV Municipal Golf Crse.	60	23	12	gross a	5	<2	<4	<13
			•		gross ß	6	<2	< 3	<10
					зн	<400	<290	< 360	<1
	Las Vegas, NV							·	
	Tule Springs	61	2 3 d	12	gross a	7	<3	<4	<13
					gross B	7	<2	< 4	<13
					³ H	<400	290	< 360	<1
	Las Vegas, NV Tule Springs Pond	62	21	12	gross a	9	<2	< <6	<20
	rere obrimba rong		• • •	**	gross β	5	2	<4	<13
					3H	NA	NA		<12
					'n	NA	MA	NA	-
	Las Vegas, NV					•	,	,	
	Vegas Estates	63	234	12	gross a	9	4	<6	<20
			K		gross β	17	10	13	43
			••• .		³ Н	<400	<300	< 360	<1
	Lathrop Wells, NV	64	24 ^d	12		<4	<2	< 3	<10
	Texaco Ser. Sta.	04	24	14	gross a		<2	- <3	<10
		•			gross β	6			
	· •				3 _H	<400	<320	<360	<1
1				81					

CLUB.

كالأشكارويت

Real Concerns of

					·			
			No.	Type of		activity		
Sampling	Мар	Sample	of	Radio-	_10 ⁻⁹ μ(Ci/ml or	pCi/l	% of
Location	No.	Type ^a	Samples	activit	y ^C max	C _{min}	Cavg_	Guid
Lida, NV		e d					•	
Lida Livestock	65	24d	12	gross a	8	2	<4	<13
			÷	gross ß	6	<2	<4	<13
				3 _H	NA	NA	NA	-
Lida, NV								
Pond at Storage Tank	66	21	9	gross a	. 7	<2	<4	<13
				gross ß	11	<3	<6	<20
				³ H	NA	NA	r pCi/1 Cavg <4 <4 <4 <6 NA <5 13 NA <5 13 NA <5 <13 NA <15 <7 NA 17 34 NA <15 <7 NA <15 <7 NA <15 <7 NA <15 <7 NA <15 <7 NA <15 <7 NA <17 <17 <17 <17 <17 <17 <17 <17 <17 <17	-
Lida Jct, NV		e.			·			
Cafe Garage	67	23 ^d	12	gross a	11	<2	PT pCi/1 Cavg <4	<17
				gross β	17	3		43
· ·				3 _H	NA	NA		-
Lund, NV		د						
Gardner Grocery	68	23 ^d	12	gross a	9	3	5	<17
				gross β	6	<2	3 <6	<13
				³ Н	NA	NA		-
Manhattan, NV								
Manhattan Trading Post	69	24d	12	gross.a	24	4	<15	<50
				gross B	13	<2	<7	<23
			•	³ Н	NA	NA	NA	-
Manhattan, NV								
Seyler Reservoir	70	21	7	gross a	26	4	17	57
			•	gross B	73	10	<pre>c pCi/1 Cavg <4 <4 <4 <4 <6 NA <5 13 NA <5 13 NA <5 <13 NA <5 <13 NA <15 <7 NA 17 34 NA <15 <7 NA <15 <7 NA <15 <7 NA <15 <7 NA <17 34 NA <17 5 <17 8 4 8 4 8 4 5 5 13 8 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</pre>	113
				з _Н	NA	NA	NA	-
Mercury, NV								
Area 51	71	≁ 24 ^d	12	gross a	6	<2	< 3	<10
	~			gross B	6	<2	<4	<13
				³ Н	· NA	NA	NA	-
Moapa, NV								
Pederson Valley View	72	24 ^d	12	gross a	8	4	<6	<20
Rch.				gross ß	15	7	11	37
				³ Н	NA	NA	NA	-
			82			×		
			~2					

Table 6

1971 Summary of Analytical Results for the Water Surveillance Network

Sampling	Мар	Sample	No. of	Type of . Radio-	~	ctivity Ci/ml or		% of
Location	No.	-	Samples	activity	~	Cmin	Cavg	Guide
Mt. Charleston, NV Kyle Canyon	73	24 ^d	12	gross a	3	<2	<2	<7
				gross B	4	<2	<2	<7
			т	зн	<400	<330	<370	<1
Mt. Charleston, NV	- ,				•		,	_
Kyle Canyon Pond	74	21	8	gross a	3	<2	<2	<7
				gross β	64	8	20	67
		•		зн	NA	NA	NA	-
Nyala, NV Sharp's Ranch	75	23 ^d	12	gross a	6	<2	<3	<10
Silerp 5 Kallen		23	**	gross β	14	<2	<4	<13
				3H	NA	NA	NA	-
b								
D asis, NV ^b Chevron Ser. Sta.	76	23 ^d	2	gross a	5	3	4	13
······································				gross B	6	2	4	13
				³ Н	NA	NA	NA	-
Pahrump, NV								
Texaco Ser. Sta.	77	24 ^d	12	gross a	5	<2	<3	<10
				gross ß	6	<2	<3	<10
			•	³ Н	NA	NA	NA	-
Pioche, NV		د			_	_		
County Courthouse	78	24 ^d	12	gross a	5	<2	<3	<10
•				gross ß	14	<2	<5	
			•	³ H	NA	NA	NA	-
Round Mt., NV	79	24	12		9	<2	<4	<13
Mobil Ser. Sta.	/ 9		12	gross a	9 7	<2	<4	
		*		gross β ³ Η	/ NA	NA	NA	
				- 11	114			
Ruby Valley, NV ^b Fish Hatchery	80	21	1	gross a	4	-	-	-
Edit Harmery		**	-	gross β	8	-	-	-
				9.400 P	-			

and the second

T. A. W.

114

•	Sampling	Мар	Sample	No. of	Type Radi	0-	10- ⁹ µ(activity (Ci/ml or p	Ci/l	% of
	Location	No.	Type ^a	Samples	activ	ity	Cmax	Cmin	Cavg	Guid
	s Jct., NV Ser. Sta.	81	23 ^d	12	gross	a	7	. <3	<5	<17
			•		gross	ß	14	<3	<11	<3
					зĦ		<400	<300	<370	<
Springda Peacock		82	27d	12	gross	α	7	<2	<4	<1
	× · ·				gross		16	7	9	3(
				·	³ Н	-	<400	<290	<370	<
Springda	ile, NV	••								
Pond .		83	21	12	gross		10	4	<7	<2
					gross	ß	25	10	14	41
					³ H		NA	NA	NA	•
Sunnysid Adam McG	le, NV Sill Reservoir	84	21	12	gross	- CL	15	5	8	2
					gross	ß	14	5	9	3
					3 _H		NA	NA	NA	
Sunnysid Vildlife	le, NV Mgt. Hdqts.	85	27d	12	gross	α	6	<2	<3	<10
			•		gross	ß	6	<2	<3	<1
					³ Н		NA	NA	NA	
Conopah,	NV		L							
avid's	L & L Motel	86	24d	12	gross	a	8	<3	<5,	. <1
					gross	ß	13	< <u>2</u>	<8	<2
					3H		NA	NA	NA	
	Test Range, NV	07	~24d	12						-
P-1		87	£244	12	gross		10	<2	<6	<2
		~			gross	B	24	7	11	3
			•	•	³ Н		NA	NA	NA	•
larm Spr Fallini'	ings, NV s Pond	88	21	12	gross	α	32	10	<21	<7
2			_	-	gross		70	5	33	11
					³ Н		NA	NA	NA	
				- 84						

.

Table 6

e 6 1971 Summary of Analytical Results for the Water Surveillance Network

				No.	Type of		activity		
ļ	Sampling	Мар	Sample	of	Radio-	_10 ⁻⁹ μ(Ci/ml or	pCi/l	% of
1	Location	No.	Type ^a	Samples	activity	Cmax	Cmin	Cavg	Guide
	Warm Springs, NV Hot Creek Ranch	89	27 ^d	10		0	2		
	HOL GIEER RAHCH	69	21	10	gross a	8	3	<5	<17
					gross β	18	3	11	. 37
	·				3 _H	NA	NA	NA	-
	Warm Springs, NV		Å						
Ì	Ser. Sta. & Cafe	90	27 ^d	10	gross a	39	<5	<21	<10
					gross ß	45	22	28	93
					³ Н	NA	NA	NA	-
	Warm Springs, NV								
	Twin Springs Ranch	91	23 ^d	12	gross a	14	<3	<8	<27
	•				gross ß	13	. 7	10	33
					3 _H	NA	NA	NA	-
	Wells, NV ^b								
	4-Way Truck Stop	92	24d	2	gross a	5	4	<5	<17
				•	gross B	8	5	. <7	<23
					з _н	NA	NA	NA	-
					•				
	Cedar City, UT M. D. Baldwin Res.	93	24d	12		5	<2	<3	<10
			47		gross a	7			
					gross β		<2	<3	<10
					зн	NA	NA	NA	-
(Garrison, UT ^C								
1	Pruess Reservoir	94	21	3	gross a	29	13	21	70
					gross ß	21	14	17	57
				e e	3 _H	NA	NA	NA	-
(Garrison, UT								
	Rowley Grocery	95	23 ^d	12	gross a	6	2	<4	<13
			~		gross 6	5	<2	<4	<13
			*		3 _H	NA	NA	NA	-
					, ·				
	Newcastle, UT Municipal Reservoir	96	21	9	gross a	17	3	10	33
•			22	-	gross β	18	3	11	37
					3H	NA	NA	NA	-
					** M · ·		110	114	_

85

Sampling	Мар	Sample	No. of	Type of Radio-	_10 ⁻⁹ 1	Ci/ml or	pCi/l	% of
Location	No.	Type ^a	Samples	activity	/ ^C max	C _{min}	Cavg	Guide
Newcastle, UT Newcastle Dairy	97	24 ^d	11	gross a	9	<2	<5	<17
				gross B	13	<2	<7	<23
				³ Н	NA	NA	NA	-
St. George, UT R. Cox Dairy	98	24 ^d	11	gross a	. 7	<2	<4	<13
A. UX Daily	,,	6 7	**	-	, ,			
				gross B	. /	<2	< 3	<10
				зĦ	NA	NA	NA	-
Wendover, UT State Line Cafe	99	24 ^đ	2	gross a	<2	<2	<2	< 7
				gross β	<3	<2	. <3	<10
				зн	NA	NA	NA	

^a21 = Pond, Lake, Reservoir.

22 = Stream, River.

23 = Well.

122-1 17 to at

24 = Community Supply, i.e., a water supply continuously serving 20 or more people or 10 or more residences.

27 = Spring.

b = Discontinued.

c = Sampled Quarterly.

d = Drinking water.

NA = Not Analyzed.

Sampling Locations	Collection Data	Radio ⁴⁰ K	activity 226 Ra	Concentratic	ns, 10-9 ⁸⁹ Sr	⁹ μCi/ml ⁹⁰ Sr
Alamo, Nv						
Pahrangat Lake	3/8/67	ND	0.2	NA	A 1 A 2 A 2 A < 5 A < 5 3^a NA 2^a NA 2^a NA 2^a NA 3^a NA 3^a NA 3^a NA 3^a NA 3^a NA 3^a NA 4^a S 4^a NA 4^a NA 4	0.3
•	4/27/67	ND	0.2	NA	2	1.3
•	5/22/67	ND	0.4	NA	<5	0.3
	6/6/67	ND	NA	NA	<5	0.2
	11/1/67	ND	0.1	23 ^a ·	NA	NA
	11/28/67	ND	0.3	25 ⁴	NA	NA
	1/23/68	ND	0.3	12	NA	NA
	2/4/68	ND	0.2	19 ⁴	NA	NA
	3/28/68	ND	0.3	20 ^a	NA	NA
•	5/28/68	ND	0.2	17 ²	NA	NA
	6/24/68	ND -	0.2	13 ^a	NA	NA
	7/24/68	ND	0.1	33 ⁴	NA	NA
	9/9/68	ND	0.1	34 ª	NA	NA
	10/1/68	ND	0.1	32 ⁸	NA	NA
Ely, NV Comins Lake	10/13/67	ND	NA	NA	<5	<0.1
Hawthorne, Nv Walker Lake	6/18/69	ND	NA	NA	39 Sr 1 2 <5	<2
	12/10/70	ND	NA	NA	<5	<2
· ·	2/15/72	130	0.4	36 (?34 U) ^b	<2	<2
•.						
•			•	33 (* 38 D) b		
Menhattan, Nv Seyler Reservoir	12/8/70	ND	NA	NA	<5	<2
Warm Springs, Nv Fallini's Pond	2/15/68	ND	1.1	21	NA	NA
	3/5/68 🔨	ND	1.7	20 ⁴	NA	NA
•	4/3/68~	ND	1.3	19	NA	NA
	5/22/68	ND	. 1.7	39 [#]	NA	NA
•	9/4/68	ND	5.1	20	NA	NA
	10/15/68	ND	3.0	23 ^{a}	NA	ŇA
	11/8/68	ND	1.7	15 ⁸		NA
	1/14/69	ND	1.4	12 ^{a}		NA

Table 7 Results of Special Water Analyses

of ilde

:17 :23 -

13 10

<7 10

- ND = Not detected.
- NA = No analysis.

Ъ

Concentration in µg/l determined by fluorometry procedures were converted to µCi/ml by multiplying by factor of 0.7x10⁻⁹, specific activity of natural uranium.

= Concentration in μ Ci/ml determined by alpha spectroscopy procedure.

DISTRIBUTION

National Environmental Research Center, Las Vegas, Nevada 1 - 15 Mahlon E. Gates, Manager, NVOO/AEC, Las Vegas, Nevada 16 Robert H. Thalgott, NVOO/AEC, Las Vegas, Nevada 17 Henry G. Vermillion, NVOO/AEC, Las Vegas, Nevada 18 Chief, NOB/DNA, NVOO/AEC, Las Vegas, Nevada 19 Robert R. Loux, NVOO/AEC, Las Vegas, Nevada 20 21 Donald W. Hendricks, NVOO/AEC, Las Vegas, Nevada Technical Library, NVOO/AEC, Las Vegas, Nevada 22 Mail & Records, NVOO/AEC, Las Vegas, Nevada 23 Martin B. Biles, DOS, USAEC, Washington, D.C. 24 Director, DMA, USAEC, Washington, D.C. 25 John S. Kelley, DPNE, USAEC, Washington, D.C. 26 Harold F. Mueller, ARL/NOAA, NVOO/AEC, Las Vegas, Nevada 27 Gilbert J. Ferber, ARL/NOAA, Silver Spring, Maryland 28 Stanley M. Greenfield, Assistant Administrator for Research & Monitoring, 29 EPA, Washington, D.C. William D. Rowe, Deputy Assistant Administrator for Radiation Programs, 30 EPA, Rockville, Maryland Dr. William A. Mills, Dir., Div. of Criteria & Standards, Office of 31 Radiation Program, EPA, Rockville, Maryland Ernest D. Harward, Acting Director, Division of Technology Assessment, 32 Office of Radiation Program, EPA, Rockville, Maryland Bernd Kahn, Chief, Radiochemistry & Nuclear Engineering, NERC, EPA, 33 Cincinnati, Ohio Charles L. Weaver, Director, Field Operations Division, Office of 34 - 35 Radiation Programs, EPA, Rockville, Maryland Gorden Everett, Director, Office of Technical Analysis, EPA, 36 Washington, D.C. Mart L. Feldmann, Managing Editor, Radiation Data & Reports, ORP, EPA, 37 Rockville, Maryland Regional Administrator, EPA, Region IX, San Francisco, California 38 Regional Radiation Representative, EPA, Region IX, San Francisco, California 39 Eastern Environmental Radiation Laboratory, EPA, Montgomery, Alabama 40

DISTRIBUTION (continued)

41 Library, EPA, Washington, D.C.

42 William C. King, LLL, Mercury, Nevada

43 James E. Carothers, LLL, Livermore, California

44 Roger E. Batzel, LLL, Livermore, California

45 William E. Ogle, LASL, Los Alamos, New Mexico

46 Harry S. Jordan, LASL, Los Alamos, New Mexico

47 Arden E. Bicker, REECo, Mercury, Nevada

48 Savino W. Cavender, REECo, Mercury, Nevada

49 Charles F. Bild, Sandia Laboratorys, Albuquerque, New Mexico

50 Robert H. Wilson, University of Rochester, Rochester, New York

51 Richard S. Davidson, Battelle Memorial Institute, Columbus, Ohio

52 Frank E. Abbott, USAEC, Golden, Colorado

53 John M. Ward, President, Desert Research Institute, University of Nevada, Reno

54 - 55 Technical Information Center, Oak Ridge, Tennessee (for public availability).