U. S. Department/of Commerce
Malcolmi-Baldrige
Secretary
National Bureau of Standards
Ernest Ambler, Director

National Bureau of Standards

Certificate of Analysis

Standard Reference Material U-970

Uranium Isotopic Standard (Nominally 98% Enriched)

	²³⁴ U	²³⁵ U	$^{236}{ m U}$	²³⁸ U
Atom Percent	1.6653	97.663	0.1491	0.5229
	±0.0017	±0.003	±.0005	±.0006
Weight Percent	1.6582	97.663	.1497	.5296

This Standard Reference Material (SRM) is certified for use as an isotopic standard. The primary intended use is for the evaluation of mass discrimination effects encountered in the operation of a mass spectrometer.

The material consists of highly purified uranium oxide, U₃O₈. The atomic weight of the material is calculated to be 235.045, using the nuclidic masses 234.0409; 235.0439; 236.0457; and 238.0508.

The values for ²³⁴U and ²³⁶U are calculated from measurements made on samples spiked with high-purity ²³³U to approximate the ²³⁴U and ²³⁶U concentrations, the ratios ²³³U to ²³⁴U and ²³³U to ²³⁶U were measured on a triple-filament equipped surface ionization mass spectrometer with d-c amplifier circuits. Ratio determinations were corrected for mass discrimination by measurements made under similar conditions on SRM U-500.

The value for ²³⁸U is calculated from measurements of the ratio ²³⁵U to ²³⁸U, and calibrated by measurements of the same ratio on synthetic mixtures prepared from high-purity separated isotopes of ²³⁵U and ²³⁸U to approximate the composition of the sample. Because of the response time of the measuring circuit when switching from the ²³⁵U peak to the ²³⁸U peak, the ²³⁸U peak was monitored for 1 minute and only data from the last 30 seconds, after the signal had stablized, were used in the calculations. The value for ²³⁵U is calculated by difference.

The indicated uncertainties for the isotopic compositions are at the 95-percent confidence level for a single determination, and include terms for the inhomogeneities of the material as well as analytical error. The ²³⁵U to ²³⁸U ratio for this standard, 186.78, is known to at least 0.15 percent.

Measurements leading to the certification of this SRM were made by E. L. Garner and L. A. Machlan.

The overall direction and coordination of the technical measurements leading to certification were performed under the chairmanship of W. R. Shields.

The technical and support aspects in the preparation, certification, and issuance of this Standard Reference Material were coordinated through the Office of Standard Reference Materials by J. L. Hague.

NOTE: In many industries traceability of their quality control process to the national measurement system is carried out through the mechanisms of SRM's. It may be therefore of interest to know the details of the measurements made at NBS in arriving at the certified values of this SRM. An NBS Special Publication, 260-27, is reserved for this purpose and is available from the NBS Office of Standard Reference Materials upon request.

Washington, D.C. 20234 April 6, 1981 (Editorial revision of Certificate dated 7-30-70) George A. Uriano, Chief Office of Standard Reference Materials