UNITED STATES DEPARTMENT OF COMMERCE WASHINGTON

National Bureau of Standards

Certificate of Analyses Standard Sample 62 c

Manganese Bronze

ANALYST	COPPER Electrolytic	ZINC ZnS-ZnO	ALUMINUM Weighed as Al ₂ O ₃	IRON	MANGANESE Persulfatc-arsenite	TIN SaCi2-KIO3	NICKEL Weighed as nickel dimethylglyoxime	LEAD Weighed as PbO ₂	SILICON
1	• 59.16	37.25	ь 1.22	• 0.74	ª 0.66	• 0.39	0.28	⁸ 0.24	© 0.0 68
2	{ h 59.14 i 59.15}	37.25	i 1.21	k. 75	1,65	≖.40	.29	n.23	• . 067
3	59.16	37.22	1.22	⊳. 73	9.66	r.39	.29	.24	≈. 073
4	i 59.19	37.25	t 1.19	u.74	. 66	v. 39	₩.28	.22	•.061
5	× 59.16	37.24	1.22	y. 74	. 67	z. 38	.28	.25	≤.067
6	z1 59.17	37.23	i 1.23	≈2.74	٩.66	z3.3 8	.29	**.24	*5.070
rage	59.16	37.24	1.22	0.74	0.66	0.39	0.28	0.24	0.068

⁶ Five-gram sample dissolved in 110 ml of HNO₃ (1+4). Metastannic-acid precipitate filtered off, treated with HNO₃-HClO₄-HBr, and the residual solution added to the first filtrate. Two drops of 0.1 N HCl added, solution diluted to 325 ml and electrolyzed overnight, using a current density of 0.5 amp/dm². H₂SO₄ added to the electrolyte, solution evaporated to fumes of H₂SO₄, diluted, filtered, and residual copper precipitated as CuS and determined by the diethyldithiocarbamate-colorimetric method.

b Five-gram sample electrolyzed in a mercury cathode cell. Electrolyte treated with H₂S and filtered. Manganese precipitated in the filtrate with (NH₄)25₂O₈ and solution filtered. Aluminum precipitated in the filtrate with NH₄OH and ignited to Al₂O₃.

°Filtrate from CuS separation (footnote a) boiled to remove H₂S. Iron oxidized, precipitated with NH₄OH, reduced with SnCl₂, and titrated with K₂Cr₂O₇, using sodium diphenylamine sulfonate indicator.

d Potentiometric titration of a 1-g sample

• Five-gram sample dissolved in HCl-HNO3, tin precipitated twice with NH40H. Precipitate dissolved in HCl, tin reduced with nickel and titrated with KIO3 standardized with pure tin. See ASTM Method E54—49, Methods of Chemical Analysis of Metals, p. 267 (1950). American Society for Testing Materials, Philadelphia, Pa.

- f Lead separated as PbO₂ by electrolysis of a 5-g sample and determined as PbSO₄.
- g Double dehydration with HClO4 with intervening fil-
- h Five-gram and ten-gram samples dissolved in HNO₃ (1+2). 3 drops of H₂SO₄ (1+1) added, solution diluted to 350 ml, and digested 1 hour. Solution filtered and filtrate electrolyzed. Residual copper in the metastannicacid precipitate separated as sulfide and determined by electrolysis.
- i Copper deposited in the presence of tin in an HNO3-HF solution.
- i Mercury cathode-NH4OH-Al2O3 method.
- k Iron reduced with H2S and titrated with Ce(SO4)2. 1 Bismuthate method.
- m Tin reduced with an iron coil in the presence of added antimony and titrated with iodine.

 n Same value obtained by the PbSO₄ method.
- HCl-H2SO4 dehydration method.
- $\label{eq:snCl2-K2Cr2O7} \begin{array}{ll} p \ SnCl_2-K_2Cr_2O_7 \ method. & See \ ASTM \ Method \ E54-49. \end{array}$
- q KIO4-photometric method.
- F Tin reduced with aluminum and titrated with KIO3.
- Double dehydration with H₂SO₄ with intervening filtration. See ASTM Method E54—49.

- 4 Aluminon-photometric method.
- u NH4CNS-photometric method.
- v Tin reduced with iron in the presence of added antimony and titrated with KIO₂.
- w Dimethylglyoxime-photometric method.
- ² Two-gram sample dissolved in HNO₃. Copper in metastannic-acid precipitate recovered by treatment with HNO₃-HClO₄-HBr. Solution diluted to 350 ml and electrolyzed 1 hour with a current of 2 amperes, with magnetic stirring.
 - y Iron titrated with Ti2(SO4)3.
- * Tin reduced with iron in the presence of added zinc and titrated with KIO₃.
- $^{\rm z1}$ Copper deposited in the presence of tin in an $\rm H_2SO_4\!-\!HNO_3\!-\!HF$ solution.
 - ⁸² Iron titrated with TiCl₃.
- 28 Tin reduced with aluminum in the presence of added antimony and titrated with iodine.
- ²⁴ Lead separated as PbO₂ by electrolysis of a 2-g sample and determined as PbSO₄.
- 55 Silicomolybdate-photometric method.

List of Analysts

- 1. Nonferrous Laboratory, National Bureau of Standards. R. K. Bell, in charge. Analysis by E. E. Maczkowske.
- 2. B. A. Stoltz and John Long, Ajax Metal Division, H. Kramer & Co., Philadelphia, Pa.
- 3. J. D. Kopp and F. M. Barry, Scovill Manufacturing Co., Waterbury,
- 4. J. W. Claypool, Nassau Smelting & Refining Co., Tottenville, N. Y.
- 5. E. P. Buxton, Western Cartridge Co., East Alton, Ill.
- 6. F. deF. Camp, O. P. Case, and R. P. Nevers, The American Brass Co., Waterbury, Conn.

The metal for the preparation of this standard was furnished by the Federated Metals Division, American Smelting & Refining Co.

AINGTON, D. C., July 30, 1954.

A. V. ASTIN, Director.