UNITED STATES DEPARTMENT OF COMMERCE WASHINGTON

National Bureau of Standards Certificate of Analyses

Standard Sample 5J Cast Iron

	C		Mn	in P		S			Si	Cu	Ni	Cr	V	Мо	Ti	As	N
ANALYST	Total	Graphitic	Persulfate-Arsenite	Gravimetric (weighed as MgsP2O7 after removal of arsenic)	Alkali-Molybdate a	Gravimetric (direct oxidation and final precipitation after reduction of iron)	Evolution (HCl, sp. gr. 1.18, ZnS-iodine b theoretical sulfur titer o)	Combustion	Sulfuric acid dehydration	H ₂ S-CuS-CuO	Weighed as nickel dimethylglyoxime	FeSO4-KMnO4 titration		Photometric	$ m H_2O_2$ photometric		Distillation-titration
1	2.37	1.91	d 0.71	0.244	°0.236	0.102	0.100	f 0.101	z 2.45	ь 1.00	0.019	i 0.021	i 0.012	0.005	k 0.043	° 0.023	1 0.008
2	2.38	1.92	. 69		.244	.100	.099	∞.10 0	¤. s 2.45	.99	.016	°.021	i.011	.003	₽.044		
3	2.41	1.87	.71	.241	.243	.100		f.101	≅ 2.43	1.00	.019	۹.025	r.011	.004	₽.045		
	2.36	1.89	∘.70	.241	.243			f.098	n 2.42	t 1.00	.016	°.022	*.01 6	.004	.044		
1. C. C. C.	2.38	1.91	. 69		.242	.100	u.098		g 2.43	v. 99	.017	٩.020	r.012		₽.045		
<u></u>	2.34	1.96	s.70	.233	.239	.100	¤.097		w.g2.42	v. 99	.019	9.019	r.012	.005	Þ.044	≖ .029	
	2.38	1.89	y. 69	.244	≈.242	.101	¤.095		n.g2.45	.98	≖. 017	- .021	*.013	*.006	*.04 3	~~~~	
8	2.33	1.91	₽.70		.240	.101		*1.101	£ 2.44	t. 98	.017	*².021	*.012	.005	.045		
Average	2.37	1.91	0.70	0.241	0.241	0.101	0.098	0.100	2.44	0.99	0.018	0.021	0.012	0.005	0.044	0.026	
General average	2.37 1.91 0.70 0				41	0.100			2.44	0.99	0.018	0.021	0.012	0.005	0.044	0.026	

a Precipitated at 40° C, washed with a 1-percent solution of KNO₂ and titrated with alkali standardized by the use of acid potassium phthalate and the ratio 23 NaOH:1.P.

b Sample annealed by covering with a layer of graphite, and heating for 20 minutes at 685° C.

c Value obtained by standardizing the titrating solution by means of sodium oxalate through KMnO₄ and Na₂So₃, and use of the ratio 21:1S.

d Potentiometric titration.

Molybdenum-blue photometric method.
1-g sample burned in oxygen at 1,425° C, and sulfur dioxide absorbed in starch-iodine solution. The iodine was liberated from iodide by titration, during the combustion, with standard KIO₃ solution based on 93 percent of the theoretical factor.

s Double debydration with intervening filtration.

percent of the theoremsal ration.

s Double dehydration with intervening filtration,

h Diethyldithiocarbamate photometric method. See J. Research NBS 47, 380 (1951) RP2265.
i Chromium separated from the bulk of iron in a 10-g sample by hydrolytic precipitation with NaHCO3. Persulfate oxidation and potentiometric titration with ferrous ammonium sulfato.
i Vanadium separated as in (i). Nitric acid oxidation and potentiometric titration with ferrous ammonium sulfate.

k Cupferron separation after solution of the sample in diluted HCl (1+2). Vanadium separated by treatment with NaOH.

1 Sulfuric acid digestion for 4 hours of 0.5-g sample.
See J. Research NBS 43, 201 (1949) RP2021.

1 Combustion gases absorbed in NaOH-H₂O₂, and excess NaOH titrated with H₂SO₄.

Perchloric acid dehydration

• Perchloric acid oxidation.

• Vanadium separated by Na₂CO₃ fusion.

• As in (i), except FeSO₄-KMnO₄ titration.

• Ferrous sulfate-persulfate-KMnO₄ titration.

• Titrating solution standardized by use of standard steels or irons.

• Copper-ammonia complex photometric method.

• Solution in diluted HCl (1+1).

• KI-Na₂S₂O₃ titration.

• Nitric-sulfuric acid dehydration.

• Distillation-Hos-As-Ss.

Distillation-H₂S-As₂S₃.

Bismuthate-FeSO₄-KMnO₄.

al As in (f), except burned at 2,500° F, and 79-percent

2 Diphenylcarbazide photometric method.

List of Analysts

- 1. Ferrous Laboratory, National Bureau of Standards, J. L. Hague in charge. Analysis by J. I. Shultz, E. D. Brown, and C. C. Marshall.
- 2. R. H. Elder and R. E. Deas, American Cast Iron Pipe
 - Co., Birmingham, Ala. H. Rouse, Bethlehem Steel Corp., Steelton, Pa.
 Spittle, Ford Motor Company, Dearborn, Mich.
 Wood and Max Powell, Republic Steel Corp., I ingham, Ala.
- 6. Charles McKimmon, H. S. Leach, and C. Dillon, Tennessee Coal and Iron Division, United States Steel Co., Fairfield, Ala.
- 7. R. E. James, United States Steel Co., Ohio Works, Youngstown, Ohio.
- 8. W. R. Sayre, United States Steel Co., Edgar Thomson Works, Braddock, Pa.

The iron for the preparation of this standard was furnished by the American Cast Iron Pipe Co.

WASHINGTON, D. C., January 21, 1953.

A. V. Astin, Director.