UNITED STATES DEPARTMENT OF COMMERCE 6000 WASHINGTON

National Bureau of Standards Certificate of Analyses

Standard Sample 19F Acid Open-Hearth Steel, 0.2% Carbon

r	C	Mn		P		S			Si	Cu	Ni	Cr	v	Мо	Sn
ANALYST	Direct combustion	Bismuthate (FeSO4-KMnO4)	Persulfate-Arsenite	Gravimetric (weighed as Mg ₂ P ₂ O ₇ after removal of arsenic)	Alkali-Molybdate a	Gravimetric (directoxidation and precipitation after re- duction of iron)	Combustion Iodate titration ^b	Evolution with HCl (1-1) ZnS-Iodine (theoretical sulfur titer) °	Perchloric acid dehydration	H ₂ S-CuS-CuO	Weighed as nickel dimethylglyoxime	FeSO4-KMnO4 titration		Colorimetric	
1	0.190		a 0.501	0.028	e 0.027	0.043	0.043	0.040	f 0.204	∝ 0.151	0.316	ь 0.054	i 0.007	0.059	i 0.021
2	.195	₺ 0.503			.029		.042		.202	¹ .154	.315	™.052	≖.00€	.059	
3	.191		• . 490		e.029		.042	₽.039	q.211	r.151	.314	□. 050	t.009	.060	
4	.192	.496	o.494		.028		o.043	₽.042	q.205	u.149	v .322	s.052	w.008	×.060	
5	.196		o. 4 95		∘.029		°.043		.205	у.150	.321	s.055	n.008	.056	
6-	.193	.498	 		.030		.041		q.205	¹.156	.314	z.051	z1.007	.057	*2.023
/ 	.190		°. 4 96		•.028		.045	 	.201	≥3.152	.322	.054	n.005	.057	
8	.195		°.504	.028	.030	.044		°¤.044	f.200	.149	.316	²⁴ .054		.057	
Average	0.193	0.499	0.497	0.028	0.029	0.043	0.043	0.041	0.204	0.151	0.317	0.053	0.007	0.058	0.022
General averages	0.193	0.497		0.029		0.042			0.204	0.151	0.317	0.053	0.007	0.058	0.022

*Precipitated at 40° C, washed with a 1-percent solution of KNOs and titrated with alkali standardized by the use of acid potassium phthalate and the ratio 23NaOH:1P. b-1-g sample burned in oxygen at 1,425° C and sulfur dioxide absorbed in starch-iodine solution. Iodine liberated from iodide by titration, during the combustion, with standard KIOs solution. Titer based on 93-percent of the

standard KIO₃ solution. Titer based on 93-percent of the theoretical factor.

° Value obtained by standardizing the titrating solution by means of sodium oxalate through KMnO₄ and Na₂S₂O₄ and use of the ratio 2I:1S.

d Potentiometric titration.

o Molybdenum-blue photometric method. See J. Research NBS 26, 405 (1941) RP1386.

Double dehydration with H₂SO₄.

E Diethyldithiocarbamate photometric method. See J. Research NBS 47, 380 (1951) RP2265.

h Chromium separated from the bulk of the iron in a 10-g sample by NaHCO₃ hydrolysis oxidized with persulfate

and titrated potentiometrically with ferrous ammonium

sulfate.

i Vanadium separated as in (h), oxidized with HNOs and titrated potentiometrically with ferrous ammonium

sulfate.
Sulfide iodine method. See J. Research NBS 8, 309

1 Sulfide-jodine method. See J. Research NDO 6, 307 (1932) RP415.

k Potentiometric titration with HgNO₄.

1 Thiosulfate precipitation-electrolytic method.

m Persulfate oxidation, potentiometric titration with ferrous ammonium sulfate.

n Nitric acid oxidation, potentiometric titration with ferrous ammonium sulfate.

"Nume acid oxidation, potentiament utration with ferrous ammonium sulfate.

"Titrating solution standardized with a standard steel.

"Absorbed in ammoniacal cadmium chloride.

"Double dehydration.

"HS - NH40H - diethyldithiocarbamate photometric

method.

* Perchloric acid oxidation.

- * FeSO₁-(NH₄)₂S₂O₈-KMnO₄ titration,

 u Na₂S₂O₃ precipitation, iodide method,

 v Dimethylglyoxime precipitation, KCN titration.

 * Ether-cupierron-KMnO₄ titration.

 * Molybdenum precipitated with H₂S, reduced with Zn,
 and titrated with KMnO₄.

 v 10-g sample dissolved in HNO₃ (sp gr 1.13). Solution
 digested after the addition of 5-g of (NH₄)₂S₂O₃, cooled,
 an excess of NH₄OH added, and diluted to 500 ml. A
 250-ml portion filtered off and copper deposited electrolytically.

250-ml portion filtered off and copper deposited electro-lytically.

* Diphenylcarbazide photometric method.

* NaHCO₃ hydrolysis followed by mercury cathode.

Vanadium oxidized by the KMnO₄-nitrite-urea method and titratted with FeSO₄ using sodium diphenylbenzidine sulfonate indicator.

* Stanreduce-iodate titration method.

²³ Copper-ammonia complex photometric method. ²⁴ As in (h), but FeSO₄-KMnO₄ titration.

List of Analysts

- 1. Ferrous Laboratory, National Bureau of Standards. Analysis by J. I. Shultz, H. Jacobson, and L. A. Machlan.
- 2. J. A. Wiley, The Midvale Company, Nicetown, Philadelphia, Pa.
- 3. J. F. O'Mara, Great Lakes Steel Corporation, Ecorse, Detroit, Mich.
- 4. J. B. Armstrong, Bethlehem Steel Company, Sparrows Point Plant, Sparrows Point, Md.
- 5. C. H. Flickinger, Republic Steel Corporation, Cleveland, Ohio.
- 6. W. G. Rader, Republic Steel Corporation, Buffalo, N. Y.
- 7. Philadelphia Naval Shipyard, Industrial Test Laboratory, Philadelphia, Pa.
- 8. L. C. Flickinger, The Youngstown Sheet and Tube Company, Youngstown, Ohio.

The steel for the preparation of this standard was furnished by The Midvale Company, Philadelphia, Pa.

Washington, D. C., April 8, 1955. 3/7

A. V. ASTIN, Director.