

Bureau of Standards

Certificate of Analyses

STANDARD SAMPLE No. 16b

BASIC OPEN-HEARTH STEEL, 1.0% CARBON

	C	Mn		P		S		Si		hyl-					
ANALYST *	CARBON Direct combustion	MANGANESE I. Bismuthate (FeSO,-KMnO ₄)	2. Other methods	PHOSPHORUS 1. Alkali-Molybdate ^a	2. Gravimetric (Weighed as MgP20, after removal of arsenic)	I. SULPHUR Graimetric (Direct oxidation and final precipitation in re- duced solution)	2. SULPHUR Evolution with HCl (1:1) ZnS-Iodine (theoretical sulphur titre ^b)	SILICON Sulphuric acid dehydra- tion	COPPER H ₂ S-CuS-CuO	NICKEL Weighed as nickel dimethylglylyoxime	CHROMIUM FeSot-KMnO, titration	VANADIUM	МОLУВDENUM	ARSENIC	ALUMINUM
1	1. 02	0. 384		0. 026	0. 025	0. 030	0. 029	0. 078	0. 017	0. 002	0. 006 °	0. 004 •	0. 002 d		0. 007
2	1. 01	. 380		. 025	. 025	. 032	. 028 •	. 075	. 016	. 002	. 009 f	. 005 1	. 005 #	0. 008 h	. 009
<i></i>	1. 00	. 38	0. 39 i	. 025		. 031	. 030	. 077 i	. 015						
4	1. 03	. 39		. 026		. 032	. 031	{. 081 {. 075 k	}. 018 ¹	. 003	. 006				
5	1. 00	. 378	. 378 m	. 025	. 027	. 031	. 030	. 086	. 019	. 005	. 007	. 002	. 005	. 014 n	
6	1. 01	. 372		. 024		. 032		. 077	. 016		. 005				
7	1. 01	. 376	. 379 i	. 026		. 030	. 029	. 079	. 013						
8	1. 02	. 384	. 385 i	. 026	. 025	. 029	. 030	{. 085 i . 083	}. 019		. 006				
Averages	1. 01	. 381	. 383	. 025	. 026	. 031	. 030	. 080	. 017	. 003	. 007	. 004	. 004	. 011	. 008
General Averages _	1. 01		381	.0	25	.031†	. 030	. 080	. 017	. 003	. 007	. 004	.004	. 011	. 008

^a Precipitated at 40° C., washed with a 1 per cent solution of KNO₂ and titrated with alkali stand-ardized by means of B. S. benzoic acid and the 23:1 ratio.

*LIST OF ANALYSTS

- 1. James I. Hoffman, Bureau of Standards.
- 2. Ferrous Laboratory, Bureau of Standards, W. C. Fedde and C. P. Larrabee, analysts.
- 3. H. E. Slocum, Jones & Laughlin Steel Corp., Pittsburgh, Pa.
- 4. A. Sloan, Watertown Arsenal, Watertown, Mass.
- 5. W. F. Muehlberg, Newburgh Steel Works, Cleveland, Ohio
- 6. W. T. Hartley, Atlas Alloy Steel Corp., Dunkirk, N. Y.
- 7. J. L. Coulton, The Carnegie Steel Co., Duquesne, Pa.
- 8. A. C. Jones, research engineer, Lebanon Steel Foundry, Lebanon, Pa.

This standard is not recommended for colorimetric carbon determinations, because of uncertainty as to the condition of the carbon.

GEORGE K. BURGESS,

Director.

Value obtained by standardization of titrating solution against sodium oxalate through KMnO₄ and Na₂S₂O₃.

• Colorimetric.

d Colorimetric by developing color with KCNS and

d Colorimetric by developing color with Kons and SnCl₂.

• After annealing, 0.032 per cent sulphur was obtained.

• Electrometric titration.

• Weighed as MoO₃.

• Distilled as AsCl₂, precipitated as As₂S₃, converted As₂S₃ to arsenate, precipitated as Ag₃AsO₄, dissolved in HNO₃ and titrated with KCNS.

i Persulphate-arsenite.
i Drown's method.
k HCl dehydration.
Precipitated with H₂S and finished by electrolysis.
Bismuthate-arsenite.
Weighed as A₅S₅.
† Recommended value.